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ABSTRACT

We briefly overview the design principles, implementatio
techniques, and empirical testing of uniform rando
number generators for simulation. We first discus
some philosophical issues and quality criteria. The
we explain a few concrete families of generators an
give appropriate references to further details and
recommended implementations.

1 WHAT ARE WE LOOKING FOR?

1.1 Definition

What we call a random number generator(RNG) is
actually a program that produces, once its initial state
chosen, a deterministic and periodic sequence of numb
An RNG has astate that evolves in a finite state spac
S, according to a recurrence of the formsn = f(sn−1),
n ≥ 1, where the initial states0 ∈ S is called theseed,
and f : S → S is the transition function. At stepn, the
generator outputsun = g(sn), whereg : S → [0, 1) is the
output function. The output sequence is thus{un, n ≥ 0}.
The output space could be more general, but we assu
here that it is a subset of the real interval[0, 1). SinceS is
finite, the output sequence is periodic (possibly after som
initial transient), say with period lengthρ. A well-designed
RNG normally hasρ near |S|, i.e., ρ ≈ 2e if the state is
represented overe bits.

Formally, this deterministic construction contradict
the idea of a sequence of independent and identica
distributed (i.i.d.) random variables. But from a practica
viewpoint, experience indicates that this works fine. W
give some heuristic explanations of why in what follows
These heuristics lead to theoretical quality criteria th
need advanced mathematical tools to be assessed.

1.2 Equidistribution

The idealized mathematical abstraction that we want
imitate corresponds to the null hypothesisH0: “The un are
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i.i.d.U(0, 1)” (i.e., independent random variables uniforml
distributed over the interval(0, 1)). This hypothesis means
that for eachn andt, the vectorun,t = (un, . . . , un+t−1) is
uniformly distributed over thet-dimensional unit hypercube
[0, 1)t. We know a priori that H0 is false. But can we
still assume itfor practical purposes?

To better illustrate the ideas, suppose that the RNG
period lengthρ = |S|, that the output space isZZm/m =
{0, 1/m, 2/m, . . . , (m− 1)/m} for some positive integer
m, and that the seeds0 is random, uniformly distributed
over S. Such an RNG is calledt-distributed in basem if
all of themt possiblet-dimensional output vectors appea
exactly the same number of times in the set

Ψt
def= {u0,t : s0 ∈ S} = {un,t, 0 ≤ n < ρ}.

In this case, the hypothesisH′
0(m, t): “Each un,t is

uniformly distributed over the setZZt
m/m” holds. Note

that this is possible only ifmt dividesρ. This hypothesis
is weaker thanH0: We have uniformity only over a
discretization of[0, 1)t and we do not have independenc
The effect of this can be negligibleonly if ρ is huge;
i.e., a good RNGmust have a very long period (but this
condition is not sufficient). In practice,ρ is often slightly
smaller than a multiple ofm, but we can settle for an
approximation ofH′

0(m, t).
For a given value of|S|, one can choose them

above in different ways. For example, suppose|S| = 2e

for some largee. Taking the first` bits of each output
value (i.e.,` bits of resolution) givesm = 2`. A smaller
` means the possibility oft-distribution for a largert,
up to t = be/`c. If the RNG is be/`c-distributed with
` bits of resolution for1 ≤ ` ≤ min(e, w), it is called
asymptotically randomor maximally equidistributed(ME)
for the word sizew (see L’Ecuyer 1996b; Tezuka 1995)
Then, for a partition of[0, 1)t into 2t` cubic boxes of
equal size, for` ≤ w and t` ≤ e, the point setΨt

has the best possible equidistribution into the boxes.
stronger property than ME is that of a(t,m, s)-net, where
one requires equidistribution for a more general cla
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of partitions of [0, 1)t into rectangular boxes (not only
cubic boxes). See Niederreiter (1992b) and Owen (199
for details and references. Explicit constructions a
implementations of ME RNGs are available (L’Ecuye
1996b; L’Ecuyer 1998e). The construction of large-perio
RNGs whose point sets are(t,m, s)-nets is still a matter
of current investigation.

