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ABSTRACT

We simulated a large-scale Uncapacitated Warehouse
(Facility) Location Problems (UFLP) in the real world
on a digital map, and found an approximate solution.
The problem was to find a near-optimal solution for
the number and locations of warehouses that min-
imize the sum of the transportation cost and fixed
cost, and meet the needs of 6,800 customers. The
network data of the digital map were efficiently used
to obtain candidate warehouse locations, to simulate
the transportation cost, to simulate the warehouse
fixed cost, and to find a near-optimal solution for
the number and locations of warehouses. In this pa-
per, we propose a simulation-based approach to the
large-scale UFLP, including a new heuristic algorithm
named “Balloon Search,” and give the results of our
experiments.

1 INTRODUCTION

A manufacturing company in Japan currently has 11
warehouses that deliver spare parts for it’s products
to 6,800 customers located in the Kanto area. The
sum of the fixed warehouse cost and the transporta-
tion cost is about 13 million dollars a year. The man-
ufacturer wants to reduce the total cost by relocating
or closing some of the current warehouses, and wants
to know the optimal warehouse number and locations
for its warehouses.

This is an instance of an optimization problem
called the Uncapacitated Facility Location Problem
(UFLP). Over the last 30 years, large amount of re-
search had been done on the UFLP, and several exact
(e.g., Mathematical Programings (Krarup 1983), and
DUALOC (Erlenkotter 1978) and approximate (e.g.,
Greedy and Interchange Heuristics (Kuehn 1963, Cor-
nuejols 1977) ), and Lagrangean Heuristics (Beasley
1993) algorithms have been proposed.

However, much of this research has been based on
artificial data, and there has been little research on
how to solve large-scale instances of the UFLP in the
real world. For example, almost all of the previous
research gave candidate locations and fixed costs of
the warehouses, and transportation costs from ware-
houses to customers. But in real-world problems,
these data must be calculated on the basis of a “proper
model” or “proper assumptions,” because it is dif-
ficult to determine the all fixed and transportation
costs for candidate warehouses. This is especially true
when we try to take a large number of warehouse can-
didates into account, so as to improve the optimality
of the solution.

Moreover, UFLP is a NP-hard problem. That is,
if the number of candidate warehouses (m) and cus-
tomers (n) are growing larger, the number of constraint-
equations for Integer Programming explodes and it is
very hard not only to solve the problem, but even to
represent it in the memory of a computer. For exam-
ple, in the case of our real problem, n = 6,800 and
m = 380,000, and it is very difficult to manipulate
the huge number of constraint equations for such a
problem size. Therefore, we need a practical method
for finding an approximately optimal number and lo-
cations from a large number of possible locations.

In this paper, we propose a simulation-based ap-
proach to large-scale instance of the UFLP in the
real world, including a new heuristic algorithm named
“Balloon Search,” and give the results of our experi-
ments.

2 STRATEGY FOR SOLVING A LARGE-
SCALE UFLP IN THE REAL WORLD

In order to solve a real instance of a large-scale UFLP,
we developed simulation-based methods. That is, we
simulated our UFLP in the real world on a digital
map.

First, all warehouses and customers were assumed
to be located at nodes of a network covering the whole
Kanto area. From the customer nodes, sets of candi-
date warehouse locations were selected, and the fixed
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and transportation costs for each candidate were cal-
culated on the basis of the real data for the current
11 warehouses. The transportation cost was assumed
to be proportional to the delivery time.

Next, we optimized the number and locations of
the warehouses in two steps.

The first step was to apply Greedy - Interchange
heuristics with the warehouse candidates selected in
the above manner. Using these heuristics, we found
an approximately optimal solution for the number
and locations of warehouses selected from the ware-
house candidates.

Next, in order to improve the solution obtained
in the first step, we devised a heuristic procedure for
finding medians, and named it “Balloon Search.”

This procedure may be outlined as follows: We
relocated each warehouse obtained in the first-step
solution to an adjacent node of the network that was
not selected as a warehouse candidate node. Ware-
house i was relocated by aiming to find one median
of the corresponding subnetwork that included only
the subset of customers who were assigned to ware-
house i. In this process, we first reduced the subset of
customers so that it included only customers whose
transportation costs were relatively low. Then, we
increased the number of the customers in the subset
step by step, and repeatedly found medians. During
these processes, we assumed that the fixed cost of the
adjacent node was the same as that of the warehouse
obtained in the first-step.

After the first and second optimization steps, a
near-optimal solution for the number and locations of
warehouses was expected to be found from the large
number of network nodes of the digital map.

