
A STOCHASTIC DISK I/O SIMULATION TECHNIQUE

Niki C. Thornock
Xiao-Hong Tu

J. Kelly Flanagan

Performance Evaluation Laboratory
Computer Science Department

Brigham Young University
Provo, Utah 84602, U.S.A.
ABSTRACT

In this paper, we describe a technique to construct
accurate stochastic simulation models from acquired
trace data. The resulting simulation models accept
input trace data and return estimates of disk request
service times. In addition, we describe a trace col-
lection technique capable of collecting accurate trace
data from Novell Netware servers. These traces are
used to construct a simulation model of a Novell Net-
ware I/O subsystem that is used to study the impact
of disk data reorganization on I/O performance.

1 INTRODUCTION AND BACKGROUND

Processor speeds have increased considerably over the
past few years while I/O speeds, particularly disk
I/O, have lagged far behind. The resulting mismatch
causes a bottleneck which reduces the performance of
systems running I/O intensive applications. The need
to model these types of systems so the performance
impact of proposed alternatives can be measured and
evaluated is well known.

Previous studies to increase disk I/O performance
have been performed using trace-driven simulation
(Ousterhout et al. 1985, Smith 1985, Floyd and El-
lis 1989, Ramakrishnan et al. 1992, Grimsrud et
al. 1993). This type of modeling requires an ac-
curate simulation model and trace data representa-
tive of the system being evaluated (Flanagan 1993).
Simulation models are typically implemented using
high level language descriptions of various subsystem
components. An example of this type of simulator is
presented in (Ruemmler 1994) in which the authors
propose a simulation model requiring approximately
13,000 lines of commented C++ code. The accuracy
of this type of model is dependent on the included
detail and the validity of input parameters describing
each component. A simulation model requires accu-
rate parameters from each component of the system.
Obviously an important component of a disk I/O sub-
system is the disk drive itself. Two techniques for
obtaining accurate parameters of disk drive mecha-
nisms have been recently proposed. The first tech-
nique, proposed in (Ruemmler 1994), uses the disk
parameters published by the disk drive manufacturer
and regression analysis against their trace data. The
second technique, proposed in (Worthington 1995),
uses special tools and test vectors to drive SCSI disks
and extract the desired drive parameters. Accurate
models are difficult to construct and still require ac-
curate trace data to produce meaningful results.

As previously mentioned, many studies investigat-
ing disk I/O performance have used disk trace data.
Most of this trace data was collected at the file sys-
tem level, before the operating system buffer cache,
and does not contain high resolution timing informa-
tion (Ousterhout et al. 1985, Smith 1985, Ramakr-
ishnan et al. 1992, Floyd and Ellis 1989, Grimsrud
et al. 1993). These traces are most useful for tuning
and evaluating the performance of alternative oper-
ating system cache configurations or other pre-buffer
cache components. They are not optimal for evalu-
ating the remainder of the I/O subsystem: operat-
ing system device drivers, system buses (PCI, EISA,
or others), disk controllers, I/O buses (SCSI, Fiber
Channel, or others), caches and buffers integrated on
modern drives, and drive mechanisms.

Ruemmler and Wilkes implemented and described
a disk trace gathering technique that acquired trace
data after operating system caches and buffers
(Ruemmler and Wilkes 1993). Their trace data in-
cluded timing information with a resolution of one
microsecond. Their data was collected from three
Hewlett-Packard workstations and was used to de-
termine disk access characteristics of these systems.
Their disk trace collection tool inspired much of this
work.

This paper describes a new technique for creating
disk I/O subsystem simulation models for use with
trace-driven simulation. This technique requires ac-
curate I/O traces containing timing information like

1080 Thornock, Tu,
those collected by Ruemmler and Wilkes (1993). Un-
like the work performed by Ruemmler and Wilkes,
our work focuses on disk I/O performance of file
servers running the Novell Netware operating system
(Day 1993). We describe a tool to collect accurate
disk I/O traces from Novell Netware servers and use
these traces to construct a model of the system un-
der test. A short case study is presented that demon-
strates the usefulness of our simulation approach in
determining the impact of reorganizing disk data on
average I/O service times. Our simulation technique
is not limited to studies involving Novell Netware
servers, but is applicable to any system where disk
I/O traces with timing information are available.