1.3 Figures of Merit in Large Dimensions

For finite point sets,t-distribution is an interesting concep
only in relatively small dimensions. Fort such that
mt � ρ, Ψt can cover only a tiny fraction ofZZt

m/m.
When the seeds0 is random,Ψt can be viewed in a way
as thesample spacefrom which the output vectorsun,t are
taken, without replacement. It thus makes sense to requ
that Ψt be “evenly” or “uniformly” distributed over the
unit hypercube[0, 1)t, in some sense. There are sever
ways of measuring this uniformity byfigures of merit.
Perhaps the single most important factor in the choice
a figure of merit is the ability to compute it efficiently
As a result, different families of RNGs are analyzed
practice using different figures of merit. Some may arg
that the points ofΨt should look like random points over
ZZt

m/m instead of being too evenly distributed. But ifΨt

is viewed as a (huge) sample space from which poin
are taken at random without replacement, a superunifo
(i.e., very even) distribution ofΨt seems justified.

1.4 Discrepancy

The discrepancyof a point setΨt ⊂ [0, 1)t refers to a
measure of departure between the empirical distribut
of Ψt and the uniform distribution. There is an infinite
number of ways of defining such a measure. For examp
for each rectangular boxB ⊆ [0, 1]t with one corner at
the origin, compute the absolute difference between
fraction of Ψt falling in B and the volume ofB, and
take the supremum over the set of all such boxesB.
This is the “standard”star discrepancy. More generally,
if one replaces the supremum by theLp-average over all
boxes, where the upper corner of the box is uniform
distributed in [0, 1]t, this gives theLp star discrepancy
(the standard case corresponds top = ∞). By removing
the condition that the lower corner is at the origin an
taking the average over all boxesB ⊆ [0, 1]t, one obtains
the unanchoredLp discrepancy. More general regionsB
can be considered, such as all convex sets, and so
We refer to Hickernell (1999) and Niederreiter (1992
for more details. A major problem with most of thes
definitions is that no efficient algorithm is available t
compute the value of the discrepancy for the large po
sets Ψt that are required (we believe) for good RNG
Here, we are thinking of period lengths of2100 or more,
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so even an algorithm working in timeO(n) for n points
is not good enough.

1.5 Spectral Analysis

A general approach for comparing a given densityf1
to the uniform densityf0 over [0, 1)t goes as follows.
Choose an orthonormal basis for a spaceF of functions
f : [0, 1)t → IR (or perhapsf : [0, 1)t → CC, the complex
numbers), such that bothf0 andf1 are inF . Then expand
f0 andf1 in terms of this orthonormal basis and compare
the coefficients. This is the general idea of Fourier analysi
(e.g., Folland 1992).

As an illustration, consider the Fourier basisB =
{ψh, h ∈ ZZt}, whereψh(u) = e(h ·u), e : IR → CC is the
complex trigonometric functione(x) = exp(2πιx), and
ι =

√−1. This B is a basis for the space of square-
integrable functions over[0, 1)t. The Fourier expansion
of f in terms ofB is

f(u) =
∑

h∈ZZt

f̂(h)ψh(u), (1)

with Fourier coefficientsf̂(h) =
∫
[0,1)t f(u)ψh(−u)du.

A probability density over[0, 1)t always hasf̂(0) = 1, and
the uniform densityf0 has Fourier coefficientŝf0(h) = 0
for all h 6= 0. Therefore, one way to test whetherf1 is
close to uniform is to test its Fourier coefficientŝf1(h)
for h 6= 0. Of course, this can also be done with other
bases; see, e.g., Hellekalek (1998b).

For a given point setΨt = {u0,t, . . . ,un−1,t} in
[0, 1)t, one can estimate the coefficientŝf(−h) by the
exponential (Weyl) sums

Sn(h) =
1
n

n−1∑

j=0

e(h · uj,t). (2)

If we want Ψt to be uniform, theSn(h) must be close
to zero for h 6= 0. Since the high-amplitude low-
frequency variations are usually more damaging than th
high-frequency variations, it is customary to give more
weight to the former, i.e., to the small vectorsh. This
motivatesmeasures of discrepancythat are weighted sums
(or supremums) of increasing functions of the|Sn(h)|, as
explained, e.g., by Hellekalek (1998b, 1999), Hellekalek
and Niederreiter (1998), Hickernell (1999), and Leeb and
Hellekalek (1998).