3 MATHEMATICAL FORMULATION

We now give a mathematical definition of the prob-
lem.
Let:
I : set of warehouse candidates
J : set of customers
i : i ∈ I
j : j ∈ J
m : number of warehouse candidate m = |I|
n : number of customers n = |J |
Cij : transportation cost of delivery from warehouse
candidate i to customer j
Fi : fixed cost of warehouse candidate i
xij : =1 if customer j is supplied with all parts from
warehouse candidate i; otherwise, xij =0
yi : =1 if the warehouse candidate i is open; other-
wise, yi =0
The UFLP can then be formulated as an integer pro-
gram as follows:
Minimize:

m∑
i

n∑
j

Cijxij +
m∑
i

Fiyi (1)

Subject to:

m∑
i

xij = 1 : j ∈ J ψ (2)

xij ≤ yi : i ∈ I, j ∈ Jψ (3)

xij, yi ∈ {0, 1} ← (4)

The problem is to minimize (1) under the con-
straints of (2), (3), and (4).

If customer j is assigned to warehouse candidate i,
then, all that customer’s parts are supplied by ware-
house candidate i.

4 DATA PREPARATION

4.1 Transportation Cost

We used a digital map that includes network data
composed of edges (corresponding to road segments),
nodes (corresponding to crossing points and termina-
tions of roads), and attributes of edges and nodes.
There are about 780,000 nodes and 380,000 edges,
and the covered area is an approximately 200 km x
200 km square region around Tokyo named the Kanto
area.

We assumed that the transportation cost per de-
livery from a warehouse to a customer is proportional
to the simulated delivery time, and we calculated the
“simulated delivery time” by dividing the shortest
distance between a warehouse and a customer on the
road network by the average speed of a delivery ve-
hicle. The average speed of a delivery vehicle was
varied according to the road type and road width.

We then obtained the simulated transportation
cost of a customer by multiplying the simulated de-
livery time by the demand of the customer (the fre-
quency of requests). The number of requests in the
last year was used as demand data of each customer.

Moreover, we assumed that a customer is supplied
with all its parts by the warehouse from which the
simulated delivery time is shortest.

On the basis of the above assumptions, we calcu-
lated the simulated transportation costs of customers
in the case of the current 11 warehouses, and assigned
all customers to the nearest warehouses. We believe
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that we simulated the transportation cost well, be-
cause the share of each warehouse in the simulated
transportation cost reflects its share in the real data,
when we compare the total simulated transportation
costs for the current 11 warehouses.

4.2 Warehouse Candidates

The number of warehouse candidates affects the load
of the simulation in term of, for example, the CPU
time and the sizes of work areas, such as a Dijkstra
table (a table for storing each value of the shortest
path between a candidate and a customer). It may
also affect the quality of the solution obtained by the
simulation; that is to say, it requires a tradeoff be-
tween the load of the simulation and the quality of
the solution. To investigate the tradeoff, we chose
different sets of candidates with sizes |I| between 128
and 1024 (|I| = c× 128, where c = {1, 2, . . ., 8}).

In the problem instance we are interested in, the
number of customers is 6, 800, which is more than 100
times greater than the current number of the ware-
houses. In the area served by a warehouse, the ware-
house may be located near the center (median) of the
customers served; these customers are typically dens-
est near the warehouse. Thus, we assume that each
warehouse candidate is located at the same node as
one of the customers, and obtain the candidates by
the following procedure:

First, the customers are clustered into 128 rectan-
gles (buckets), each of which covers almost the same
number of customers, using the same technique as in
a k-d tree by Bentley (1990). Candidates are then
selected from each rectangle. When the number of
candidates is greater than 128 (the number of buck-
ets), more than one candidate is selected from each
bucket. In this way, more candidates are selected
from buckets in rural areas than from buckets in cen-
tral Tokyo; this allows us to investigate solutions in
sparsely populated areas in more detail.

4.3 Fixed Costs of Warehouses

The fixed cost of a warehouse consists of an occu-
pancy cost, which depends heavily on the land price,
and a labor cost, which depends on the size of the
warehouse. For a close approximation, we need the
actual land price and the actual relationship between
the labor cost and the size of the warehouse. How-
ever, neither is available, because of the huge effort
required to determine them. We were given, as an
alternative, a total fixed cost for each current ware-
house.

We assumed that each fixed cost is proportional to
the number of customers covered by a circle of fixed
radius centered at each warehouse depends. When
the number of customers laying within a circle is
great, the customers are dense around the candidate,
which implies that the land price may be high. It
also implies that the number of customers assigned
to the candidate may be great. When the number of
customers laying within the circle is small, the cus-
tomers are sparse around the candidate, and the fixed
cost of the candidate may be low. According to a
comparison with the actual fixed costs of the current
warehouses, the approximated fixed costs of the can-
didates in our assumption follow the same order as
the actual ones, and are thus good enough to be used
in our simulation.

