
Time-Parallel Generation of Self-Similar ATM Traffic 1071
TIME–PARALLEL GENERATION OF SELF-SIMILAR ATM TRAFFIC

Ioanis Nikolaidis

Computing Science Department
University of Alberta
Edmonton, Alberta
CANADA T6G 2H1

C. Anthony Cooper

Room 2K-241
Lucent Technologies
480 Red Hill Road

Middletown, NJ 07748, U.S.A.

Kalyan S. Perumalla
Richard M. Fujimoto

College of Computing
801 Atlantic Drive

Georgia Institute of Technology
Atlanta, GA 30332-0280, U.S.A.
ABSTRACT

We present a time–parallel technique for the fast gen-
eration of self–similar traffic which is suitable for
performance studies of Asynchronous Transfer Mode
(ATM) networks. The technique is based on the
well known result according to which the aggrega-
tion of a large number of heavy–tailed ON/OFF–
type renewal/reward processes asymptotically ap-
proximates a Fractional Gaussian Noise (FGN) pro-
cess and, therefore, it possesses the characteristics of
self–similarity and long–range dependence. The tech-
nique parallelizes both the generation of the individ-
ual renewal/reward processes as well as the merging
of these processes in a per–time–slice manner. Re-
sults obtained from a message–passing implementa-
tion on a cluster of workstations confirm that it is
possible to generate self–similar ATM traffic in real–
time for 155 Mbps (or even faster) links and that,
furthermore, the technique achieves an almost linear
speedup with respect to the number of available work-
stations.

1 INTRODUCTION

It has been shown that the traffic resulting from Vari-
able Bit Rate (VBR) video coding (Garrett and Will-
inger 1994) as well as the data traffic on an Ether-
net (Leland et al. 1994) resemble self–similar pro-
cesses. Subsequently, the interest has increased for
generating synthetic self–similar traffic for use in the
simulations of networks. The self–similar traffic gen-
eration presented herein relies on the observation
(Willinger et al. 1995) that the aggregation of re-
newal/reward processes, with lengths derived from
a heavy tailed distribution, asymptotically approx-
imates a Fractional Gaussian Noise (FGN) process
which is a self–similar process. The asymptote is
taken for an increasingly large number of superposed
renewal/reward processes, N , and for an increasingly
large size of observation interval for the count pro-
cess. In the following, this technique will be called
the aggregation technique. Note that contrary to the
aggregation of Poisson processes, the aggregation of
heavy–tailed renewal reward processes leads to a re-
markably different behavior (with respect to the long–
term correlation) than that of the constituting pro-
cesses.

The renewal/reward processes are perceived as pro-
cesses alternating between an ON and an OFF period.
As long as the ON/OFF period is heavy tailed (i.e.,
with infinite variance) and with a finite mean, the
source model fits the context of the theorem on aggre-
gation (Willinger et al. 1995). Although some initial
work on the parallel generation of self–similar traffic
traces has been performed (Willinger et al. 1995),
it suffers from two problems. First it is specific to
MasPar’s Single Instruction Multiple Data (SIMD)
architecture which is not a widely–used platform as
opposed to networked scientific workstations environ-
ments. Second, the simulation on the MasPar pro-
ceeds in a lock–step fashion, while, as demonstrated
in this paper, significant performance gains are avail-
able by treating as a single event an entire period
during which the source activity remains the same.

In essence, this paper presents a Multiple Instruc-
tion Multiple Data (MIMD) algorithm that can be
used in a message–passing environment. The re-
ported performance results are for a cluster of various
types of Sun Sparcstations connected to a 10 Mbps
Ethernet and using PVM 3.3.10. The fact that no
shared memory was available in the examples also
illustrates the performance penalty that communi-
cation latency brings into the computation without
harming, as will be demonstrated, the linear speedup
with respect to the number of available processors.