A special case of this is

sup
0 6=h∈ZZt

= |Sn(h)|/‖h‖2, (3)

where ‖ · ‖2 is the Euclidean norm, and it corresponds
to the spectral test originally proposed by Coveyou
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and MacPherson (1967) and commonly applied to linea
congruential and multiple recursive generators. For thes
generators, this spectral test can be applied even f
astronomical sizes ofΨt (e.g., over21000) by exploiting
the lattice structure (see Section 4).

1.6 Statistical Tests

After an RNG has been designed and implemente
empirically-minded people want to “test it on the road”
by applyingstatistical tests.

Optimists may be looking for theultimateRNG, which
runs fast and passesall statistical tests. But such an object
does not exist. To understand why, suppose that the outp
space is finite, with cardinality|U |, and consider the tests
that look atn successive output values, for some fixed
n. For a fixedα, 0 < α < 1, a test of level α is any
function Tn : Un → {0, 1} such that|T−1

n (0)| = α|U |n
(assumed to be an integer, to simplify). The test rejectsH0
when Tn maps the observed sequence to 0. The numb
of such tests is the number of ways of choosingα|U |n
objects among|U |n. A key observation here is thatevery
sequence ofn elements fromU is mapped to 0 by the
same number of testsTn. In other words, all sequences
(or generators) fail exactly the same number of tests. S
Leeb 1995 and Wegenkittl (1995) for more about this.

Statistical testing of RNGs is thus meaningless unles
the tests are not all considered on equal footing. For larg
n, the number of tests is in fact incredibly huge and mos
of them are so complicated that they cannot be run o
a computer in our lifetime. Then we can say that abad
RNG is one that failssimple tests, and agood RNG is
one that fails only complicated tests that are hard to find

In practice, batteries of more or less natural tests a
applied to RNGs, and systematic failures revealdefects
in the structure of the RNG. No amount of testing can
prove that a given RNG is flawless. It only improves our
confidence to a certain extent.

Ideally, the statistical tests should be selected in clos
relation with the target application, i.e., be based on
test statisticT that closely mimics the random variable
of interest. But this is usually impractical, especially
when designing and testing generators for general purpo
software packages. For a sensitive application, it is highl
recommended that the user tests the RNG specifically f
his (or her) problem, or tries RNGs from totally different
classes and compares the results.

1.7 Additional Requirements

A long period, good structure ofΨt, and passing reasonable
statistical tests, are not the only requirements. Fo
simulations involving billions of random numbers, the
generator’s speed can be critical. The size of require
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memory may also be important when virtual generato
(or substreams) are maintained in parallel. This
required, for example, for the implementation of certai
variance reduction techniques.Portability means that the
generator can be implemented easily in a standard hig
level language, and produce the same sequence with
wide range of compilers and computers.Repeatability,
i.e., being able to reproduce the same sequence all o
again, is important for program verification and for varianc
reduction. This is a major advantage of RNGs over rando
numbers generated by physical devices.Jumping ahead
means the ability to quickly compute, given the curren
statesn, the statesn+ν for any largeν. This is useful for
breaking up the sequence into long disjoint substream
The packages of L’Ecuyer and Côté (1991) and L’Ecuyer
and Andres (1997) offer software tools to manipulate suc
substreams.

2 LINEAR RECURRENCES

A multiple recursive generator (MRG) is defined by th
recurrence

xn = (a1xn−1 + · · · + akxn−k) mod m; (4)

un = xn/m. (5)

The modulusm and the order k are positive integers,
the coefficientsai belong toZZm = {0, 1, . . . ,m− 1}, and
the state at stepn is sn = (xn−k+1, . . . , xn). For prime
m and properly chosenai’s, the sequence has maxima
period lengthρ = mk −1. This can be achieved with only
two non-zeroai’s (Knuth 1997; L’Ecuyer 1998b), i.e.,

xn = (arxn−r + akxn−k) mod m. (6)

This economical version makes the implementation fast
The classical linear congruential generator (LCG) corr
sponds tok = 1.