5 OPTIMIZATION

Optimization was done in two steps, using the simu-
lated data. The first step consisted of Greedy - In-
terchange heuristics, and the second step of Balloon
Search.

5.1 Greedy - Interchange Heuristics

The Greedy - Bump and Shift (Interchange) heuris-
tics proposed by Kuehn (1963) have three processes:
In the Greedy process, warehouses are located at the
most economical positions, one at a time, until no ad-
ditional warehouses can be added without increasing
the total cost.
In the Bump process, those warehouses that became
uneconomical as a result of the placement of subse-
quent warehouses are eliminated.
In the Shift process, a warehouse is shifted to another
potential location in the same territory if the reloca-
tion causes a reduction of the total cost.

Through our experiments, we found cases in which
the optimal number of interchange (Shift) processes
was larger than that of Greedy processes. Therfore,
we modified the above heuristics as follows, and es-
tablished the Greedy - Interchange heuristics.

Let the set of warehouses at the lth addition be
Iwl ( |Iwl | = l ).
In the Greedy heuristic, first, warehouses are located
at the most economical positions, one at a time, un-
til no additional warehouses can be added without
increasing the total cost.

Next, if there are k warehouses after the Greedy
heuristic terminates, continue adding warehouses af-
ter k at the most economical positions, one at a time,
until the number of warehouses becomes k + d : 0 <
d < k, even if this increases the total cost.
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Let Φ = {Iwl |l = k − d, ..., k, ..., k+ d} .
In the Interchange process, we apply the best swap
search to all Iwl ∈ Φ, and find the optimal number
and locations of warehouses. The best swap search is
executed as follows:
Exchange a selected warehouse with the one of non-
selected candidate warehouses that gives the largest
cost reduction.
Repeat this process for all selected warehouses, and
iterate until the total cost cannot be reduced any
more.

In our experiments, a small value of d was always
sufficient (0 < d < 3).

5.2 Balloon Search

We now describe the idea of Balloon Search.
An approximate solution obtained by Greedy - In-
terchange heuristics only includes warehouses from
those candidates selected from the huge number of
network nodes. Therefore, we can decrease the total
transportation cost by relocating each warehouse to
a nearby “non-candidate” node of the network on the
assumption that the fixed cost of a near node is the
same as that of the previous node.

The transportation cost of each customer assigned
to a warehouse is, of course, different. We assume
that a customer whose transportation cost is rela-
tively large has a higher probability of changing the
supplier (warehouse) than another whose transporta-
tion cost is relatively small.

Therefore, we first relocate a warehouse to an ad-
jacent node that decreases the total transportation
cost of the subset of customers who are assigned to
this warehouse and whose transportation costs are
relatively small. We apply this relocation once to each
warehouse, and then reassign each customer to the
new warehouse from which the transportation cost is
smallest.

We repeat this “single relocation of each ware-
house” and reassignment of customers by increasing
the size of each subset of customers.

When no relocation decreases the transportation
cost, the algorithm terminates.

We search for the optimal warehouse location as
the median of an expanding “Balloon” that includes
the assigned customers.

In the following description we use the word “Bal-
loon” for a subset of customers who are assigned to
a warehouse and who are included in the first NBi
members in ascending order of transportation cost.
Let:
Igi : set of warehouses in the solution of the Greedy
and Interchange heuristics
Iw : set of warehouses for a solution
wi : node of warehouse i
Si : set of customers assigned to warehouse i
Bi : Balloon of warehouse i ( Bi ⊆ Si )
Ni : number of customers supplied from warehouse i
NBi : numbers of customer in Balloon i
V adji : set of adjacent nodes of wi
vi : vi ∈ V

adj
i

∆Ti(vi) : decrease in the transportation cost of Bal-
loon i when wi moves to the adjacent node vi
rinc : expansion ratio of Balloon
Rb : ratio of the number of customers included in all
Balloons to the total number of customers

We now give the
Balloon Search Procedure

1. Iw = Igi, initialize Rb, rinc
2. NBi = Rb ×Ni, Update Bi : i ∈ Iw
3. If ∆Ti(vi) ≤ 0 : vi ∈ V

adj
i , i ∈ Iw

Terminate with the solution of Iw
Else
wi = vi : max

{
∆Ti(vi)