The main drawback of the aggregation technique
is its large computational requirements per sample
produced (because of the large number of aggregated
sources). This is the main reason why parallelism is



1072 Nikolaidis, Cooper, Perumalla, and Fujimoto
introduced. However, even though the computational
requirements are large, its actual computational com-
plexity is O(n) for n produced samples. All the other
self–similar traffic generation techniques exhibit com-
plexity worse than O(n) and they eventually result in
a slowdown of the simulation as the simulated time in-
terval increases. The two frequently used techniques
with execution time worse than O(n) are Hosking’s
method (Hoskings 1984) and the Fast Fourier Trans-
form (FFT) based method (Paxson 1995). Typically,
no a–priori limit can be put on how long a simulation
will run and it is preferable to use a technique which
can continue producing samples ad infinitum with the
same computation cost per produced sample.

Moreover, the FFT–based and Hosking’s meth-
ods produce samples of the count process. Hence,
post-processing is required to scale the count pro-
cess, eliminate negative values and eventually to pro-
duce packet/cell arrivals consistent with the network
model (i.e., the link speed). In contrast, the aggre-
gation technique does not suffer from such problems.
One way to contrast the aggregation to previous tech-
niques is that the former operates in a bottom–up
fashion (from individual arrivals to asymptotic self–
similarity of the count process) while the latter oper-
ate in a top–down fashion (from a self–similar count
process to individual arrivals).

Finally, certain techniques attempt to, in addition
to long–range dependence (LRD), also capture the
short–range dependence (SRD) as depicted, e.g., by
the short term autocorrelation (Huang et al. 1995).
We view these techniques as orthogonal to the task
of finding an arbitrarily scalable parallel generation
technique for the generation of LRD traffic. Inclusion
of specific SRD components is left for future study.
Instead, the current paper bases the generation of the
self–similar, LRD, traffic on only three parameters,
the desired Hurst parameter, H, the utilization of
the link bearing the self–similar traffic, U , and the
average burst length, B.

The rest of the paper is organized as follows: The
details of the simulation model are illustrated in Sec-
tion 2. The current implementation of the model on
a message-passing network is described in Section 3.
Section 4 presents and analyzes the performance re-
sults. Finally, Section 5 summarizes the conclusions.

2 THE SIMULATION MODEL

Cell arrivals will be represented by Run–Length En-
coded (RLE) tuples. An RLE tuple ti includes two
attributes, s(ti), the state of the tuple, and d(ti), the
duration of the tuple. The two attributes represent,
the discrete time duration d(ti) over which the state
s(ti) stays the same. The state is either an indication
of whether the source is in the ON or OFF state (e.g.,
0 for OFF and 1 for ON in a strictly alternating fash-
ion), or the aggregate number of sources active (in
the ON state) for the specified duration, that is, for
N sources, s(ti) ∈ {0, 1, · · ·, N}. Thus a sequence
of ti’s is sufficient for representing the arrival pro-
cess from an ON/OFF source or from any arbitrary
superposition of such sources. The benefits of such
representation is that the activity of the source over
several time slots can be encoded as a single RLE
tuple.

Similar representations have been used in the past
for simulations for the generation of cell loss statis-
tics in ATM multiplexers (Nikolaidis, Fujimoto and
Cooper 1994). In the current context, it is not possi-
ble to avoid the fixups inherent in the time–parallel
simulation. Instead, the traditional time–parallel
technique of performing fixups of the state trajectory
is followed (Lin and Lazowska 1991). The fixups are
fast and, as it turns out, they do not alter the state
in a way that several fixups are necessary. That is,
due to the length of the slices, (12.5 and 25 seconds
of 155 Mbps link activity per slice in the given ex-
amples), the transient due to a fixup does not cause
subsequent fixups.

In summary, the algorithm proceeds by generat-
ing a large number, N , of individual source traces
in RLE form. The utilization of each one of these
sources is set to U/N , such that the aggregation of
all N of them results in the desired link utilization
to U . Each logical process (LP) of the simulation
merges and generates the combined arrival trace for
a separate non–overlapping segment of time, that we
call a slice. Thus, each LP is responsible for the gen-
eration of the self–similar traffic trace in the form of
RLE tuples over a separate segment (slice) of time.
In logical terms, the concatenation of the slices pro-
duced by each LP in the proper time succession is
the desired self–similar process. The LPs continue
looping generating a different slice each time. The
LP performs the generation of the self–similar traffic
trace by going through the following three steps at
each simulated time–slice:

1. It generates the merge of the RLE tuple traces
of the N individual sources.

2. It aggregates the merged traffic into a link speed
equal to the desired access link speed.

3. It corrects (fixup) the produced RLE trace by
incorporating any residual cell counts.



Time-Parallel Generation of Self-Similar ATM Traffic 1073
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

C

M

B

A

(1,13) (0,19) (1,10)

(0,6) (1,20) (0,16)

(1,9) (1,10)(0,10) (0,7) (0,6)

(1,6) (2,4) (3,3) (2,6) (2,4) (1,6)(1,13)

Cell Arrival

Figure 1: Example of the Merge Operation
2.1 Heavy–Tailed ON/OFF
RLE Trace Generation

The generation of the individual RLE source traces
is also performed in parallel. Each LP generates all
the slices of a subset of sources that will be necessary
to the P LPs during the generation of the current
slices. That is, if P LPs are participating in the sim-
ulation, each LP generates the RLE tuples of P sub-
sequent slices for the sources that it has been assigned
to generate. It then sends the P − 1 of them to the
other LPs for each source it simulates. The individ-
ual ON/OFF sources are parameterized accordingly
to fit the desired self–similar traffic. Namely:

• The shape value, α, of the Pareto distribution
used for the ON period is set according to H =
(3−α)/2 (Willinger et al. 1995), where H is the
desired Hurst value.

• Since N ON/OFF sources are aggregated, the
per–source utilization of U/N is determined by
the ratio of the ON and OFF periods of the indi-
vidual processes. That is, the average OFF pe-
riod E[OFF] is set to E[OFF] = E[ON] (1−U/N)

• The average ON period E[ON] is set to E[ON]
= B, the average burst length, which can be de-
rived from traffic measurements. E[ON] does not
have any impact on the self–similarity, and it can
be considered a free variable.

2.2 RLE Trace Merging and Aggregation

The merging of the N RLE tuple traces is performed
as a merge–sort operation, where the key of the sort
is the implicit position of the starting time of RLE
tuples within a length of one slice. The value of
the merge at any point (slot time) is the number of
sources (out of the N) that are in their ON state. Fig-
ure 1 illustrates how the produced merged RLE tuple
trace is related to the constituting ON/OFF RLE tu-
ples. In Figure 1, the sequence of RLE tuples, ti, is
represented as a sequence of the pairs of its attributes,
(s(ti), d(ti)). It is worthwhile to note that the prior-
ity list used to produce the merge–sort maintains, at
all times, N keys. As the performance results show,
apart from the generation of source RLE tuple traces,
a significant portion of the execution time is spent at
this step.

The sequence of merged arrivals has to be aggre-
gated into a single ON/OFF RLE tuple trace. To
accomplish this task, the merged RLE tuple trace
passes through a server (which can be viewed as a
multiplexer) with infinite buffer capacity and with an
output link rate equal to the link rate of the desired
self–similar traffic access link rate. The RLE encoded
departure sequence of the multiplexer, is the desired
ON /OFF traffic stream. Due to the queueing, SRD
artifacts develop but do not harm the LRD features
of the process. Figure 2 depicts the operation of such
a multiplexer where the constituting source streams,
before they are merged, are shown to the left, and the
corresponding produced ON/OFF merged stream is
shown to the right of the multiplexer.

The correctness of the simulation depends on the
state of the multiplexer buffer. The dynamics of
such a buffer are trivially represented by the follow-
ing discrete–time recursion on the number of cells, Q
stored at the infinite multiplexer buffer at the time
just after an RLE tuple, ti:

Q = max{Q+ d(ti)(s(ti)− 1), 0}← (1)

The initial value of Q is not known to P − 1 of the
P LPs. That is, for the P parallel LPs, only the one
assigned to simulate the first slice (with respect to
temporal order, and indexed by 0) knows the initial
state of the multiplexer Q. The remaining LPs, sim-
ply use an initial value of zero for Q. The final value
of Q is sent from an LP to the LP simulating the
next (in temporal order) slice. Since the assumption
of Q = 0 may prove to be incorrect, depending on
the state of the queue left over by the previous slice,
a fixup phase is necessary.



