
GENETIC ALGORITHMS WITH CLUSTER ANALYSIS FOR PRODUCTION SIMULATION

Robert Entriken
Siegfried Vössner

Department of Engineering Economic Systems & Operations Research
Stanford University

Stanford, CA 94305-4023, U.S.A.
ABSTRACT

This paper describes the application of a Genetic
Algorithm to production simulation. The simulation is
treated as a detailed, stochastic, multi-modal function
that describes a performance statistic. Our aim is to
optimize (or at least improve) the performance of the
system. In our experiments, we modeled a real-world
production line for printed circuit boards that has many
products and must often be retooled or reconfigured.
Since the product line is always changing, with half of
the products turning over within a year, the job of
configuring and fine tuning the production line is never
ending. Our experiments show that a Genetic Algorithm
when attached to the simulation model can provide
excellent support for this process. This combination can
be used to obtain quick and stable results that do indeed
indicate the direction to improved production.

1 GENETIC ALGORITHMS

1.1 Principles

Unlike classical Operations Research techniques,
Genetic Algorithms (GAs) (Goldberg 1989; Holland
1975) use the mechanics of natural selection ("survival
of the fittest") (Darwin 1859) and genetics that were
originally inspired by biological structures and their
evolution.

Figure 1: Scheme
Genetic Algorithms process many candidate solutions
(a population) at one time, in parallel. In production
simulation, a solution would be a certain line
configuration, or priority system. The best solutions
survive a competition based on line performance, and go
on in the selection process, and out of these solutions,
new ones are created by recombination.

One important point is that GAs do not operate
directly on the variables (phenotype); similar to biology
there is an encoded representation (genotype), that
allows easy recombination of candidate solutions,
regardless of the types of the variables (integer, real,
binary, character strings).

1.2 Where and Why to Use Genetic Algorithms

Genetic Algorithms have shown their advantages in
dealing with the highly non-linear search spaces that
result from noisy and multimodal functions.
Furthermore, they are, to a high extent, problem
independent.

In our case, the simulation performance measure is
itself a random value. For this reason, we must simulate
the production line many times, and compute a sample
mean. It is the sample mean that is being optimized.
This statistic is inherently noisy, and when dealing with
decisions like when and how long to take a lunch break,
the response of the function can be arbitrarily “lumpy,”
so the Genetic Algorithm provides a very elegant match
in such a difficult situation.

1.3 Cluster Analysis as a Convergence Criterion

In order to analyze the output of an optimization
algorithm and to determine when to terminate the
algorithm, it is important to know the convergence state,
the distance to the best or an acceptable solution. Due to
the complex structure of GAs it is difficult to predict the
convergence state with a mathematical model or even to
measure it. At the moment there are some approaches
(Davis and Principe 1991; Goldberg et al. 1992; Miller

1308 Entriken and Vossner
and Goldberg 1995) that try to formulate an analytical
model for convergence by focusing on selected GA
operators.

Applying GAs to "real world," discrete-event
simulation, we unfortunately cannot use these
approaches. An alternative method described in
(Vössner and Braunstingl 1996a) localizes several
optima at an early stage in the optimization process.
Working on the principle that Genetic Algorithms prefer
to accumulate their individuals around local optima, the
method searches for these accumulations, i.e. clusters, in
a population.

A graph of these clusters can give insight as to the
convergence state of a GA in general. The following is
only a short summary of this method.

1.3.1 Selection of a Generation

The first step is to chose an appropriate generation to
analyze from a GA run, which we do by taking note of
the average fitness of the population as the algorithm
proceeds. The average fitness of all generations of a GA
run yields function shapes similar to the ones shown in
Figure 2.

Figure 2: Selection of a Generation for Cluster Analysis
When the individuals are distributed randomly, as in
the initial population, only one cluster containing all
individuals will be found, and the average fitness of the
population will be low. As the algorithm proceeds,
individuals begin to move towards areas of higher
fitness, more clusters appear, and the average fitness
increases rapidly. Then the individuals begin
congregating into one or more optima. As the initial
clusters start to disappear or split, the average fitness
grows more slowly.

