
A MESSAGE-BASED DISCRETE EVENT SIMULATION ARCHITECTURE

David Krahl
J. Steven Lamperti

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119, U.S.A.
ABSTRACT

This paper presents a message-based discrete event
simulation architecture. It will examine each of the
different types of messages used to schedule events,
transfer items through the model, and resolve logic
issues. Additional information is also presented on the
supporting data structures.

1 INTRODUCTION

Simulation software developers are faced with the never-
ending challenge of devising software which is easier to
use and more powerful at the same time. Presented here
is an architecture that, while more complex internally
than traditional discrete event architectures, eliminates
many of their counter-intuitive actions while generally
requiring fewer modeling components. This has been
achieved without sacrificing model fidelity or accuracy.

The architecture discussed in this paper is based on a
messaging system. Instead of a centrally located
simulation program executing subroutines based on
simulation data, this architecture sends messages from
one simulation “block” (the basic simulation modeling
construct) to another. The central simulation engine
performs only event scheduling and selection. The bulk
of the simulation execution is performed by blocks
sending messages to one another.

A glossary is included at the end of this paper to
provide the reader with definitions for the terms used
here.

2 SIMULATION STRUCTURE

To understand the details of the messaging system used
in this discrete event modeling architecture, some
understanding of both the simulation engine and the
underlying data structures and event handling are
necessary.

Each of the blocks in this architecture is composed of
an icon, dialog, simulation data, connectors (which pass
data between blocks), and code (which defines the
behavior of the block). In general there are two types of
discrete event blocks: blocks that hold items (residence
blocks) and blocks that pass items through without
holding them (passing blocks). Residence blocks are able
to contain items for some duration of simulation time.
Examples of residence blocks are queues or delays.
Passing blocks implement modeling operations that are
not time based. Examples include setting an attribute or
selecting a path.

2.1 Simulation Engine

If the modeler places some blocks on a worksheet and
issues the run command, the program will step through
the specified time interval, sending a simulation message
to each block in the model on each time step. The time
duration of the simulation will be divided into even steps
in this fashion. This is essentially a standard continuous
simulation mechanism.

To provide a true discrete event time clock, the user
adds an Executive block to the model worksheet. This
block does two things: first, it maintains a data structure
of information about the items in the model; second, it
takes control of the time clock from the application,
scheduling events and moving the clock forward to the
appropriate time for the next event.

2.2 Data Structures

The data structures maintained by the Executive are
essentially arrays of data. They contain all the respective
information about the items that are traveling through the
model. Items are indexed in these arrays in the order that
they are created, such that the first item created in the
model gets array index value 1. When items travel from
one block to the next, the blocks pass the array index
value of the item. In the code of the blocks this is usually
maintained in a variable called ItemIndex.

1362 Krahl and Lamperti
There are several dynamic arrays of item data
maintained by the Executive block including:

ItemArrayR Real (value and priority)
ItemArrayT Timer (cycle time)
ItemArrayI Integer (batching and free row

flag)
ItemArrayC Costing information

The Executive block also manages a global array
structure called “_AttribValues” containing attribute
information for each of the items in the model.

The appendix discusses dynamic arrays and global
arrays in more detail.

2.3 Messaging

The next element of the architecture is the mechanism
that the blocks use to send messages to each other. A
message chain is started either by the system or by the
Executive sending a simulate message to a block. From
there, the blocks propagate the messages to other blocks
through their connectors. Each block calls the functions
‘SendMsgToInputs’ and ‘SendMsgToOutputs’ to send
messages to other blocks. Any block that receives a
message will process it in one of its message handlers,
and may send on messages of its own.

As discussed later in the paper, the messaging
architecture consists of basic item messaging, value
connector messages, blocked and query messages, and
the notify message.

