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ABSTRACT

This paper provides simulation practitioners a
consumers with a grounding in how discrete-ev
simulation software works.  Topics include discrete-ev
systems; entities, resources, control elements 
operations; simulation runs; entity states; entity lists; a
entity-list management.  The implementation of the
generic ideas in AutoMod and SLX is described.  T
paper concludes with several examples of “why it matte
for modelers to know how their simulation software wor
including coverage of SIMAN, ProModel and GPSS/H 
well as the other two tools.

1 INTRODUCTION

1.1 Background

A “black box” approach is often taken in teaching a
learning discrete-event simulation software.  The exte
characteristics of the software are studied, but the fou
tion on which the software is based is ignored or is touc
on only briefly.  Choices made in implementation of 
foundation might not be studied at all and related to s
by-step model execution.  The modeler therefore might
be able to think things through when faced with such ne
as developing good approaches for modeling comp
situations, using interactive tools to come to a ra
understanding of error conditions arising during mo
development, and using interactive tools to verify t
complex system logic has been captured correctly i
model.  The objective of this paper, then, is to describe
logical underpinnings of discrete-event simulation a
illustrate this material in terms of various implementatio
of discrete-event simulation software.

This paper is a revised version of an identically nam
paper from the 1996 Winter Simulation Conferen
(Schriber and Brunner 1996).  The 1996 paper covered t
77
t
d

”

l
a-
d

-
t
s
x

l
t
a
e

entity-list management rules and “why it matters” fo
SIMAN, ProModel, and GPSS/H.  An expanded version
the 1996 material containing figures, flow charts, a
additional text is in Schriber and Brunner (1998).

1.2 Structure of the Paper

In Sections 2, 3 and 4 we comment on the nature
discrete-event simulation; basic simulation consstru
such as entities, resources, control elements, and op
tions; and model execution.  Sections 5 and 6 deal i
general way with entity states and entity management d
structures.  Section 7 discusses three spec
implementations of entity management rules.  Section
explores “why it matters.”

1.3 Terminology and Conventions

Throughout this paper we use terms that we define as w
as terms reserved by the developers of particu
simulation tools.  Terms we define are boldfaced on first
use.  Tool-specific terms are Capitalized or, whe
appropriate, are spelled out in ALL CAPS.

2 ABOUT DISCRETE-EVENT SIMULATION

2.1 The Transaction-Flow World View

The “transaction-flow world view” often provides the bas
for discrete-event simulation.  In the transaction-flo
world view, a system is visualized as consisting of discr
units of traffic that move (“flow”) from point to point in
the system while competing with each other for the use
scarce resources.  The units of traffic are sometimes ca
“transactions,” giving rise to the phrase “transaction flow

Numerous systems fit the preceding descriptio
Included are many manufacturing, material handlin
transportation, health care, civil, natural resourc
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communication, defense, and information process
systems, and queuing systems in general.

2.2 The Nature of Discrete-Event Simulation

A discrete-event simulation is one in which the state o
model changes at only a discrete, but possibly random
of simulated time points.  Two or more traffic units oft
have to be manipulated at one and the same time p
Such “simultaneous” movement of traffic at a time poin
achieved by manipulating units of traffic serially at that
time point.  This often leads to logical complexities 
discrete-event simulation because it raises questions a
the order in which two or more units of traffic are to b
manipulated at one time point.

2.3 Discrete-Event Modeling Languages

The challenges faced by a modeler escalate for the
designer of a modeling language.  The designer must t
the logical requirements of discrete-event simulation i
account in a generalized way.  Choices and tradeoffs e
As a result, although discrete-event simulation langua
are similar in broad terms, they can and typically do di
in subtle but important particulars.

3 ENTITIES, RESOURCES, CONTROL
ELEMENTS, AND OPERATIONS

The term entity is used here to designate a unit of traffic
“transaction”).  Entities instigate and respond to events.
An event is a happening that changes the state of a m
(or system).  In a model of an order-filling system, 
example, the arrival of an order, which is an event, m
be simulated by bringing an entity into the model.