The following heuristic has turned out to be very
useful for determining an appropriate generation to begin
cluster analysis - at least for all our optimization
problems. We recommend selecting the population Gsel,
which comes closest to the point of inflection
respectively, to the point of maximum curvature of the
curves shown in Figure 2.

1.3.2 Cluster Analysis

For a simpler exposition, all parameter intervals are
normalized to the range 0 ≤ parameter < 1, so that the
parameter space, formerly a hyper rectangle, is now a
hyper cube (with unit edge length and volume). In this
normalized parameter space, all of the distances between
all individuals are calculated, where the distance di j

between two individuals i and j is taken with the
Euclidean metric. Doing this yields a symmetric distance
matrix (nn ×) where : di j=dj i for i, j=1, ..., n .

Clusters of individuals are defined using the distance
matrix. The distances of all individuals are compared
with a particular threshold value d. When the distance
between two individuals is smaller than the threshold,
they lie in the same cluster.

Clusters that are identified by this algorithm can have
arbitrary shapes, which is especially useful if the fitness
function has an asymmetric gradient around a local
optimum. Suppose the optimum is the highest point of a
narrow ridge. Then the individuals will accumulate along
this ridge, forming a longish, thin cluster. Such a
solution is not as robust as a the case of a high plateau.

The clustering algorithm is summarized in the
following pseudo code, where we define a cluster to
consist of at least 2 individuals (solution points). Given
any two individuals i and j, if the distance between them
di j: < d, then they should be members of the same
cluster.

Genetic Algorithms for Cluster Analysis for Production Simulation 1309
There are three cases:
1. If they do not belong to a cluster yet,

they form a new one.
2. If only one of the two individuals

already belongs to a cluster, the other
one joins this cluster.

3. If both individuals are members of
different clusters, these clusters are
combined thus forming a single one.

1.3.3 Cluster Diagram

We decrease the check distance by discrete factors,
starting from the hypercube's space diagonal d - where
exactly one cluster will be found - down to a distance
d

min
 where no clusters any longer exist. At each of these

steps, we perform a cluster analysis as described above.
In this context, the former definition, that a cluster
consists of at least two individuals, is important. Since
lone individuals do not count as clusters, no clusters can
be found if the check distance is sufficiently small. From
this analysis we get a diagram of clusters for different
check distances (see Figure 3).
The results of different cluster analyses, ordered by

decreasing check distance (d/1, d/2, d/4, ...), are
arranged in a cluster diagram, where each circle
represents a cluster, and the connection from one cluster
to the next outward cluster(s) shows how clusters split
with decreasing check distance.

The diagram shows the number of clusters, their sizes,
distances, history of origin and the average fitness of the
corresponding individuals. The numbers within the
circles identify them, while the size of the circles is
proportional to the number of individuals forming that
cluster. The shading of a cluster indicates the average
fitness of the individuals within it.

One of the shades is labeled with "avg" in the fitness
scale at the bottom of the diagram. If a cluster number is
underlined, the average fitness of its elements is greater
or equal to the average fitness of all individuals. We call
such a cluster "outstanding."
Figure 3: Example Cluster Diagram

1310 Entriken and Vossner
2 AN EXAMPLE

Our real-world production line produces a large variety
of integrated circuit boards in small lot sizes for Hewlett-
Packard Company in Puerto (Rojas 1993). Daily
production mixes vary from 6 to 14 different board types
per day, total daily production ranges between 135 and
320 boards per day. Half of the products in production
at any given time are out of production within a year.
Frequent adjustments of various stations (i.e., maximum
throughput of a station) are necessary to operate the line
at a high level of performance. For this reason, a support
system based on computations done with a Genetic
Algorithm can be very useful.