2.4 Event Handling

Two event list arrays are used to store future events in
the model. The first contains the event times; the second
contains the number of the block that posted the event.
At the start of the simulation, each resident block that
posts events is allocated a position in the event list
arrays. Each event-posting block generates an event time
by adding the current time to the time required to
complete processing of the current item. This time is
placed in the block’s event list position. At the start of a
simulation event, the event list is searched to find the
next event time. A third dynamic array (essentially a
“current event list”) is used to store all of the block
numbers that have posted an event at the next event time.
The simulation clock is then advanced to the next event
time and a message is sent, one at a time, to each block
within the current event list. Each block then searches its
own internal list for the item with the current event time
and attempts to push the item out into the next block in
the process.

Some non-event posting resident blocks, such as
queues and resources, also attempt to move items at
event times. The purpose of this type of block is to pull
in items and hold them until there is a downstream
capacity. If, at any given event, no items have been
pulled in or pushed out, the block will go to sleep,
ignoring any simulation events. It will “wake up” when
an item is either pushed in or pulled out and will attempt
to process additional items.

3 BASIC ITEM MESSAGING

The actual moving of items between blocks is done
through a messaging communication structure using item
connectors and connections. This messaging system
allows modelers to place blocks in a more intuitive
sequence. Common restrictions such as requiring a
queue to be immediately before an activity are removed.

Item InputValue Input

Value Output Item Output
Figure 1: Connector Types

Depending on how the message sequence is initiated,
items can be either pushed or pulled through the model.
It is easiest to illustrate this with a series of simple
examples. Figure 2 shows a first-in-first-out queue
(Queue, FIFO) block connected to an activity with a
single item capacity (Activity, Delay).

ActivityQueue

Figure 2: Queue Connected to an Activity Delay

3.1 Push Mechanism

When an item is pushed through the model, the upstream
blocks (in this case, the queue) try to push their items out
into any downstream blocks.

For example, assume that an item has just arrived at
the queue and the queue is attempting to pass that item
along into the activity. The first action is for the queue to
send a wants message through its output connector to the
activity. This indicates that the queue wants to send an
item to the activity.

A Message-Based Discrete Event Simulation Architecture 1363
wants

Figure 3: Wants Message Sent to Activity

If the activity is not currently processing an item
(idle), it will return a needs value to the queue, indicating
that the item can be accepted.

needs

Figure 4: Needs Value Returned From Activity

If a needs value has been returned from the activity,
the queue then sends a needs message to the activity. At
this point the item would be committed to moving from
the queue to the activity.

needs

Figure 5: Needs Message Sent to Activity

However, if the activity is currently busy processing
another item, it will return a rejects value. If the item is
rejected, the message sequence will be terminated.

The item is logically moved from one block to the
next by transferring its item index over the connection
between the blocks. To do this, the queue sets its output
connector value to the item index. When a block sets its
connector value to the item index, the connector value of
any connected blocks will automatically be set to that
same item index value. Since the output connector of the
queue is connected to the input connector of the activity,
the two connectors will share the item index value. The
activity then sets its input connector to a negative
number and sends a taken message back to the queue to
indicate that the item has successfully moved. In
response to the taken message, the queue will update any
internal statistics related to the departure of the item.

taken

Figure 6: Taken Message Sent to Queue
3.2 Pull Mechanism

In addition to being pushed, as in the preceding example,
items can also be pulled through the model. If they have
remaining capacity, downstream blocks try to pull items
into their inputs. For example, when the activity finishes
processing the item, it will attempt to pull in another
item. To do this, the activity first sends a wants message
to the queue indicating that it is requesting an item.

wants

Figure 7: Wants Message Sent From Activity

If an item is available in the queue, the queue’s
output connector will be assigned to that item’s index
value. The activity will pull in the item and then send a
taken message back to the queue. If an item is not
available in the queue, a rejects value will be returned
and the message chain will be terminated.

Both of the blocks in the above examples are
residence blocks and can hold items for some period of
time. Passing blocks do not have this ability and must
pass the item through in 0 time.