There are two possible types of entities, here refe
to as external entities and internal entities.  External
entities are those whose creation and movemen
explicitly arranged for by the modeler.  In contrast, inter
entities are created and manipulated implicitly by 
simulation software itself.  For example, internal entit
might be used in some languages to simulate mac
failures, whereas external entities might be used 
simulate the use of machines.

The term resource designates a system element t
provides service (such as a drill, an automated gu
vehicle, or space in an input buffer).  The users
resources are usually entities.  (A work-in-process en
claims space in an input buffer, then captures an autom
guided vehicle to move it to the input buffer.) Resour
are usually capacity-limited, so entities compete for th
use and sometimes must wait to use them, experien
delay as a result.
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The term control element designates a construct tha
supports other delays or logical alternatives based o
system’s state.  Control elements can take the form
switches, counters, user data values, and system 
values built into the modeling tool.  Complex control ma
rely on truth-valued expressions that use arithmetic and
Boolean combinations of control elements.

An operation is a step carried out by or on an entit
while it moves through a system.  The operations app
cable to a ship at a harbor might be these: arrive; captu
berth; capture a tugboat; get pulled into the berth; free 
tugboat; load cargo; etc.

4 OVERVIEW OF MODEL EXECUTION

4.1 Experiments, Replications, and Runs

A simulation project is composed of experiments.
Experiments are differentiated by the use of alternatives
a model’s logic and/or data.  An alternate part sequenc
rule might be tried, for example, or the quantity of variou
machines might be varied.

Each experiment consists of one or more replications
(trials).  A replication is a simulation that uses the expe
iment’s model logic and data but a different set of rando
numbers, and so produces different statistical results t
can then be analyzed across a set of replications.

A replication involves initializing the model, running
it until a run-ending condition is met, and reporting resul
This “running it” phase is called a run .

4.2 Inside a Run

During a run the simulation clock (an internally managed,
stored data value) tracks the passage of simulated time (as
distinct from wall-clock time).  The clock advances in
discrete steps (typically of unequal size) during the ru
After all possible actions have been taken at a giv
simulated time, the clock is advanced to the time of t
next earliest event.  Then the appropriate actions 
carried out at this new simulated time, etc.

The execution of a run thus takes the form of a tw
phase loop: “carry out all possible actions at the curre
simulated time,” followed by “advance the simulate
clock,” repeated over and over again until a run-endi
condition comes about.  The two phases are h
respectively called the Entity Movement Phase (EMP)
and the Clock Update Phase (CUP).
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5 ENTITY STATES

Entities migrate from state to state while they work their
way through a model.  An entity is always in one of five
alternative states, as detailed below.

5.1 The Active State

The Active State is the state of the currently moving en-
tity.  Only one entity moves at any instant of wall-clock
time.  This entity progresses through its operations nonsto
until it encounters a delay.  It then migrates to an
alternative state.  Some other entity then becomes the ne
active entity.  And so on.

5.2 The Ready State

During an Entity Movement Phase there may be more than
one entity ready to move, and yet entities can only move
(be in the Active State) one-by-one.  The Ready State is
the state of entities waiting to enter the Active State durin
the current Entity Movement Phase.

5.3 The Time-Delayed State

The Time-Delayed State is the state of entities waiting for
a known future simulated time to be reached so that they
can then (re)enter the Ready State.  A “part” entity is in a
Time-Delayed State, for example, while waiting for the
future simulated time at which an operation being
performed on it by a machine will come to an end.

5.4 The Condition-Delayed State

The Condition-Delayed State is the state of entities de-
layed until some specified condition comes about, e.g., 
“part” entity might wait in the Condition-Delayed State
until its turn comes to use a machine.  Condition-Delayed
entities are removed automatically from the Condition-
Delayed state when conditions permit.