2.1 The Production Line

The line, depicted in Figure 4, consists of twenty-one
different stations, each consisting of machines that are
serially connected or accept work in parallel. There are
three different materials-handling systems: electric
conveyors for stations one to fifteen, automated guided
I
n
s

A

C
P
I
I

C
P
I
I
I

I
P
I
I

I
n
s

B
+
H
L

B
k
l
o
a
d

Bo
Lo

B
r
d

P
r
e
p

S
t
e
n
c
i
l

P
r
e
t
e
s
t

Figure 4: Exa
vehicles from station fifteen to seventeen, and carts and
tote boxes from station seventeen onwards. The
different boards require different sequences of stations
for their production, and set-up times are required for
retooling.

The solid arcs in Figure 4 denote the normal
production sequence, and the dashed lines show paths for
alternate sequences. The first dashed line, labeled
“Bottom Loading,” is for boards that have chips on both
sides. The second, labeled “No Hand Loading,” allows
some boards to skip the hand loading and wave soldering
steps. The last dashed line allows some boards to skip
burn-in and packing.

2.2 The Simulation Software

Our simulation is implemented with a commercial
production simulation software package called
TestSim®/X (Tyecin Systems 1994), and incorporates
detailed representations of equipment, operations and
maintenance personnel, products, processes, and
operating rules for priorities and rework. Equipment is
subject to failure and is repaired by a limited pool of
I
R

O
v
e
n

H
L
o
a
d

1

H
L
o
a
d

2

H
L
o
a
d

3

W

S
o
l
d
e
r

L
a
b
e
l

D
e
p
a
n
e
l

B
u
r
n

I
n

P
a
c
k
i
n
g

W
a
s
h

ttom
ading

No Hand
Loading

No
Burn In

No
Packing

AGV
Transport

T
u
r
n

O
n

mple Production Line

Genetic Algorithms for Cluster Analysis for Production Simulation 1311
skilled technicians. We were able to control the
parameters of our optimization by creating software that
translates the values of our decision variables into
changes in the ASCII input files of TestSim/X, executes
replications, and collects statistics. Practically every
detail of the production is at our disposal for
consideration by the Genetic Algorithm—everything
from the order of production starts to the length and time
of the lunch breaks.

2.3 The Objective and Decision Variables

To demonstrate the usefulness of using a Genetic
Algorithm for decision support, we have chosen to
manipulate the service times at three of the workstations,
because we can readily plot the results in three
dimensions (3-D). These stations (Inspection/Hand
Loading, Burn-in Oven, and Packing) were chosen
because they presently represent bottlenecks to
production throughput, which we will attempt to
maximize. As an aside, bottlenecks toward the end of
the production line seem to be more responsive than
others. We vary the service times from their nominal
values to one fifth of the nominal value on a discrete
scale with 32 points ranging from 1 to 5. Reducing a
service time by a factor of two is a gross approximation
to adding a new machine in parallel.

2.4 Results

Our experiments were conducted in two phases. First,
we identified the global optimum by scanning the entire
three-dimensional parameter space. This method is
guaranteed to produce the global optimum, but it is very
time consuming for general practice. The scan serves as
a basis for comparing the results of the second phase,
where we employ the Genetic Algorithm. Not only can
we say that the algorithm finds the global optimum, but it
does so very quickly compared to the scanning method.

2.4.1 Scan

Given three decision variables, each taking 32 discrete
values, and 5 replications of each experiment to obtain a
sample mean, our scan of the parameter space required
163,840 simulations. This took about 11 days elapsed
time, and cannot be recommended in light of the
available alternatives.

In Figure 5, the origin is in the back left corner with x
being Packing, y being Burn-in, and z being Inspection
and Hand Loading. Each ball is a candidate solution
with throughput greater than 20600 parts per month.
Figure 5: 3-D Plot of the Most-Fit Solutions in the
Parameter Space

The shades of gray indicate the fitness, where the lighter
shades are more fit. The black ball, however, is the
global optimum.