Figure 8 shows a block reading an attribute value that
will be used to set the delay of the activity. This Get
Attribute block does not affect the messaging
communication between the queue and the activity.
Since it is a passing block, it transfers the initial wants
and needs messages between the queue and activity.
Thus, any number of passing blocks can be between any
blocks that can hold items. Once the item moves into a
passing block, it will send a taken message to the
upstream block, as shown in Figure 6.

Get Attribute
Queue,
FIFO

Activity,
Delay

Figure 8: Passing Block Between Queue and Activity

4 VALUE CONNECTOR MESSAGES

In addition to item connectors, value connectors (see
Figure 1) are used to relay model information. Value
connectors pass a single number from one block to
another. Examples include a value output such as length
of a queue or an input such as a delay time. The use of
these connectors allows the combining of blocks which

1364 Krahl and Lamperti
perform numerical calculations (referred to as
continuous or generic blocks) to provide a control
structure and logical information for the discrete event
blocks. This provides additional modeling flexibility
without requiring user programming or complicated
interfaces.

In Figure 9, two random variables (Input Random
Number blocks) are added together to specify the delay
for an activity. Whenever an item arrives to the activity,
the Input Random Number and Add blocks will need to
be recalculated. Whenever a discrete event block detects
a condition where an update to the value of a connector
is needed (in this case, an item arriving to the activity), it
sends a message out its value connector (in this case,
value input connector “D” in Figure 9).

Figure 9: The Sum of Two Random Variables Specifying
an Activity’s Delay

4.1 Message Emulation

A default feature for generic blocks called “message
emulation” will propagate the message throughout all of
the generic blocks used in the calculation. Message
emulation is used whenever the generic block contains
no message handlers for any of its connectors. In that
case, the on simulate message handler is used as a
default message handler for all connectors.

Figure 10 illustrates an On Simulate message handler
assigning the output connector (Con1Out) to the input
connector (Con1In) plus one. Whenever either connector
receives a message, a message will be sent out the other
connector through message emulation. This will cause
all connected blocks to execute their On Simulate
message handlers, propagating messages where
appropriate.

On Simulate
{
Con1Out = Con1In + 1;
}

Figure 10: On Simulate Message Handler
4.2 Explicit Connector Messages

Overriding message emulation gives the block
programmer more flexibility in the behavior of the
block. If a generic block has one or more connector
message handlers, message emulation is automatically
disabled and the connector message handlers are used to
perform the calculation instead. In this case, the generic
block must send out messages to other value input and
output connectors explicitly. For example, a message
must be sent out the output connector whenever a
message is received on the input connector, and a
message must be sent out the input connector whenever
a message is received on the output connector.

Figure 11 shows the code necessary to use message
handlers to make a block behave equivalently to the
message emulation used in Figure 10. Both examples
will perform identically in model operation. Because
message handlers have been explicitly specified for the
connectors in Figure 11, message emulation has been
automatically disabled.

On Con1In
{
Con1Out = Con1In+1;
SendMsgToInputs(Con1Out);
}

On Con1Out
{
SendMsgToOutputs(Con1In);
Con1Out = Con1In+1;
}

On Simulate
{
}

Figure 11: Message Handlers Used for Value
Connections

5 BLOCKED AND QUERY MESSAGES

One of the more complex message communication
subsystems in this architecture is the communication
between blocks when a block needs information about an
item that has not yet arrived. This occurs when an item
needs to know if it can move downstream before it starts
to move, or when it needs to determine which path it will
take before it gets to the block that has the paths.

Traditional discrete event architectures would require
dummy resources to overcome these problems. This
architecture, however, is able to predict the path of an
item before it moves into the decision logic and is able to

A Message-Based Discrete Event Simulation Architecture 1365
block through decision points without any additional
modeling components.