5.5 The Dormant State

Sometimes it is desirable to put entities into a state from
which no escape will be triggered automatically by
changes in model conditions.  We call this state the
Dormant State.  Dormant-State entities rely on modeler-
supplied logic to transfer them from the Dormant State
back to the Ready State.  Job-ticket entities might be pu
into a Dormant State, for example, until an operator entity
decides which job-ticket to pull next.
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6 ENTITY MANAGEMENT STRUCTURES

Simulation software uses the following lists to organiz
and track entities in the five entity states.

6.1 The Active Entity

The active entity forms an unnamed “list” consisting onl
of the active entity.  The Active-State entity moves nonsto
until encountering an operation that puts it into anothe
state (transfers it to another list) or removes it from th
model.  A Ready-State entity then becomes the ne
Active-State entity.  Eventually there is no possibility o
further action at the current time.  The EMP then ends a
a Clock Update Phase begins.

6.2 The Current Events List

Entities in the Ready State are kept in a single list he
called the current events list (CEL).  Entities migrate to
the current events list from the future events list, from
delay lists, and from user-managed lists.  (Each of the
latter lists is described below).  In addition, entities clone
from the Active-State entity usually start their existence o
the current events list.

6.3 The Future Events List

Entities in the Time-Delayed State belong to a single li
into which they are inserted at the beginning of their time
based delay.  This list, called the future events list (FEL)
here, is usually ranked by increasing entity move time.
(Move time is the simulated time at which an entity i
scheduled to try to move again.) At the time of entit
insertion into the FEL, the entity’s move time is calculate
by adding the value of the simulation clock to the know
(sampled) duration of the time-based delay.

After an Entity Movement Phase is over, the Cloc
Update Phase sets the clock’s value to the move time of 
FEL’s highest ranked (smallest move time) entity.  Thi
entity is then transferred from the FEL to the CEL
migrating from the Time-Delayed State to the Ready Sta
and setting the stage for the next EMP to begin.

The preceding statement assumes there are not other
entities on the FEL whose move time matches the clock
updated value.  In the case of move-time ties, some to
will transfer all the time-tied entities from the FEL to the
CEL during a single CUP, whereas other tools take a “o
entity transfer per CUP” approach.

Languages that work with internal entities usually us
the FEL to support the timing requirements of thes
entities.  The FEL is typically composed both of externa
and internal entities in such languages.
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6.4 Delay Lists

Delay lists are lists of entities in the Condition-Delayed
State.  These entities are waiting for a condition to com
about (e.g., waiting their turn to use a machine) so they 
be transferred automatically into the Ready State on 
current events list.  Delay lists, which are generally crea
automatically by the simulation software, are managed 
using related waiting or polled waiting.

If a delay can be related easily to events in the mo
that might resolve the condition, then related waiting c
be used to manage the delay list.  For example, suppo
machine’s status changes from busy to idle.  In respon
the software can automatically remove the next machin
using entity from the appropriate delay list and put it in th
Ready State on the current events list.  Related waiting
the prevalent approach used to manage conditional dela

If the delay condition is too complex to be related ea
ily to events that might resolve it, polled waiting can be
used.  With polled waiting the software checks routinely 
see if entities can be transferred from one or more de
lists to the Ready State.  Complex delay conditions f
which polled waiting can be useful include Boolea
combinations of state changes, e.g., a part supply runs 
or an output bin needs to be emptied.

6.5 User-Managed Lists

User-managed lists are lists of entities in the Dorman
State.  The modeler must take steps to establish such 
and provide the logic needed to transfer entities to a
from the lists.  (The underlying software has no way 
know why entities are put into user-managed lists and 
has no basis for removing entities from such lists.)