The remainder of this paper is organized into
four sections. Section 2 describes our trace collec-
tion tool that provides us with the data necessary to
construct a simulation model of a system. Section 3
discusses the construction and accuracy of our simu-
lation model and proposes several uses for such a tool.
Section 4 presents a short case study illustrating the
usefulness of our simulation approach. Finally, Sec-
tion 5 summarizes our work and outlines our future
plans.

2 DISK TRACE COLLECTION TOOL

As previously mentioned, most disk traces that are
available were collected before the operating system
buffer cache and do not contain accurate timing in-
formation. Timing information is crucial for deter-
mining what real impact alternative I/O structures
have on a system. Like the trace data collected by
Ruemmler and Wilkes (1993), our traces contain very
accurate timing information.

The remainder of this section describes our trace
collection tool, the contents of acquired trace data,
and the type of data that is available. All collected
disk traces described in this paper are publicly avail-
able; for more information, access our web page at
http://pel.cs.byu.edu/.

2.1 Disk Collection Tool

Our trace collection scheme relies on three basic com-
ponents for data collection. They include the mod-
ification of a Novell disk device driver, a Netware
Loadable Module (NLM) that intercepts and stores
disk requests, and a tool that writes the buffered disk
requests to secondary storage.

2.1.1 Modified Disk Device Driver

The disk I/O component of the Netware operating
system can be thought of as having a hardware inde-
pendent part supplied by Novell and a hardware spe-
cific part supplied by the disk drive controller manu-
facturer (Day 1993). The device independent portion
of the operating system communicates with a disk
device driver using a well defined protocol specified
by Novell while the disk device driver communicates
with the controller card using a controller specific set
of commands.

To collect disk trace data at the disk level, a
custom piece of software is placed between the Net-
ware operating system and the disk device driver.
To accomplish this, we modified existing disk device
drivers. This NLM records incoming messages and
passes them to the intended recipients. All disk de-
vice drivers communicate with the Netware operating
system using a well defined set of interface routines.
The three routines of most interest are GetRequest(),
PutRequest(), and AddDiskDevice(). GetRequest is
used to inform the disk drive controller that a disk
read or write is requested. PutRequest is used to in-
dicate that the requested transaction has been com-
pleted. The AddDiskDevice routine is used during
system initialization to add disk drives to the system.
We use this routine to map Netware drive numbers
to a controller and SCSI ID pair.

Netware device drivers are dynamically loaded.
This implies that the routines mentioned above have
labels or tags in the binary image of the device driver
that the loader uses at load time to update the oper-
ating system’s calling tables. We modified the exist-
ing disk device drivers by editing the binary module
and replacing the labels for GetRequest, PutRequest,
and AddDiskDevice with the labels BYU GetReq,
BYU PutReq, and BYU AdDiskDev.

After this modification, the system is no longer
functional. The operating system attempts to call
GetRequest, PutRequest, and AddDiskDevice, but
these routines no longer exist in the disk device driver.
The next section describes our NLM that solves this
problem.

2.1.2 Trace Collection NLM

The trace collection module consists of an NLM that
lies between the operating system and the modified
device driver described in the previous section; see
Figure 1. The light gray arrows and interface rou-
tines represent the original operating system inter-
faces. The rest of the figure represents the new flow
of information.

Our NLM, referred to as byu disk.nlm, contains
three routines, GetRequest, PutRequest, and Ad-
dDiskDevice. When these routines are called by the
operating system, our NLM extracts the information
we desire to store as trace data and then forwards the

and Flanagan

te

A Stochastic Disk I/O Simulation Technique 1081 1081
Operating System
Disk

Cache

Old Device Driver

GetRequest()

PutRequest()

Disk Controller

Disk

byu_disk.nlm

Buffer

1

Buffer

2

puttrace.nlm

AddDiskDevice()

sting

BYU_GetReq()

BYU_PutReq()

BYU_AdDiskDev()
GetRequest()

PutRequest()

AddDiskDevice()

New Device Driver

Figure 1: Block Diagram of our Disk Trace Collec-
tion Tool. The Light Gray Elements Represent the
Original Flow of Information.

request to the modified disk device driver by calling
BYU GetReq, BYU PutReq, or BYU AdDiskDev.
This results in normal server behavior.