}
,∆Ti(vi) > 0 : i ∈ Iw

4. Update the assignment for every customer
and calculate the sum of the transportation costs

5. Update Ni, V
adj
i : i ∈ Iw

6. Rb = rinc ×Rb; go to 2.

In our experiment, we used an initial value of Rb
from the set {0.05, 0.10, 0.30, 0.50, 0.70, 1.00}, and
an initial value of rinc from the set {1.05, 1.10, 1.20,
1.40}.
The value of ∆Ti(vi) in the above step 3 is calculated

as follows:
3.a. Make a tree TREEi whose root iswi and whose

nodes V treei are composed of the nodes of those cus-
tomers V ci assigned to warehouse i and the nodes on
the paths to warehouse i from v ∈ V ci .
3.b. Let d(v) be the sum of the demand (the fre-
quency of requests) of v and the demand of the all
descendants of v in the TREEi.
3.c. Then
∆Ti(vi) = 2(d(vi)− d(wi)) × uc(vi, wi)
Here, uc(vi, wi) is the delivery cost per request along
the edge connecting vi and wi, from vi to wi.

6 EXPERIMENTAL RESULTS

First, in order to evaluate the simulated fixed and
transportation costs, we applied Greedy - Interchange
heuristics in three cases with different average speeds
on highways and metropolitan expressways (see Table
1), for 512 warehouse candidates. Figure 1 shows the
results in case 1, and Figure 2 the results in case 3. In
both figures, the x-coordinate denotes the number of
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warehouses and the y-coordinate the reduction ratio
of the total cost in relation to the total cost of current
11 warehouses. These figures show that the number
of warehouses that gives the lowest value is larger in
case 3 than in case 1. This result, indicating that if
the transportation cost is growing larger (that is, the
average speed is slower and we need more time for
delivery) we should open more warehouses to reduce
the total cost, matches the decision-making strategy
in the real world.

Table 1: Sets of Average Speed (km/h).
HW: Highway, ME: Metropolitan Expressway,

NP: National/Prefectural Road.
Case HW ME NP NP others
No. ≥ 13m < 13m

1 80 50 40  30 30
2 120 80 40 30 30
3 40 40 40  30 30

Through the following experiment, the set of aver-
age speeds in case 1 was assumed. We must remember
that the solution of our experiment is affected by the
set of average speeds.

In Figure 1, we must pay attention to the fact
that the minimum value was obtained for nine ware-
houses after application of the Interchange heuristic,
even though the best solution obtained by the Greedy
heuristic was for eight warehouses. This means that
the Kuehn’s heuristic strategy, which claims Inter-
change (Bump and Shift) heuristic should begin with
optimal number of warehouses given by the Greedy
heuristic, does not achieve the final minimal value in
solving our problem instance. Therefore, we decided
the optimal number of warehouses by observing the
change in the total cost as the number of warehouses
varied from 5 to 15.

While changing the number of warehouse candi-
dates in the sequence of 128, 256, 384, 512, 640, 768,
896, and 1024, we applied the Greedy - Interchange
heuristics and Balloon Search. Balloon Search was
applied with initial Rb values of 0.05, 0.10, 0.30, 0.50,
0.70, and 1.00, and with rinc values of 1.05, 1.10,
1.20, and 1.40. When the initial value of Rb is 1.00,
the Balloon is not expanded; that is, all customers
are considered while medians are found at each step
of Balloon Search.

In every experiment, with various numbers of ware-
house candidates, the optimal number of warehouses
was 9. However, the locations (nodes) of these nine
warehouses and the total cost differ depending on the
number of warehouse candidates.

Figure 3 shows the relation of the number of ware-
house candidates and the minimal total cost achieved
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Figure 1: Number of Warehouses and the Minimal
Total Cost with Average Speeds of (80, 50, 40, 40,
30) km/h.

by each heuristic when the number of warehouse is 9.
The x-coordinate represents the number of warehouse
candidates and the y-coordinate the reduction ratio
of the total cost in relation to the total cost of the cur-
rent 11 warehouses. The four graphs correspond to
the result of Greedy and Interchange heuristics, Bal-
loon Search with no-expanding, and Balloon Search.
The graph of Balloon Search was plotted by using the
best combination of Rb and rinc for each number of
warehouse candidates.

The minimal value of the Greedy - Interchange
heuristics is improved as the number of warehouse
candidates grows larger, and it is inclined to be sat-
urated when x ≥ 700.

Table 2 shows how Balloon Search improved the
solution of the Greedy - Interchange heuristics. At ev-
ery number of warehouse candidates, Balloon Search
improved the minimal cost of Greedy - Interchange
heuristics, with an improvement ratio of 2%-11%.