7 IMPLEMENTATION IN TWO TOOLS

The tools chosen for commentary on implementati
particulars are AutoMod, Version 8, from AutoSimulation
Inc., and SLX, Release 1, from Wolverine Softwar
Corporation.  (See the References.)  A previous version
this paper (Schriber and Brunner 1996) covered Syste
Modeling Corporation’s SIMAN, ProModel Corporation’s
ProModel, and Wolverine Software Corporation’s GPSS
in similar detail.  These five are among more than forty tools
reported in 1997 for discrete-event simulation (Swain 199
Some other tools might be better suited than any of these
particular modeling activities, but we think that these too
are representative.  (Those interested in the possibility
implementing discrete-event simulation models in a no
simulation programming language such as C or C++ a
referred to Balci 1988.)
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7.1 AutoMod

AutoMod equivalents for the preceding generic terms 
given in Table 1.  For example, AutoMod uses Actions to
specify operations for Loads.

Table 1:  AutoMod Terminology

Generic Term AutoMod Equivalent
External Entity Load
Internal Entity Logical Load

Resource Resource; Queue; Block
Control Element Counter;

Process Traffic Limit
Operation Action

Current Events List Current Event List
Future Events List Future Event List

Delay List Delay List;
Condition Delay List;

Load Ready List
User-Managed List Order List

7.1.1  The Current Event List

The current events list is named the Current Event Lis
AutoMod.  Cloned Loads, Loads leaving the Future Ev
List due to a clock update, and Loads ordered off Or
Lists are placed immediately on the CEL.  The insert
rule is to rank by priority and then FIFO within the priori
class.

When the CEL becomes empty, the Condition De
List (see below) is checked, and Loads may be transfe
from there to the CEL.  This continues until the CEL
empty and no more Loads can be transferred, at w
point the EMP is over and a CUP is initiated.

7.1.2  The Future Event List

The AutoMod Future Event List (FEL) is like future even
lists in other tools.  Loads arrive on the FEL in the Tim
Delayed State by executing a WAIT FOR stateme
AutoMod allows the specification of time units (day, h
min, sec) in a WAIT FOR statement.

The AutoMod CUP will remove multiple Transaction
from the FEL if they are tied for the earliest move tim
inserting them one by one into their appropriate place
the CEL.

There are also internal entities in AutoMod, call
Logical Loads, that do things such as wait on the FEL
trigger scheduled shift breaks.
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7.1.3  Delay Lists

Delay Lists (DL) are lists of loads waiting to claim
capacity of a finite capacity element (a resource or con
element such as an individual Resource, Queue, Blo
Counter, or Process).  Each finite capacity element wit
the model has one DL associated with it.

The waiting that results from this mechanism is rela
waiting.  Whenever capacity is freed, one Load from 
head of the element’s DL gets tentatively placed on 
CEL (but a placeholder is left on the DL).  When that Lo
is encountered during the EMP, it tries to claim t
requested capacity.  If it fails (for example because it wa
two units but only one is free), it is returned to the DL in 
original place.

Immediately after this evaluation (and before t
active Load executes any more Actions), if there is still a
capacity, the next Load on the DL is placed on the CEL
Processing of the active Load then continues.  After e
time a tentatively placed Load is evaluated during 
EMP, the existence of available capacity will cause ano
Load to be removed from the DL.

7.1.4  The Condition Delay List

For conditional waiting other than the five cas
enumerated above, AutoMod has a WAIT UNTI
statement that results in polled waiting.  WAIT UNTI
conditions can be compounded using Boolean operators
a Load executes a WAIT UNTIL and the condition is fals
the Load is placed on a single global AutoMod list call
the Condition Delay List (CDL).

After the CEL has been emptied, but before t
simulation clock progresses, all loads on the CDL are
moved to the CEL if there has been a state change to
least one element of the same general type (e.g. Qu
that any Load on the CDL is waiting for.  (This mechanis
is primarily polled although the global triggerin
mechanism is related.)