Each request is time stamped using a precision
timer built into the server’s CPU. The resolution of
the timer used in this work is accurate to one mi-
crosecond and is stored as a 32 bit value which re-
sults in an overflow whenever events are more than
1.2 hours apart; this is certainly adequate.

The captured disk request information is saved in
an internal buffer that is globally available. When
this buffer fills, a flag is set and storage shifts to a
second buffer. This process continues between the
two buffers until the modified disk device driver and
our NLM are removed from the system under test.

2.1.3 Trace Data Extraction

We mentioned in the previous section that the trace
results were temporarily stored in one of two buffers
allocated in the byu disk NLM as global variables.
When either of these buffers fills, an associated global
flag is asserted.

We have created a second NLM called puttrace
that has access to both the buffers and the associ-
ated flags in the byu disk NLM. Puttrace checks the
status of the flags associated with each buffer four
times each second. If a flag is set, puttrace reads the
associated buffer contents, writes the trace data to
disk, and resets the flag. If a flag is not asserted,
puttrace goes to sleep. This process continues until
puttrace is removed from the system.

2.2 Impact of Trace Collection on Server Per-
formance

This section describes and quantifies the impact the
trace collection process has on system performance.
When one of the two byu disk buffers fills it is writ-
ten to disk. The request to write this buffer to disk
results in two additional 4KByte disk requests that
are recorded by our monitoring routines. It should
be clear that if our buffers are too small, a significant
amount of perturbation will result. In the standard
configuration, our tool adds two requests for every
thousand collected.

Performance degradation is caused by both the
byu disk and puttrace NLMs. When the byu disk
NLM is loaded into the Netware server it formats and
places trace records into the internal buffers. This
process increases the time required to perform disk
accesses. In order to see how much our tool affected
system performance, we compared the average run
times from five runs of the Ziff-Davis Winstone 95
benchmark suite for three different cases. The first
case tested the average time needed to run the suite
without any of our instrumentation present. The
average execution time was 3385 seconds. The sec-
ond case investigated the time required to perform
the same tasks with the byu disk NLM installed, but
without puttrace saving the collected data to disk.
This instrumentation increased the average execution
time by one second.

With the byu disk NLM installed and saving trace
records to its internal buffers, puttrace was installed
to save the collected trace data to disk. This instru-
mentation consumed no measurable additional time.
Overall, the trace collection tool slows the system
down by one second out of 3385 seconds or 0.03%.
This perturbation is extremely minor and indicates
that the trace data collected using this system is ac-
curate and useful for trace-driven simulation.

2.3 Server and Workload Characteristics

This section describes the systems where our trace
collection tool was installed and the trace data that
was collected and used for this work.

Trace data was collected from two servers used
in our department. The first system (CSL) is used to
serve hundreds of undergraduate students performing
programming assignments for various classes. The
second server (PEL) is a research server located in
the Performance Evaluation Laboratory in our de-
partment.

1082 Thornock, Tu, and Flanagan
2.3.1 Computer Science Laboratories Server

The CSL server is an Intel Pentium based system con-
taining 80 Mbytes of memory, eight ethernet connec-
tions, and 20 Gbytes of disk storage. The system
runs version 4.1 of the Novell Netware operating sys-
tem with a 250 user license. Approximately 100 client
PCs are connected to the server. The server contains
five Seagate ST15150W drives. Each of these disks
holds approximately four gigabytes of data and has
a spindle speed of 7,200 RPM. The average access
time for a read or write is 8.0 or 9.0 milliseconds re-
spectively. Disk 0 contains the operating system and
applications; disk 4 mirrors it. Disks 1, 2, and 3 are
striped together to form a 12 gigabyte virtual disk for
user space. Any trace data collected from this server
includes references from all five disks, after the ref-
erences have passed through a 60 megabyte Netware
disk cache.

This server is mainly used by undergraduate stu-
dents in lower division computer science courses. The
most widely used applications are Microsoft Win-
dows, various programming tools, user written appli-
cations to fulfill assignments, applications for reading
and sending email, and WWW browsers. As previ-
ously mentioned, these applications are stored on disk
0 and mirrored on disk 4.