A key issue for the computer implementation o
the MRG is how to compute efficiently the products
ax mod m when m is large. We mention three of
the most useful approaches for this. In general, whe
searching for MRGs with good theoretical behavior, on
would search only in areas where the MRG coefficien
ai satisfy the conditions for one of these implementatio
techniques. A first approach uses integer arithmetic a
we call it approximate factoring; see Bratley, Fox, and
Schrage (1987), L’Ecuyer and Côté (1991) for details. It
works if a2 < m or if a = bm/ic wherei2 < m, and if all
integers between−m andm are well represented on the
computer. A second approach computes the product and
division (for the mod operation) directly infloating-point
arithmetic. On computers that follow the IEEE 64-bi
floating-point standard (most computers nowadays), a
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integers up to253 are representedexactlyin floating point,
and the floating-point implementation works ifam < 253.
See L’Ecuyer (1998a) for details and examples. A thi
approach, recently proposed by Wu (1997), assumes t
a is a sum or a difference of a few (say, 2 or 3) powers
2. The productax can then be decomposed into a sum
products by powers of 2, which are implemented as le
shifts on the computer. A little additional gymnastic take
care of the modulo operation. Wu assumesm = 231 − 1,
but his method can be generalized to other values ofm
as well. Construction of “good” generators of this type
under way. The second and third approach appear to
the most efficient on today’s computers.

Takingm equal to a power of 2 in the MRG simplifies
the implementation, but leads to a much shorter period th
a primem (for k > 1) and to major deficiencies (L’Ecuyer
1990, 1998b). This is a bad idea. But a modification
the MRG, with acarry or a borrow, permits one to use a
power-of-2 modulus while keeping a long period and th
potential for good properties (Couture and L’Ecuyer 199
1997; Marsaglia 1994). The resultingMultiply-with-Carry
(MWC) generator turns out to be approximately equivale
to an LCG with a large modulus and can be analyzed mu
in the same way as LCGs from the structural viewpoin

In (5), each output value is a multiple of1/m. To
reduce the discretization error, one may construct eachun

from severalxj ’s, i.e.,

un =
L∑

j=1

xns+j−1m
−j , (7)

wheres andL ≤ k are positive integers. If (4) has period
ρ andgcd(ρ, s) = 1, (7) has periodρ as well. The digital
expansion (7) allows smallerm, evenm = 2. Form = 2,
un is constructed fromL successive bits of the binary
sequence (4), with spacings ofs − L bits between the
blocks, and the resulting RNG is called alinear feedback
shift register(LFSR) orTausworthegenerator (Knuth 1997;
Niederreiter 1992b; Tausworthe 1965). Its implementatio
is discussed by Bratley, Fox, and Schrage (1987), Fishm
(1996), L’Ecuyer (1996b), and Tezuka (1995).

One can also useL copies of (4) in parallel, with
different seeds, and use one copy for each digit of t
fractional expansion ofun. If {xj,n} is the jth copy and
if xj,n = xn+dj

for all j andn, then

un =
L∑

j=1

xj,nm
−j =

L∑

j=1

xn+djm
−j . (8)

If dj = (j − 1)d for some integerd and if gcd(d, ρ) = 1,
thenn+dj = n+(j−1)d = (ns+j−1)d and (8) becomes
equivalent to (7) if we replace{xn} by {yn = xnd},
which is accomplished by changing the coefficients of (
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appropriately. When (6) and (8) are used withm = 2,
we obtain thegeneralized feedback shift register(GFSR)
generator (Fushimi and Tezuka 1983; Fushimi 1989),
usually expressed as

Xn = Xn−r ⊕Xn−k, (9)

whereXn = (x1,n, . . . , xL,n) and where⊕ denotes the
bitwise exclusive-or.

A generalization of (9) is thelagged-Fibonaccigener-
ator, where the bitwise⊕ can be replaced by an arbitrary
arithmetic or logical operation, such as+, −, etc., not
necessarily bitwise. A popular one is theadditivegenerator
(Knuth 1997):

Xn = (Xn−r +Xn−k) mod m, (10)

wherem = 2L. It is a special case of the MRG with
a power-of-two modulus. Slight variations of it are the
add-with-carry (AWC) and subtract-with-borrow (SWB)
of Marsaglia and Zaman (1991), which are also specia
cases of the MWC. However, the additive, AWC, and
SWB generators share an important deficiency: All triples
of the form(un, un+k−r, un+k) for the additive generator,
and (un, un+r, un+k) for the AWC/SWB, forn ≥ 0, lie
in only two planes in the three-dimensional unit cube (see
L’Ecuyer 1997).