If the CEL is now non-empty then the EMP resume
If the condition that a CEL Load is waiting for is fals
AutoMod moves that Load from the Current Event L
back to the CDL.  The CDL may get emptied multip
times during one EMP until eventually the CEL ge
emptied without having triggered a state change relate
any Load on the CDL.  A CUP then occurs.

Because of the potential for repetitive list migratio
when using WAIT UNTIL, AutoMod’s vendor encourage
users to use Order Lists or other explicit contr
mechanisms to manage complex waiting.

7.1.5 Order Lists

AutoMod implements the Dormant State with Order Lis
which are user-managed lists of Loads.  After a Load p
81
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itself onto an Order List (by executing a WAIT TO B
ORDERED Action), it can only be removed by anoth
Load (which executes an ORDER Action).  Loa
successfully ordered are placed immediately on the C
(one at a time according to how they were chosen from
Order List, and ranked on the CEL FIFO by priority).

Order Lists can achieve performance improveme
over CDL waiting because Order Lists are never scan
except on explicit request.

AutoMod Order Lists offer several interestin
wrinkles including the ability for an ordering Load to pla
a back order if the ORDER action is not satisfied, 
ability for a Load on an Order List to be ordered 
continue (to the next Action) instead of to a Process (t
feature is useful for control handshaking), and the ability
have a function called for each Load on the Order List 
using the ORDER…SATISFYING Action).

7.1.6  Other Lists

AutoMod has a number of material handling constru
that are integrated with Load movement.  For veh
systems there are three other types of lists.  Loads on 
Ready Lists (LRL) (one list per vehicle system) are wait
to be picked up by a vehicle.  Loads claimed and picked
by a vehicle reside on the vehicle’s Vehicle Claim L
(VCL) and Vehicle Onboard List (VOL) respectivel
during which time, the vehicle becomes the active “loa
and moves among AutoMod’s lists (FEL, CEL, a
possibly DLs) instead of the Load.

7.2 SLX

SLX is a hierarchical language in which the built-
primitives are at a lower level than most simulati
languages, facilitating user (or developer) definition of 
behavior of many system elements.  This philosop
allows the SLX developer to create higher-level model
tools whose constructs have precisely defined 
modifiable behavior.

Equivalents for the generic terms for users of lo
level SLX are given in Table 2.  For example, SLX us
Control Variables to act as Control Elements.  Th
“control” modifier can be attached to a global or loc
Variable of any data type (integer, real, string, etc.).  
local Variable is analogous to an attribute in other tools.

Note that SLX has two types of Objects: Active a
Passive.  An Active Object is distinguished from a Pass
Object by the presence of actions – executable Statem
– in an Active Object’s Class definition.
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Table 2:  SLX Terminology (low-level)

Generic Term SLX Equivalent
External Entity Active Object and its Puck(s)
Internal Entity none

Resource Control Variable
Control Element Control Variable

Operation Statement
Current Events List Current Events Chain
Future Events List Future Events List

Delay List Delay List
User-Managed List Set (see section 7.2.4)

Table 3 shows how higher-level tools based on S
might exploit the definitional capabilities of SLX.

Table 3: Tools Based On SLX

Generic Term SLX Equivalent
Resource Active or Passive Object

Control Element Active or Passive Object
Operation User-defined Statement
Delay List User-defined based on Set

User-Managed List User-defined based on Set

7.2.1  The Current Events Chain

The current events list is named the Current Events Ch
(CEC) in SLX.  The members of the CEC are called Puc

What is a Puck?  SLX dissociates the concept of 
Active Object (with its associated local data) from a Pu
which is the “moving entity” that executes the action
carries its own entity scheduling data, and migrates fr
list to list.  The effect of this dissociation is that a  sing
Object can “own” more than one Puck.  All Pucks own
by a single Object share the Object’s local data (attribut
One application of this “local parallelism” feature is th
use of a second Puck to simulate a balk time while 
original Puck is waiting for some condition (Henrikse
1996).