2.3.2 Performance Evaluation Laboratory
Server

Traces were also collected from our experimental
server in the Performance Evaluation Laboratory.
This server uses an Intel Pentium processor, has 2
gigabytes of disk space, 32 megabytes of RAM, and
a single network connection. It also runs Novell Net-
ware 4.1, and has a 5 user license. This server sup-
ports research faculty and graduate students perform-
ing experiments using the Ziff-Davis and BAPCO
benchmarks, programming Netware Loadable Mod-
ules, and preparing documents using Microsoft Win-
dows based applications.

2.4 Collected Trace Data

The byu disk NLM stores twelve bytes of data for
each request generated by the system. This data is
organized into a structure consisting of six elements:

1. request type or operation, one byte
2. disk controller number, one byte
3. SCSI ID of disk, one byte
4. request length in sectors, one byte
5. sector or block number, four bytes
6. time stamp in microseconds since last request,

four bytes
Possible request types include read, write, and
done. A done request indicates that a previous read
or write request has been completed. The disk con-
troller number and SCSI ID aid in identifying which
disk responded to a request. All read requests are
used to fill a disk cache line and are eight sectors
long. Write requests vary in length from one to eight
sectors. The sector or block number identifies the
logical disk block or sector where the request begins.
The time stamp is the time in microseconds since the
last read, write, or done request. By matching a done
record with its corresponding read or write, it’s pos-
sible to determine how long it took to service the
request. These records, stored in sequential order,
make up a trace.

While many traces have been collected from both
the CSL and PEL servers, two are used for the anal-
ysis presented in this paper. The first trace contains
the disk requests made by the PEL server in response
to a single client executing the Ziff-Davis Winstone 95
benchmark suite. This trace, referred to as PEL-ZD,
has the characteristics shown in Table 1.

The second trace (CSL-29) was collected on the
CSL server over a 29 day period. This trace is rep-
resentative of the type of activity observed in our
instructional laboratories. The trace was begun in
the middle of October and ended near the middle of
November. The characteristics of this trace can also
be seen in Table 1.

The trace collection tools and collected trace data
are available to interested parties. The availability of
these tools should increase the quantity and quality
of available trace data.

3 SIMULATION MODEL

This section describes our simulation methodology.
We first describe our simulation tool and present an
example using the trace data described in the previ-
ous section. We then evaluate the accuracy of this
model and present several uses for this type of tool.

3.1 Simulation Tool

The goal of our simulator is to return the estimated
service time for each request. To accomplish this, we
create tables with a row for each service time and a
column for each seek distance. Each entry of the ta-
ble contains the probability of the associated seek dis-
tance and service time acquired from the trace data
for a given system. Each column of this table is a
probability distribution of service times for a partic-
ular seek distance. This table can be thought of as
a collection of curves with axes of service time and
probability and indexed by seek distance.

A Stochastic Disk I/O Simulation Technique 1081 1083
Table 1: Characteristics of Disk Traces Selected For This Research.

Name Requests Reads Writes Sectors Read Sectors Written Length

PEL-ZD 117,759 34,095 83,664 272,760 547,629 0.94 hours
CSL-29 23,650,978 6,678,672 16,972,306 53,429,376 91,181,192 704.19 hours
To create a simulation model for a given I/O sub-
system, the surfaces for that system must be created.
The first component of our simulation tool reads trace
data from the system of interest and processes it
to obtain the appropriate surfaces. There are sur-
faces associated with each request length, read and
write requests, numerous queue lengths, and various
disks in the system. For example, the CSL server has
five disk drives, eight possible write request lengths,
eight possible read request lengths, and fifteen consid-
ered queue lengths requiring 1200 surfaces to obtain
a complete simulation model.

The second component of our simulation tool
reads the surfaces describing a particular system as
well as input trace data. The requests found in the
input trace data are used to compute a seek dis-
tance, request type, request length, and current queue
length. These values are used to access the correct
surface and retrieve the probability distribution for
the associated seek distance which is used to estimate
the service time. This process is repeated until the
input trace data is exhausted.

For example, assume that a request is made for
block 1000 and that the previous request was for block
2000. This results in a distance of -1000 blocks. This
distance is used to index into the table previously de-
scribed and return the associated probability distri-
bution of service times. Assume that at this distance,
the service times are uniformly distributed between 4
and 21 milliseconds. A random number with this dis-
tribution is generated and returned as the estimated
service time. This process is repeated for each re-
quest.