For example, in Figure 12 the model section reads an
attribute on an item (Get Attribute) and selects one of
two paths for that item to follow (Select DE Output)
based on the value of the attribute. The Get Attribute
block will read the value of the attribute on the item, but
its default behavior would be to not read the attribute
value until the item has entered the block. In this case,
this could cause a problem, as the Select DE Output
block may be blocked down the path that the item will
need to travel. If the Select DE Output is blocked, and
the item has to move into the Get Attribute block to
present its attribute value, then the item will be stuck in
the Get Attribute block. And since attribute-
manipulating blocks are only meant to pass, not hold,
items the Queue will understate the number of items
available.

A

∆

Get A

b?

a

select

F

L W

Queue Get Attribute Select DE Output

Figure 12: Select Controlled by a Get Attribute

The solution to this problem is to set up the Get
Attribute block to be aware that it is in this situation. The
Get Attribute block can then look upstream to see what
the next item coming along will be, and not pull in the
item until the downstream path is free.

5.1 Blocked Messages

The first part of this process involves sending a blocked
message downstream from the Get Attribute to see if
there are any blocks that could cause this situation. The
Get Attribute does this the first time it gets an incoming
message (i.e. the first time the Select DE Output block
requests an attribute value from the A connector.) The
Get Attribute sends a blocked message from its item
output connector in its on AttribOut message handler.
(The on AttribOut message handler is called when the A
connector on the Get Attribute block gets a message.) If
a TRUE value is returned in response to the message,
then the Get Attribute block sets a flag which records
that it is blocked.

A

∆

Get A

b?

a

select

F

L W

blocked

Figure 13: Blocked Message Sent to Select Output Block
5.2 Query Messages

If it has been determined that blocking can occur, each
time there is a request for an attribute value, the Get
Attribute block sends a query message upstream. This
message is essentially a request for information about the
next item that is available. The message will be
propagated upstream by the blocks until it reaches a
block that can contain items, such as a queue.

A

∆

Get A

b?

a

select

F

L W

query

Figure 14: Query Message Sent to Queue

The block responding to the query message will
check to see what the item index of the next item to be
released will be and will return that value to the querying
block. The Get Attribute block will then access the
global array _AttribValues to get the attribute value for
that item. From this point on, each time that an attribute
value is requested from the Get Attribute block, it will
send out the query message and check the attribute value
of the next item. It will not need to resend the blocked
message again.

The system architecture will notify users if there are
any logical ambiguities that will not allow the model to
operate properly. When this occurs, an error message is
issued that recommends a course of action that will
resolve the ambiguity.

6 NOTIFY MESSAGE

The final message used by this system is the notify
message. This message is used to notify other blocks that
an item has just passed by a specified point in the model.
A special sensor connector receives this message. Sensor
connectors do not pass items, they monitor the message
stream, processing only the notify message. Only a few
blocks have sensor connectors, although all of the blocks
that process items will send the notify message through
their item output connector. The following situation
requires a notify message.

In Figure 15, a block (Gate) uses its sensor connector
to limit the number of items in the section of the model
between its output connector and the activity’s output
connector.

1366 Krahl and Lamperti
D

T U

Fifo Queue

F

L W

Activity Delay
A

Set A

Set Attribute

#

sensor

Gate

Gate

Figure 15: Situation That Requires a Notify Message.

As an item travels from the activity to the Set
Attribute, a taken message will be sent to the activity. In
response to this message, the activity will send out the
notify message. The normal item input connectors in the
blocks will ignore the notify message, but sensor
connectors will respond to it and start processing
information about the item. In Figure 15, when a notify
message is received by the sensor connector, the Gate
block knows that another item has passed by and can
allow an additional item into the model section.

7 CONCLUSIONS

This system has been found to ease the model building
process by allowing the modeler to put the model
together in an intuitive manner. It has been implemented
in the ExtendTM family of simulation software products.
Feedback from end users indicates that the architecture is
successful in shortening the simulation learning curve
while providing a powerful modeling environment. In
addition, source code is provided to the user should they
want to modify or study the system’s behavior. Finally,
this architecture is in use in over 10,000 locations and
has proved itself as a powerful, easy to use simulation
system.