Activating a new Object creates one Puck a
launches that Puck into the actions.  In many cases
additional Pucks are ever created, and the combination
an Active Object and its Puck forms the equivalent to 
entity in the terminology of this paper.  (Passive Obje
have no actions and therefore own no Pucks.)

Newly activated Pucks, Pucks leaving the Futu
Event List due to a clock update, and reactivated Pu
(see 7.2.4 below) are placed immediately into the CE
The CEC is ranked FIFO by priority.  The SLX CEC 
empty when an EMP ends.
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7.2.2  The Future Events List

The SLX Future Events List (FEL) is like future even
lists in other tools.  Loads arrive on the FEL in the Tim
Delayed State by executing an ADVANCE statement.

The SLX CUP will remove multiple Pucks from th
FEC if they are tied for the earliest move time, inserti
them one by one into their appropriate place on the CEC

Because the low-level primitives in SLX do no
include downtimes or even repetitive Puck generation, 
activity on the SLX FEL unfolds as specified by th
developer of the SLX model.  However, if a user is using
model (or a model builder) that contains higher-lev
primitives defined by a developer, chances are that 
kinds of things are going on behind the scenes, hidd
from the higher-level user’s view.

7.2.3  Delay Lists

Delay Lists (DL) are lists of Pucks waiting (through WAIT
UNTIL) for state changes in any combination of Contr
Variables and the simulation clock value.  All higher-lev
constructs defined by developers can use this mechan
Each Control Variable (which may be a local Variable, 
which case there is one for each Object in the Class) h
separate DL associated with it.

A DL is ranked by order of insertion.  The entir
contents of a DL are removed whenever the associa
Control Variable changes value and are inserted one 
time into the CEC.  Removed Pucks that are waiting 
compound conditions are removed from each other De
List to which they belong.  As these entities a
encountered on the CEC during the EMP, those failing
pass their WAIT UNTIL are returned to the Delay List(s
for those Control Variables still contributing to th
falseness of the condition.

For conditions that include a reference to the clock, 
Puck is inserted if necessary into the FEL, subject to ea
removal from the FEL if the condition becomes true do 
other Control Variable changes.

This low-level related waiting mechanism based 
Control Variables is the default SLX approach to modeli
all types of simple or compound Condition-Delayed state

7.2.4  Sets and User-Managed Waiting

SLX handles the Dormant State in a unique way.  Inste
of moving the Puck from the active state to a user-mana
list and suspending it, all in the same operation, SL
breaks this operation into two pieces.

First, the Puck should join a Set.  But joining a S
does not automatically suspend the Puck.  A Puck 
belong to any number of Sets.  Set membership me
provides other Pucks with access to the member Puck.
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To go into the Dormant state, a Puck executes a WA
statement.  It then is suspended indefinitely, outside of 
particular list, until another Puck identifies the waitin
Puck and executes a REACTIVATE statement on it.  Of
the REACTIVATEing Puck is scanning a Set to find th
Puck to REACTIVATE, but a Set is not exactly the sam
as a user-managed list in our terminology.  A Dorma
state Puck might be a member of no Sets (as long 
pointer to it has been stashed somewhere) or of one
more Sets.

An SLX developer can easily define a user-manag
list construct, using Sets, WAIT, and REACTIVATE a
building blocks, that mimics those of other languages
offer unique features of its own.

8 WHY IT MATTERS

8.1 Overview

We now describe five situations that reveal some of 
practical differences in implementation particulars amo
SIMAN, ProModel, GPSS/H, AutoMod, and SLX.  Thes
differences reflect differing implementation choices ma
by the software designers.

None of the alternative approaches mentioned in e
subsection is either intrinsically “right” or “wrong.” The
modeler simply must be aware of the alternative in eff
in the simulation software being used and work with it 
produce the desired outcome.  (If a modeler is unawar
the alternative in effect, it is possible to mis-model
situation and perhaps not become aware of this fact.)