In a series of papers, M. Matsumoto and his co-authors
have proposed a nice class of modifications of the GFSR
which they call thetwisted GFSR. Their modifications
increase the period length of the GFSR from2k − 1 to
2kL−1, when usingkL bits for the state, and improves the
structural properties in a significant way. See Matsumoto
and Kurita (1994) and Matsumoto and Nishimura (1998)
for details. The multiple recursive matrix methodof
Niederreiter (1995a) provides a general framework that
encompasses many of these modifications and variants a
special cases.

3 COMBINED GENERATORS

Combining different recurrences can increase the period
length and improve the structural properties of generators
(Knuth 1997; L’Ecuyer 1994; Marsaglia 1985; Tezuka
1995; Wang and Compagner 1993). But it can also
(conceivably) make things worse. So it is important
to understand what we are doing from the theoretical
viewpoint when we combine generators. Combined MRGs
and combined LFSR generators are two classes which hav
been well analyzed in recent years.

To combine LFSR generators, one can take severa
full-period LFSR components whose period lengths are
relatively prime to each other, and add their outputs bitwise
modulo 2 (i.e., by exclusive or). The result is another
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LFSR generator whose period length is the product
the periods of its components, and whose structure c
be analyzed theoretically just like that of a single LFS
generator. GFSR and twisted GFSR generators can
combined in a similar way. Several combined LFS
generators which have the ME property (defined in secti
1) are listed in L’Ecuyer (1996b, 1998e), together wit
fast computer codes.

MRGs can be combined in a similar way by addin
their outputs modulo 1, or using a slightly different com
bination variant (L’Ecuyer 1996a). Again, the combine
generator is another MRG with very large period (up
the product of the periods of the components, divided
2J−1 if there areJ components) and large modulus (th
product of the individual moduli).

In those two cases, combination can be seen as
way of implementing efficiently some RNGs with hug
period lengths. Another important advantage is that t
RNG can be designed so that the individual compone
are implemented very efficiently (e.g., have several ze
coefficients), whereas the combination has a complica
recurrence and excellent structural properties.

4 LATTICE STRUCTURE

For the MRG (4–5), the setΨt turns out to be equal to
the intersection of a latticeLt with [0, 1)t. This means
that Lt is the set of all integer linear combinations oft
independent vectors inIRt. This also implies thatLt lies
on a limited number of equidistant parallel hyperplane
at a distancedt apart (Knuth 1997). ForΨt to be evenly
distributed over[0, 1)t, dt should be small.

One can choose a constantt1 > k and define the
figure of merit

Mt1 = min
t≤t1

d∗
t /dt,

where d∗
t is an absolute lower bound ondt, given k

and t (see L’Ecuyer 1998d). We seek anMt1 close
to 1. L’Ecuyer (1998d) has computed tables of “good
LCGs based onM8, M16, andM32, for a wide range of
values ofm. L’Ecuyer (1998a) provides combined MRGs
selected via these figures of merit, together with compu
implementations.

One may also consider vectors ofnon-successive
output values of an RNG. For a fixed set of non-negati
integersI = {i1, i2, · · · , it}, put

Ψt(I) = {(ui1+n, . . . , uit+n) | n ≥ 0,
s0 = (x0, . . . , xk−1) ∈ ZZk

m},
and let dt(I) be the distance between successive hyp
planes in the lattice generated byΨt(I) and ZZk

m/m.
Couture and L’Ecuyer (1994, 1996) and L’Ecuyer an
Couture (1997) discuss how to computedt(I) in general,
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and more efficiently for special classes of generators. Th
results imply, for instance, the bad structure (which w
already mentioned) of certain triples from the AWC/SWB
and additive or subtractive lagged-Fibonacci generato
Entacher (1998) exhibits bad values ofdt(I) for some
popular LCGs.

Computing dt is called the spectral test. Why?
Getting back to the spectral analysis of Section 1.5,
turns out that ifΨt = Lt ∩ [0, 1)t, the Weyl sums become
Sn(h) = 1 if h ∈ L∗

t and Sn(h) = 0 otherwise, where
L∗

t = {h ∈ IRt : h · u ∈ ZZ for all u ∈ Lt} is the dual
lattice to Lt. It is also known (Dieter 1975; Knuth
1997) thatdt = max{1/‖h‖2 : 0 6= h ∈ L∗

t }, which is
(3). Computingdt amounts to solving a quadratic intege
optimization problem. An implementation is described
L’Ecuyer and Couture (1997).