The shortcoming of previous approaches is that
they accurately model the disk mechanism, but pro-
vide little information about other parts of the disk
I/O subsystem. Other researchers have attempted
to model the rest of the I/O subsystem (Ruemmler
and Wilkes 1994), but accurate models of disk de-
vice drivers, system buses, disk controllers, and I/O
buses are difficult to create or obtain. Our trace data
contains timing information contributed by each of
these components which results in a simulation model
which accurately represents the entire I/O subsystem.
3.2 CSL Server Simulator

This section describes the process of creating a sim-
ulator for the CSL server. The accuracy of this sim-
ulator is then evaluated and quantified.

3.2.1 Creating the CSL Server Model

This section describes the process of generating the
seek distance versus service time tables used to sim-
ulate the CSL server. In addition, a representative
probability surface is presented.

The first step in generating a simulation model is
to collect a disk trace containing block requests and
associated service times. For this example, we use the
CSL-29 trace described in the previous section. We
use the first seven days of this trace to construct a
simulation model.

The first component of our tool is used to cre-
ate the tables necessary for simulation from the first
seven days of the CSL-29 trace. Its output is a file
that contains 1200 tables in a format readable by the
second process. These tables are used to estimate the
service time of each request during simulation.

3.2.2 CSL Simulator Evaluation

In this section, we evaluate the simulation model by
comparing the predicted service times to those actu-
ally produced by the system under test. We perform
this evaluation by comparing the probability density
function of the original CSL-29 trace with the esti-
mated density function. To accomplish this we per-
formed three tasks:

1. We built a simulation model using the first
seven days of the CSL-29 trace.

2. We drove this model with the requests from the
complete CSL-29 trace and obtained an esti-
mate for the service time of each request.

3. We compared the estimated service time den-
sity function with the service time density func-
tion obtained from the original trace.

To compare the density functions, we use a mean
square error technique proposed in (Ruemmler and
Wilkes 1994). We compute the root mean square of
the horizontal distance between the two density func-
tions. This absolute error indicates the service time

1084 Thornock, Tu, and Flanagan
difference between the real and simulated systems.
We use the absolute error figure and the total of all
service times in the original trace data to compute a
percentage error.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

Time (ms)

F
ra

ct
io

n
of

 I/
O

s

Real

Model

Figure 2: Service Time Density Functions for the
Detailed Simulation Model and the Original CSL-
29 Trace Data. The Absolute Mean Square Error is
0.125 Milliseconds and the Percentage Error is 0.35%.

Figure 2 presents the estimated and original ser-
vice time density functions. As can be seen in the
figure, the curves are extremely similar and difficult
to differentiate in most locations. The absolute and
percentage mean square error between the original
and estimated density functions are 0.125 millisec-
onds and 0.35% respectively. The same process was
repeated for the PEL-ZD data and the absolute and
percentage mean square errors are 0.200 milliseconds
and 0.31%. These figures illustrate the accuracy of
these models. The next section describes our use of
this model to improve I/O performance by reorganiz-
ing disk data.

4 DISK DATA REORGANIZATION

In this section we describe our simulation experiments
used to determine the impact disk data rearrange-
ment has on disk I/O service times in server environ-
ments.

4.1 Reorganizing Disk Data

There are two ways to determine how reorganizing
disk data will impact disk I/O service times. The first
approach involves physically moving the data from
one disk sector to another. This approach requires
accurate low-level tools to manipulate disk data and
has the potential of causing permanent damage. Once
the data is moved, a benchmark program can be run
to evaluate the new disk organization as compared
to the original disk layout. The second approach in-
volves simulating the entire system and moving the
disk data on the simulated disk drive. This approach
is safer, but requires the creation of accurate simula-
tion models. We chose the second approach due to its
safety and the ease of creating an accurate simulation
model using our approach.

With our approach, there is no simulated disk
drive, and therefore no disk data to move, but we
can simulate the movement of data by remapping the
input trace data used to drive the simulation model.
For example, if we desire to swap sector 5000 with sec-
tor 2 we simply change all references to sector 5000 in
the trace to requests for sector 2 and all references for
sector 2 into requests for sector 5000. If this swapping
causes the seek distance to increase it is likely that
the simulation model will return a larger estimated
service time.