We finish the “why it matters” discussion with som
comments on how knowledge of software internals 
needed to make effective use of software checkout tools

8.2 Trying to Re-capture a Resource Immediately

Suppose a part releases a machine, then immedia
attempts to re-capture the machine.  The modeler mig
or might not – want a more highly qualified waiting part,
any, be the next to capture the machine.

Of interest here is the order of events following t
giving up of a server.  There are at least three alternati
(1) Coupled with the giving up of the server is th
immediate choosing of the next user of the server, witho
the releasing entity having yet become a contender for
server.  (2) The choosing of the next user of the serve
deferred until the releasing entity has become a contend
(3) “Neither of the above;” that is, without paying heed 
other contenders, the releasing entity recaptures the s
immediately.

SIMAN implements (1) by default.  ProMode
implements (2).  GPSS/H and AutoMod implement (3) 
default.  In SLX, using a low-level Control Variable as t
resource state, the result is also (3).  (However develo
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could implement higher-level resource constructs in SL
that behave in any of the three ways.)

8.3 The First in Line is Still Delayed

Suppose two Condition-Delayed entities are waiting in 
list because no units of a particular resource are id
Suppose the first entity needs two units of the resource,
whereas the second entity only needs one unit.  Now
assume that one unit of the resource becomes idle.  T
needs of the first list entity cannot yet be satisfied, but t
needs of the second entity can.  What will happen?

There are at least three possible alternatives: (
Neither entity claims the idle resource unit.  (2) The firs
entity claims the one idle resource unit and waits for 
second unit.  (3) The second entity claims the idle resou
unit and goes on its way.

As in Section 8.2, each of these alternatives com
into play in the tools considered here.  SIMAN (SEIZE
and ProModel (GET or USE) implement (1) and (2
respectively by default.  AutoMod (GET or USE), GPSS/H
(ENTER or TEST), and SLX (WAIT UNTIL on a Control
Variable) implement (3) by default.

8.4 Yielding Control

Suppose the active entity wants to give control to one 
more Ready-State entities, but then needs to become 
active entity again before the simulation clock has be
advanced.  This might be useful, for example, if the acti
entity has opened a switch permitting a set of other entit
to move past a point in the model, and then needs to 
close the switch after the forward movement has be
accomplished.  (Perhaps a group of identically-flavore
cartons of ice cream is to be transferred from a
accumulation point to a conveyor leading to a one-flavo
per-box packing operation.)

In SIMAN and AutoMod, the effect can be
accomplished approximately with a DELAY (SIMAN) or
WAIT FOR (AutoMod)  that puts the active entity into a
Time-Delayed State for an arbitrarily short but non-ze
simulated time.

In ProModel, “WAIT 0” can be used to put the active
entity back on the FEL.  It will be returned later (at th
same simulated time) by the CUP to the Active State.

In GPSS/H, the active Transaction (“Xact”) can
execute a YIELD (BUFFER) Block to shift from the
Active State to the Ready State and restart the CEC sc
Higher-priority (and higher-ranked same priority) Xacts o
the CEC can then try to become active, one by one, bef
the control-yielding Xact itself again becomes active at th
same simulated time.  (A “PRIORITY PR,YIELD” Block
can alternatively be used in order to reposition the jus
active Xact behind equal-priority Xacts on the CEC prio
to restarting the scan.)
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In SLX there is also a YIELD statement.  A norma
YIELD shifts the active Puck to the back of its priorit
class on the CEC and picks up the next Puck.  It is a
possible to YIELD to a specific other Puck that is on th
CEC, in which case the active Puck is not shifted.

8.5 Conditions Involving the Clock

If an entity needs to wait until a particular clock value h
been reached, every language has a time-delay for F
waiting.  But what if an entity needs to wait for a
compound condition involving the clock, such as “wa
until my input buffer is empty or it is exactly 5:00 PM?”

A typical approach to this is to clone a dumm
(“shadow”) entity to do the time-based waiting
Management of dummy entities can be cumbersom
particularly for very complex rules.  ProModel has n
polled waiting, so a dummy entity would be required.