Table 2: Improvement by Balloon Search.
Number of Greedy- Balloon Improvement
Candidates Interchange Search Ratio (%)

128 0.903461 0.896153 7.56
256 0.89427 0.889305 4.69
384 0.89157 0.886417 4.75
512 0.891656 0.879608 11.12
640 0.894176 0.89131 2.70
768 0.886699 0.88427 2.14
896 0.889275 0.884924 3.92
1024 0.889644 0.879394 9.28
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Figure 2: Number of Warehouses and the Minimal
Total Cost with Average Speeds of (40, 40, 40, 40,
30) km/h.

However, the efficiency of the expanding the Bal-
loon is not clear in this problem instance, because
the expanded Balloon is slightly better than the un-
expanded Balloon.

In Figure 3, we want to emphasize that, by using
Balloon Search, we obtained as good a solution with
512 candidates as that with 1024 candidates. The
result shows that we can find a good solution even
if we select a relatively small number of warehouse
candidates for the Greedy - Interchange heuristics.
This is a very useful result, because a large number
of warehouse candidates consumes a lot of computa-
tional time and space.

Figure 4 shows the relation between the number of
iterations in Balloon Search and the total cost, with
512 warehouse candidates and initial Rb values of 0.1
and 1.0. The x-coordinate represents the number of
iterations in Balloon Search, and the y-coordinate
the reduction ratio of the total cost in relation to
the total cost of the current 11 warehouses. It can
be trivially shown that Balloon Search with a small
rinc value requires more iterations before terminat-
ing. Four curves of Balloon Search with an initial
value of Rb = 0.1 (Expanding) start from a worse to-
tal cost than that of Rb = 1.0 (No-expanding) and
terminate with a better total cost. From this figure,
we can understand that the most careful and labori-
ous increment (rinc = 1.05) is not the best way. We
thus have a chance to find a good solution with fast
execution of Balloon Search.

We modified that Balloon Search procedure so
thatRb is increased after no warehouses can be moved
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Figure 3: Number of Warehouse Candidates and the
Minimal Total Cost.

any more with the current value of Rb. The aim of
this modification is to execute Balloon Search very
slowly, finding the exact medians at each value of
Rb. In Figure 5, we plotted an example of the results
of this modified Balloon Search, with 512 warehouse
candidates, and with initial Rb values of 0.10 (Ex-
panding) and 1.0 (No-expanding). A comparison of
Figures 4 and 5, shows that Balloon Search does not
improve the optimal value, even if it is executed while
finding exact medians at each value of Rb.

Our experiments led us to conclude that the op-
timal number of warehouses is 9, that the Greedy
heuristic improved the total cost of the current 11
warehouses by 9% - 11%, that the Interchange heuris-
tic improved the total cost by a further 0.5% - 1.5%,
and and that the Balloon Search improved it a further
0.5% - 1.5%.

Finally, as shown in Figure 6, we were able to
find approximately optimal warehouse locations after
application of the three heuristics, which improved
the total cost by about 12%.

7 CONCLUSIONS

We obtained an approximate solution of a large-scale
UFLP in the real world, by simulating the transporta-
tion and fixed costs on a digital map and by apply-
ing a Balloon Search algorithm after the Greedy -
Interchange Heuristic algorithms. We found approxi-
mately optimal solutions of the number and locations
of warehouses, thus improving the total cost by about
12%. The solution was affected by the average speed
of a delivery vehicle.
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Figure 6: 9 Warehouse Locations of the Approximate
Solution in the Kanto Area

We introduced the idea of Balloon Search, and
applied it to solve a real large-scale instance of UFLP.

Through experiments on Balloon Search, we found
that we can obtain a good solution even if we select
a relatively small number of warehouse candidates
for the Greedy - Interchange heuristics. Therefore,
we can reduce the computational time and space of
calculating Dijkstra table for warehouse candidates,
which is the most laborious step in the whole proce-
dure.

Our experiments also show that using a small ex-
pansion ratio of the Balloon or finding an exact me-
dian at the designated value of the Balloon size is
not the best way to avoid local optima. These re-
sults indicate that we have a chance of finding a good
solution quickly.

In the given problem instance, the efficiency of
expanding the Balloon is not so clear. However, as
we can see in Figure 4, Balloon Search is expected to
be efficient for avoiding local optima.

Although Balloon Search improved the solutions,
the strategy for defining the parameter values is not
fixed. In further research, we want to establish a
strategy for defining the parameter values depending
on the size and the structure of the problem to be
solved, and to use this new heuristic algorithm to
solve the p-median problem on the graph.

Finally, we note that our customer (a manufac-
turing company in Japan) established its warehouse
relocation plan on the basis of the simulated solution
that we obtained in our experiments.
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