Each of the back panels of the cube has a projection of
the balls so that you can better place them in the cube.
Notice that from these projections, it is easy to visualize
clusters of good solutions. When we experiment with
the Genetic Algorithm, we should expect to see that it
produces similar cluster patterns.

The global optimum is located at (0.8222, 0.3778,
0.2889) with a throughput of 27090 parts per month.
This is much improved over the original configuration,
represented by the origin, where the throughput is 18700
parts per month.

Since these are the top 13 points in the parameter
space, we are viewing only the tops of three-dimensional
mountains. Many of the peaks are isolated. Seen in two
dimensions as projections on the back panels, there are
ridges, plateaus, and lone peaks. This random function
is indeed multi-modal, and it should present quite a
challenge to any algorithm.

2.4.2 Genetic Algorithm

In the second phase of our experiments, we applied a
Genetic Algorithm package (Vössner and Braunstingl
1996b) to the same problem, and it performed very well.
With only 30 individuals in the population and again 5
replications to compute the sample mean, the algorithm
converged to the global optimum within 15 generations.
That translates into only 2,250 simulation runs in about
12 minutes elapsed time. We used standard algorithm
settings (crossover probability 0.7 and mutation
probability 0.003).

1312 Entriken and Vossner
The global optimum was actually identified at a very
early stage, but it was not until about generation 10 that
individuals began to cluster there in force. Let us take a
look at the progress of the algorithm using the 3-D plots
in Figure 6.

In Figure 6, there are four snapshots of the progress of
the algorithm taken of generations 1, 5, 10, and 15. Each
ball again represents an individual with fitness greater
than 20600 parts per month. The colors range again
according to fitness, with lighter being better. All plots
use the same fitness scale.

The two main clusters are located around the global
optimum, in much the same shape as the cluster formed
in the scan. They are elongated in the vertical direction
and somewhat symmetric in the projection onto the x-y
(bottom) panel. For the production line, this means that
in the area of the optimum, the production line is
relatively less sensitive to variations in the performance
of the Inspection and Hand Loading workstation and
equally sensitive to variations at the Burn-in Oven and
Packing workstations, which are the last two in the line.
2.4.3 Cluster Analysis

A cluster analysis (Vössner and Braunstingl 1996c) was
performed on each of the same generations shown in
Figure 6, and not surprisingly they agree well with the
conclusions above. The potential of this approach can
only be appreciated when dealing with even more
parameters than three. In which case, it is no longer
possible to make 3-D plots, and our only guide will be
such cluster diagrams, which are dimension invariant.

Figure 7 shows each of the cluster diagrams for
generations 1, 5, 10, and 15. The progression of the
algorithm can be traced through the generations in three
ways.

1. The number of clusters reduces,
showing that fewer areas of fitness are
being considered.

2. The color of the clusters becomes
lighter, showing that their average
fitness is increasing.

3. The compactness of the clusters
min

max

A B

C D
x

y

z

Figure 6: 3-D Plots of GA Generations 1, 5, 10, and 15

Genetic Algorithms for Cluster Analysis for Production Simulation 1313
increases, showing that individuals are
pressing for better performance.

The diagram for generation 15 shows that there are
two main clusters, with one being more stable, as
indicated by its containing more individuals.

3 CONCLUSIONS

The explanation of the Genetic Algorithm is simple and
intuitive, because it relates to every-day life in so many
ways, and results are readily interpreted because the
algorithm deals only with solutions that are
implementable. These two points make Genetic
Algorithms very attractive. Further, Genetic Algorithms
are robust, do not require gradient calculations, and
remarkably efficient on very difficult problems like the
production line we presented in this paper. These points
make this approach very attractive for the field of
stochastic optimization.

Our experience has shown that the Genetic Algorithm
was surprisingly quick to apply and readily presented
useful and interesting results. It has also the promise of
handling greater levels of complexity and more decision
parameters than the three we presented, which is a
direction for future research. We are currently
experimenting with refined algorithms for cluster
identification that allow more precise stopping criteria
and for speeding up the simulation by adjusting the
sample size dynamically.