If a single entity tries to wait on a compound conditio
involving the clock, other problems can arise.  SIMAN an
AutoMod detect the truth of these conditions through the
end-of-EMP polling mechanisms.  GPSS/H also detects 
truth through its version of polled waiting (refusal-mod
TEST).  But in the absence of a clone that waits on t
FEL until exactly 5:00 PM, all three of those tools ar
subject to the possibility that the first EMP that finds th
condition true has a clock value greater than 5:00 PM.

SLX recognizes the clock as a related wait-until targe
A WAIT UNTIL using a future clock value in a way tha
contributes to the falseness of the condition will cause 
Puck to be scheduled onto the FEL to force an EMP at 
precise time referenced.  This solves the greater-than-t
desired-time problem.  Note that this Puck may also 
waiting on one or more delay lists.

8.6 Mixed-Mode Waiting

Suppose many entities are waiting to capture a particu
resource, while a user-defined controller entity is waitin
for the condition “shift status is off-shift and numbe
waiting is less than six and resource is not currently in us
to take some action (such as shutting the resource down
languages that allow user-defined entities to shut do
resources, or printing a status message).  How can 
guarantee that the controller will be able to cut in front 
the waiting entities at the appropriate instant (before t
resource is recaptured)?

One way to handle this would be through entit
priorities, in languages that offer this mechanism
However, as described below, that may not work even
the controller has higher priority than any other entity.

The key issue is the method used to implement t
waiting.  If it is related for the entities and polled for th
compound condition, things can get complicated.  (This
what we mean by the term “mixed-mode waiting.”)  Eve
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time the resource comes free, a new entity will be selec
from a delay list immediately in SIMAN and via the CEL
in AutoMod, in both cases preceding the end-of-EM
checking for polled wait conditions (and thereby ignorin
the entity priority of the controller).  There are many way
to work around this if desired, such as using a differe
type of operation to force a polled wait for entities wishin
to use the resource.

In GPSS/H, using a high-priority controller
Transaction at a refusal-mode TEST Block, the controll
waits at the front of the CEC.  The RELEASE of th
Facility will trigger a scan restart and the controller will d
its job.

In ProModel there is no polled waiting but there ca
be related waiting on compound conditions involvin
Variables.  Variables would have to be defined an
manipulated for each element of the Boolean conditi
and, to assure equal competition, the entities might a
have to use WAIT UNTIL instead of GET or USE
Another possibility with ProModel would be to have th
entity that frees the resource do some state-checking ri
away (in effect becoming a surrogate for the controlle
This is possible because of the deferred-selection meth
used by ProModel (see Section 8.2).

In the related waiting of SLX, a Puck awaiting a
compound condition will be registered on the delay lists 
those (and only those) Control Variables that a
contributing to the falseness of the condition at the time
is evaluated.  The SLX architecture (in which only glob
or local Control Variables and the clock can be referenc
in any sort of conditional wait at the lowest level) assur
that there will already be Variables underlying the sta
changes being monitored.  The model developer needs o
to be sure they are defined as Control Variables.

8.7 Interactive Model Verification

We now comment briefly on why a detailed understandin
of “how simulation software works” supports interactiv
probing of simulation-model behavior.

In general, simulation models can be run interactive
or in batch mode.  Interactive runs are of use in checki
out (verifying) model logic during model-building and in
troubleshooting a model when execution errors occ
Batch mode is then used to make production runs.

Interactive runs put a magnifying glass on a simulatio
model while it executes.  The modeler can follow the a
tive entity step by step and display the current and futu
events lists and the delay and user-managed lists as we
other aspects of the model.  These activities yield valua
insights into model behavior for the modeler who know
the underlying concepts.  Without such knowledge, t
modeler might not take full advantage of the interactiv
tools provided by the software or, worse yet, might eve
avoid using the tools.
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