5 NONLINEAR GENERATORS

Arguing that the point structure produced by linea
sequences is too regular, some prefernonlinear generators
(Eichenauer-Herrmann 1995; Eichenauer-Herrmann a
Herrmann 1997; Hellekalek 1995; Niederreiter 1992
Niederreiter 1995b). Nonlinearity can be introduce
by either using a linear transition functionf with a
nonlinear output functiong, or using a nonlinear recurrence
Nonlinear generators are used (and essentiallyrequired)
in the area of cryptology. See, e.g., Blum, Blum, an
Schub (1986), Knuth (1997), Lagarias (1993), L’Ecuy
and Proulx (1989). Under reasonable assumptions, t
are provably better than the linear ones, but only in a
asymptotic sense (as the size of the state space grow
infinity).

For equal period lengths, the nonlinear generato
actually do much better than the linear ones with resp
to the usual statistical tests (Hellekalek 1995; L’Ecuy
1998c; L’Ecuyer and Hellekalek 1999; Leeb and Wegenk
1997). But they are also much slower. At a running spe
comparable to that of an acceptable nonlinear RNG, o
can find linear generators with period lengths well ov
2200, and which pass all the standard empirical tests.

6 STATISTICAL TESTS

Traditionally, applying statistical tests to an RNG ha
been much like a fishing expedition: Try a number
tests with arbitrary parameter values, and “take a pictu
when the RNG fails a test badly. Recently, the auth
undertook a project where we try to better understand
interaction between specific RNG families and certa
empirical tests. Preliminary results are presented
L’Ecuyer and Hellekalek (1999).
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As a simple illustration, consider the classicalcollision
test (Knuth 1997): Cut the interval[0, 1) into d equal
segments. This partitions[0, 1)t into k = dt cubic boxes.
Generaten points, independently, in[0, 1)t and letC be
the number of times a point falls in a box that already had
point in it. For largek, underH0, C follows approximately
the Poisson distribution with meann2/(2k). Now, take
an RNG with periodρ, and choosek ≈ ρ. If Ψt is
very regular, one may expectC to be much too small.
In the worst case,C = 0, and then the leftp-value of
the test would bep− = P [C ≤ 0] ≈ e−n2/(2k). So we
needat least n = O(

√
k) = O(

√
ρ) points for rejection

and thenp− will decrease exponentially fast inn2. A
similar argument shows ifΨt is concentrated on a smal
fraction of the boxes (e.g., half of them),C should be too
large, we would also needn = O(

√
ρ) for rejection, and

the right p-value would then decrease exponentially fa
with n2. Empirical experiments with LCGs and LFSR
generators confirm that this is actually what happens
these generators. Witht = 2, the best LCGs according to
the spectral test all start to fail significantly withn ≈ 8

√
ρ.

7 IMPLEMENTATIONS

No RNG can be fully guaranteed against all possib
defects. Such a guarantee is impossible. Neverthele
RNGs designed based on sound theoretical argume
reasonably well-tested, and fast enough, are availab
Among those, we recommend the combined MRGs
L’Ecuyer (1998a), the combined LCGs of L’Ecuyer an
Andres (1997), the combined LFSR generators of L’Ecuy
(1996b, 1998e), and the twisted GFSR of Matsumoto a
Nishimura (1998). This short list is admitedly biase
towards the RNGs that we know best. Additional referenc
and implementations can be found at the URL pages:

www.iro.umontreal.ca/ ∼lecuyer
and

random.mat.sbg.ac.at
on the internet.

7.1 TO PROBE FURTHER

Our coverage in this paper is only partial. Several importa
papers are not cited. For more detailed coverages
additional references, we refer the reader to Eichenau
Herrmann (1995), Eichenauer-Herrmann, Herrmann, a
Wegenkittl (1997), Fishman (1996), Hellekalek (199
1998a, 1998b), Knuth (1997), L’Ecuyer (1990, 199
1998b), L’Ecuyer and Hellekalek (1999) Niederreite
(1992b, 1995b), and Tezuka (1995).
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