ACKNOWLEDGMENTS

The authors are indebted to Tyecin Systems Inc. for the
use of their TestSim/X simulation software, and the
EES&OR Department of Stanford University for the
computer resources needed to do these experiments.
Furthermore we would like to thank Professor George B.
Dantzig and Dr. Gerd Infanger for their support
throughout this project and Professor Donald L. Iglehart
and Professor Peter W. Glynn for their comments and
valuable discussions.
Figure 7: Cluster Diagrams for Generations 1, 5, 10, and 15

1314 Entriken and Vossner
REFERENCES

Darwin, C. 1859. On the Origin of Species by Means of
Natural Selection, J. Murray.

Davis, T. E., and Principe, J. C. A Simulated Annealing
Like Convergence Theory for the Simple Genetic
Algorithm. In 5th International Conference on
Genetic Algorithms, 174-181, San Diego, USA.

Goldberg, D. E. 1989. Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading,
Massachusetts:Addison-Wesley.

Goldberg, D. E., Deb, K., and Clark, J. H. 1992. Genetic
Algorithms, Noise, and the Sizing of Populations.
Complex Systems, 6, 333-362.

Holland, J. 1975. Adaptation in Natural and Artificial
Systems, Ann Arbor, Michigan:University of
Michigan Press.

Miller, B. L., and Goldberg, D. E. 1995. Genetic
Algorithms, Selection Schemes and the varying
Effects of Noise. 95009, IlliGAL.

Rojas, J. C. 1993. Simulation of a Just in Time Assembly
Process for Computer Memory Cards at Hewlett-
Packard, Puerto Rico, Engineer's Thesis, Stanford
University, Stanford, CA.

Tyecin Systems, I. 1994. TestSim/X User's Manual,
Tyecin Systems, Inc., Los Altos, California.

Vössner, S., and Braunstingl, R. 1996a. Analysis of
Results from Genetic Algorithms. submitted to
Evolutionary Optimization.

Vössner, S., and Braunstingl, R. 1996b. G.O.A.L.
(Genetic Optimization ALgorithm), Genetic
Optimization Lab, Graz, Austria.

Vössner, S., and Braunstingl, R. 1996c. KLECKS
(Cluster Analysis Package for Genetic Algorithms),
Genetic Optimization Lab, Graz, Austria.

AUTHOR BIOGRAPHIES

ROBERT ENTRIKEN has a Ph.D. in Operations
Research from Stanford University, a BSEE from
Carnegie Mellon University and has over eight years
Business Analysis Experience in various industries
including: computer software and hardware production,
finance, oil refining, and electric power industries. Dr.
Entriken is co-author of AIMMS: The Modeling System
from Paragon Decision Technology, and has developed
economic and financial software for Bank America,
Goldman Sachs & Co., and most recently Pacific Gas &
Electric.

SIEGFRIED VOESSNER has a MS in Mechanical
Engineering and a Ph.D. degree in Industrial Engineering
from Technical University of Graz, Austria. He is
currently a visiting scholar at the Engineering Economic
Systems and Operations Research Department of
Stanford University. His research interests focus on
Logistics, Stochastic Modelling, Materials Handling,
Production Planning and Scheduling, Evolutionary
Computation Methods for Nonlinear-, Stochastic
Optimization - especially Genetic Algorithms and
Genetic Programming.

	GENETIC ALGORITHMS WITH CLUSTER ANALYSIS FOR PRODUCTION SIMULATION
	ABSTRACT
	1 GENETIC ALGORITHMS
	1.1 Principles
	1.2 Where and Why to Use Genetic Algorithms
	1.3 Cluster Analysis as a Convergence Criterion

	2 AN EXAMPLE
	2.1 The Production Line
	2.2 The Simulation Software
	2.3 The Objective and Decision Variables
	2.4 Results

	3 CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 1307
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