4.2 Reorganizing the CSL Servers Drives

We used the data movement technique described
above and our simulation model of the CSL server to
determine the impact of several reorganization tech-
niques on disk I/O service times. Due to space lim-
itations, we only present the results obtained using
our hot block approach. The other approaches we in-
vestigated were less successful.

We define a hot block to be a group of eight sectors
that are heavily used. The hottest block on the disk is
the group of eight sectors that has the most requests.
Our approach is simple: move the hottest N blocks
to the outside edge of the disk starting at sector zero
and ending at sector N − 1 in order from hottest to
coolest.

We measured the total service time in hours for
both the original and reorganized disk. On the reor-
ganized disk, 1000 of the hottest blocks were moved to
the outside edge of the disk. We observed that this
approach reduces service time on each of the days,
but the improvement is quite small. The average im-
provement over the entire 29 day period is 7.84%.
Through analysis of the trace data we determine that
our approach reduced the total seek distance by 31%
and increased the number of requests that did not re-
quire any head movement by 14%. With these figures
one would expect a larger reduction in overall service
time, but the limiting factor for increasing perfor-
mance on this server turns out to be queue length. In
other words, on this server a large portion of a disk
request’s service time is time waiting in the queue.
If the disk seek time is only a small fraction of the
overall waiting time, improving this figure by reorga-
nizing disk data will not yield a significantly smaller

lation Technique 1081 1085
average service time.
Although a 7.84% decrease in average service time

will not significantly increase overall system perfor-
mance, this study does demonstrate the usefulness of
our simulation technique. It is not possible while us-
ing this technique to determine what percentage of
the service time is contributed by each component of
the I/O subsystem; but this detail is not necessary
for this sort of study.

5 CONCLUSIONS AND FUTURE WORK

This work has presented techniques for developing
simulation models, collecting accurate trace data to
aid in conducting I/O subsystem studies designed
to enhance performance, and a simple case study
demonstrating the usefulness of our technique. This
section summarizes our work and discusses future di-
rections.

Our methodology for generating system simu-
lators has several advantages over traditional ap-
proaches:

1. A system simulator is automatically generated
by tools using representative trace data as in-
put.

2. No input parameters describing the system to
be modeled are required other than input trace
data.

3. Simulation consists of repeated table lookup op-
erations, resulting in fast execution time.

4. Simulators can be quickly constructed for any
part of the system for which trace data can be
collected.

On the other hand, a potential disadvantage is
that the performance contributions of components in
a complex system are hard to distinguish. For exam-
ple, the simulator described in Section 3 accurately
models the device driver, system bus, controller, I/O
bus, and disk mechanism, but it is nearly impossi-
ble to determine what fraction of a particular service
time result came from which component in this hier-
archy. For some studies, this is a serious drawback;
for others, it is not important.

The point of this paper is to demonstrate that
this methodology results in accurate simulation re-
sults applicable to a useful set of problems like the
one described in the previous section. We plan to
investigate several areas of research that can benefit
from this type of simulation model:

• prefetching of I/O data
• hierarchical file storage on both server and

client file systems; optimizing clients and server
as a single unit

A Stochastic Disk I/O Simu
• organization of disk controller caches
• usefulness of victim caches on disk drive con-

trollers
• quantifying the performance enhancement or

degradation due to RAID systems

Our simulation methodology is well suited to these
kinds of studies because we are not interested in which
components of the I/O hierarchy contribute to the
service time, but only what the service time is for
a particular request. Each study may require trace
data collected at a different level in the hierarchy;
but, with the availability of trace data, the method-
ology is the same. Other simulation techniques could
be used to perform these studies, but they would re-
quire much more effort for an equivalent level of ac-
curacy. In addition, other techniques are likely to
require significantly more time to obtain results, due
to the complexity of the simulation code.

In summary, we have described a new technique
to model disk I/O subsystems using trace-driven sim-
ulation that is applicable to any environment where
accurate trace data containing timing information is
available. In addition, a tool to collect accurate disk
I/O traces from Novell Netware servers has been pre-
sented and used to construct a model of an example
system.