1074 Nikolaidis, Cooper, Perumalla, and Fujimoto
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
� ��
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
� ��
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
� ��
���
���

���
���
���
���

���
� ��
���
���

���
���
���
���

���
� ��
���
���

���
���
���
���

��
��
��
��

��
��
��
��

���
� ��
���
���

���
���
���
���

���
� ��
���
���

���
���
���
���

���
� ��
���
���

���
���
���
���

MUX

Figure 2: Example of the Aggregation Operation.

2.3 The Fixup Operation

The ON/OFF RLE tuple trace produced at the out-
put of the multiplexer is in fact an encoded sequence
of the busy and idle periods of the server. If a final
state of the previous (in temporal order) slice indi-
cates that Q should have been a value larger than
zero, the corrected departure sequence can be con-
structed by coalescing the idle periods in order to fit
the new value of Q in the idle periods of the prefix
of the original departure trace of RLE tuples. Fig-
ure 3 illustrates an example of the fixup operation
where the original departure RLE tuple trace from
the multiplexer S is transformed by the fixup to in-
clude Q = 9 cells from the queue residual of the pre-
vious slice. The nine cells occupy the first idle period
and part of the second, thus expanding the first ON
period, as can be seen in S′. The result of the fixup is
the trace at the bottom. (Note that the description
of the RLE tuples is in the form (s(ti), d(ti)) for each
tuple ti.)

The overhead of the fixup is very small since it in-
volves iterating over the first couple of RLE tuples
of the departure trace until the residual cells are ac-
commodated in the idle periods between the previ-
ously calculated departures. Typically, the fixup ad-
vances over just a few RLE tuples before it termi-
nates. Hence, compared to all the other operations
which are performed in a tuple–wise fashion (gener-
ation and merging), the fixup is the least expensive
operation. In the experiments, it was verified that the
large size of the slice (relative to the residual Q) does
not cause further changes to the final state. That is,
the transient due to the incorporation of Q additional
cells is absorbed well within the length of the slice and
no subsequent fixups are necessary (through a possi-
ble change in the final state of the slice). For this
reason, the algorithm presented in the next section
assumes that the transient due to the fixup termi-
nates within the length of the slice.

3 A MESSAGE–PASSING
IMPLEMENTATION

Figure 4 presents a message–passing implementa-
tion of the presented algorithm. There exist P LPs,
LPi, i = 0, · · · , P − 1. The time slices simulated by
the LPs are in the order implied by the index i of
the LPi, i.e., LPi+1 simulates the slice of arrivals fol-
lowing immediately after the slice of arrivals of LPi.
Any residual multiplexer queue contents are propa-
gated from LPi to LPi+1 in order for LPi+1 to per-
form the fixup. LP0 does not require any fixup since
it has always perfect knowledge of the initial multi-
plexer queue state (set equal to zero before the first
loop of the algorithm). The algorithm proceeds by
simulating P slices in parallel at a time. Once the
simulation of the P slices is completed, the final state
of LPP−1 is sent to LP0 so that the next set of P
slices can be generated in parallel.

Each of the P LPs is responsible for generating
N/P of the individual sources to be aggregated (line
3 of Figure 4). When an LP is assigned to gener-
ate a source, it generates, in each loop, P successive
slices of this source’s activity (loop at line 4 of Fig-
ure 4). Only one of these slices per source remains
local to LPi by assigning it to a local array slices[]

at line 9 of Figure 4. The remaining P − 1 slices
are sent to the LPs which will process the respective
slices. Therefore, the source generation process in a
message–passing environment is penalized by the cost
of sending the slice of the source activity to the LPs
to which they correspond.

Symmetrically, each LPi, waits to receive (lines
14 to 17 of Figure 4) the slices of the source activ-
ity corresponding to the i–th slice of all the sources
that were not generated locally by LPi. Again, in a
message–passing environment, there is a penalty in
waiting for receiving the slices of source activity of
the sources generated in other LPs. Note that the
receive slice() in line 15 relies on the FIFO property
for the communication between any pair of LPs and
that there is no need to identify the individual source
slices, since they are interchangeable with respect to
the merging and aggregation operations.

Once the slices of all N sources have been received,
the merging and generation of the departure process
can be performed (line 19 of Figure 4) producing the
departure RLE tuple trace, m, assuming that the ini-
tial state of the multiplexer queue is zero for all LPi
where i > 0 (line 18). LP0 uses as initial queue state
the value of q from the previous loop or q = 0 if it
is the first loop. The final state of the multiplexer
queue, q′, is therefore generated by LPi and can be
sent to the LP processing the next time slice, i.e., to
LPi+1 (line 20) where it is received as q′′.