APPENDIX A

Block: A modeling component that is selected from a
library and placed into a simulation being constructed. A
block is composed of an icon, dialog, simulation data,
connectors (which pass data between blocks), and code
(which defines the behavior of the block). Some blocks
hold items for a period of time (residence blocks) while
others merely pass items through (passing blocks).
Typical blocks would include FIFO Queue, Activity
Delay, and Executive.

Connector: A point on a block where a connection can
be made. Connectors are either inputs or outputs and are
used to transfer values or items between blocks.

Connection: The link between two blocks that transmits
data. Connections will be drawn on the model/worksheet
as single lines for values and as double lines for item
connections.

Dynamic array: An array which has a variable size. The
size of the first dimension can be changed at any time
with a function call. Dynamic arrays can be passed from
block to block. These structures are used to store the
majority of the information about the items. Dynamic
arrays can have up to five dimensions (row, column,
depth …).

Global Array: An array which is global to the entire
model. The number of columns is defined when the array
is created. The number of rows can be resized at any
time with a function call. Global arrays are always two-
dimensional. For example, the global array
“_AttributeValues” is used to store the values of the item
attributes in the simulation. When the simulation
initializes, the number of columns is specified as the
number of attribute values in the model. The number of
columns is resized as the number of items in the model
increases.

Item: A conceptual entity or object moving through the
model. Items will have various information associated
with them, such as priorities, attributes, or values.

Library: A collection of blocks (modeling components).
Some standard libraries are: the Discrete Event, Generic,
and Plotter libraries.

Message: Signals sent to blocks in the model. Each
block will have a message handler associated with a
given message and will execute the code in the handler
when the given message is received. In general there are
two types of messages that blocks will receive. The first
is system messages that are sent out by the program,
such as InitSim, Simulate, and EndSim. The second type
is connector messages, such as ItemIn and ItemOut.
These are sent from one block to another through the
block’s connectors, and are received in message handlers
with the same names as the connectors.

Message Handler: A section of code within a block that
is executed when the given message is sent to the block.
A message handler has the form ‘on XXX’, where XXX
is the name of the message. An example of an ‘On
Simulate’ message handler is:

On Simulate
{
// code that is to be executed on each
simulate step
}

Model: A collection of blocks connected together to
form the logical basis of the system being simulated.

A Message-Based Discrete Event Simulation Architecture 1367
Worksheet: The screen or window containing the
model.

AUTHOR BIOGRAPHIES:

DAVID KRAHL is the Director of Technical Services at
Imagine That, Inc. Mr. Krahl is responsible for block
development and technical support. He received a MS in
Project and Systems Management in 1996 from Golden
Gate University and a BS from the Rochester Institute of
Technology in 1986.

J. STEVEN LAMPERTI is the Director of Research and
Development at Imagine That, Inc. Mr. Lamperti is
responsible for Extend application development and is
the designer of this discrete event architecture. He
received his BS in Computer Science from the
University of Vermont in 1985.

	A MESSAGE-BASED DISCRETE EVENT SIMULATION ARCHITECTURE
	ABSTRACT
	1 INTRODUCTION
	2 SIMULATION STRUCTURE
	2.1 Simulation Engine
	2.2 Data Structures
	2.3 Messaging
	2.4 Event Handling

	3 BASIC ITEM MESSAGING
	3.1 Push Mechanism
	3.2 Pull Mechanism

	4 VALUE CONNECTOR MESSAGES
	4.1 Message Emulation
	4.2 Explicit Connector Messages

	5 BLOCKED AND QUERY MESSAGES
	5.1 Blocked Messages
	5.2 Query Messages

	6 NOTIFY MESSAGE
	7 CONCLUSIONS
	APPENDIX A
	AUTHOR BIOGRAPHIES:

	page1: 1361
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