Finally, we have demonstrated that this method-
ology results in highly accurate disk I/O subsystem
simulators and that these simulators are useful for
conducting performance evaluation studies. The col-
lected trace data, trace collection tools, and simu-
lation tools discussed in this paper are available to
interested parties.

REFERENCES

Day, M. 1993. Netware for NLM Programming. Nov-
ell Press.

Flanagan, J. K., B. E. Nelson, J. K. Archibald, and
K. Grimsrud. 1993. Incomplete trace data and
trace driven simulation. In Proceedings of the In-
ternational Workshop on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems MASCOTS. 203–209. SCS.

Floyd, R., and C. Ellis. 1989. Directory refer-
ence patterns in hierarchical file systems. IEEE
Transactions on Knowledge and Data Engineer-
ing. 1(2):238–247.

Grimsrud, K., J. K. Archibald, and B. Nelson. 1993.
Multiple prefetch adaptive disk caching. IEEE
Transactions on Knowledge and Data Engineer-
ing. 5(1):88-103.

Ousterhout, J., H. D. Costa, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson. 1985. A trace

1086 Thornock, Tu, and Flanagan
driven analysis of the UNIX 4.2 BSD file system.
In Proceedings of the 10th ACM Symposium on
Operating System Principles. 15–24.

Ramakrishnan, K., P. Biswas, and R. Karedla. 1992.
Analysis of file I/O traces in commercial com-
puting environments. In Proceedings of 1992
ACM Sigmetrics and PERFORMANCE92 Inter-
national Conference on Measurement and Model-
ing of Computer Systems. 78-90. ACM.

Ruemmler, C., and J. Wilkes. 1993. UNIX disk ac-
cess patterns. In USENIX Winter 1993 Technical
Conference Proceedings. 405–420.

Ruemmler, C., and J. Wilkes. 1994. An introduc-
tion to disk drive modeling. IEEE Computer.
27(3):17–28.

Smith, A. J. 1985. Disk cache-miss ratio analysis
and design considerations. ACM Transactions on
Computer Systems. 3(3):161–203.

Worthington, B., G. Ganger, Y. Patt, and J. Wilkes.
1995. On-line extraction of SCSI disk drive pa-
rameters. In Proceedings of 1995 ACM Sigmet-
rics. 146–156. ACM.

ACKNOWLEDGMENT

This research was partially supported by a grant from
Intel Corporation entitled “Increasing Disk I/O Per-
formance in a Novell Netware Environment”.

AUTHOR BIOGRAPHIES

NIKI C. THORNOCK is working on her M.S. de-
gree at Brigham Young University. She received her
B.S. degree from Brigham Young University in Au-
gust, 1995. Her academic interests include computer
architecture and performance evaluation studies.

XIAO-HONG TU completed her M.S. degree at
Brigham Young University in August, 1997. Her
main interests are computer architecture and perfor-
mance evaluation of I/O subsystems. She is currently
working in the LANDest Management Suite depart-
ment of Intel Corporation in Utah.

J. KELLY FLANAGAN is Director of the Per-
formance Evaluation Laboratory at Brigham Young
University where he is an Assistant Professor of Com-
puter Science. His research interests include com-
puter system performance evaluation and computer
architecture. He received his PhD in Electrical En-
gineering from Brigham Young University. Before
joining the faculty of the Computer Science Depart-
ment at BYU, he spent a year at Intel Corporation
in Oregon and taught a graduate architecture course
for Oregon State University. He is a member of the
Association for Computing Machinery and the IEEE.

	A STOCHASTIC DISK I/O SIMULATION TECHNIQUE
	ABSTRACT
	1 INTRODUCTION AND BACKGROUND
	2 DISK TRACE COLLECTION TOOL
	2.1 Disk Collection Tool
	2.2 Impactof Trace Collection on Server Per-formance
	2.3 Server and Workload Characteristics
	2.4 Collected Trace Data

	3 SIMULATION MODEL
	3.1 Simulation Tool
	3.2 CSLServer Simulator

	4 DISK DATA REORGANIZATION
	4.1 Reorganizing Disk Data
	4.2 Reorganizing the CSL Servers Drives

	5 CONCLUSIONS AND FUTURE WORK
	REFERENCES
	ACKNOWLEDGMENT
	AUTHOR BIOGRAPHIES

	page1: 1079
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