With the exception of LP0, which does not need
to perform a fixup, the LPs perform the fixup (line
23) operation taking into account the new final state
received from the previous (i− 1) LP (line 21). The
fact that all send states are performed prior to the



Time-Parallel Generation of Self-Similar ATM Traffic 1075
�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�

�
�
�
�
��
��
��
��
��
��
��
��
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�
�
�
�
�
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�
�

��
��
��
��
��
��
��
��
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
�
�
�
�
�
�
�
�

(0,6) (1,5) (0,10) (0,6) (1,7) (0,3)(1,5)

(0,7)(1,14) (1,5) (0,6) (1,7) (0,3)

S

S’

Figure 3: Fixup Operation Example for Q = 9.
LPi:
1. loop forever
2. t = 0;
3. for j = 0, · · · , NP − 1
4. for k = 0, · · · , P − 1
5. s = generate slice(state[j]);
6. if k 6= i then
7. send slice(s, LPk);
8. else
9. slices[t] = s;
10. t = t+ 1;
11. endif
12. endfor
13. endfor
14. while t < N do
15. slices[t] = receive slice();
16. t = t+ 1;
17. od
18. if i 6= 0 then q = 0;
19. (q′, m) = merge mux(slices, N, q);
20. send state(q′, LP(i+1)modP );
21. q′′ = receive state(LP(i−1)modP );
22. if i 6= 0 then
23. m′ = fixup(m, q, q′′);
24. else
25. q = q′′;
26. endif
27. output trace(m′);
28. endloop

Figure 4: The Parallel Algorithm.

receive states, ensures that there will be no deadlock.
Note that LP0 does not need to immediately receive
q′′ which will only be used in the merge mux of the
next loop, but it is shown performed in the same way
as all other LPs for the sake of symmetry. Once the
departure RLE tuple sequence has been fixed up from
the originalm to the correct m′, it is ready for output
for use by any simulation model (line 27).
4 EXPERIMENTS AND
PERFORMANCE EVALUATION

A number of configurations were examined with re-
spect to the number of sources, the length of the
time slices, the utilization parameters and the av-
erage burst length. The presented experiments are
for a configuration of N = 500 individual ON/OFF
sources which was the largest configuration with re-
spect to the number of sources and, hence, with re-
spect to computation. The length of the time slices
was set to 9139150 and 4569575 cell slots represent-
ing, respectively, approximately 25 and 12.5 seconds
of operation of a 155 Mbps ATM link. The link uti-
lization, U , was set to 20 %, resulting in a per–source
utilization for each of the 500 sources set to 0.04 %.
The average burst length, B, is set to 10 cells. The
limit of the available memory of a workstation places
a limit on the length of the time slice (because the
more the RLE tuples the more the length of time that
can be represented by these tuples), the selection of
the size of memory for RLE tuples was dictated by the
available physical memory of the workstations. In the
experiments, a conservative size of memory for RLE
tuples was allocated which was, at all times, no more
than 8 Mbytes per workstation for the slice length of
9139150 and 4 Mbytes for the slice length of 4569575
(assuming 8 bytes per tuple: 4 bytes representing the
state and 4 bytes representing the duration)

Figures 5 and 6 present the percentage of time
spent in the execution at each step of the algorithm of
Figure 4 for a slice length of 9139150 and 4569575 re-
spectively. The Generate & Send Sources is the time
spent between lines 3 and 13. The Receive is the time
spent between lines 14 and 17. The Generate De-
partures is the time spent in line 19 and, finally the
Wait for Fixup is the time spent between lines 22 and
26. The output trace function was set to a NO–OP
in order to allow measurements independently of any
specific file I/O or IPC primitives used to incorporate
the code in another simulation. All the remaining
time spent in the execution of the algorithm (includ-
ing the fixup function) was less than 0.05 % of the
total measured time and it is not reported. Thus, it
was verified that the fixup operation for this model is
not a major computational burden. The experiments



1076 Nikolaidis, Cooper, Perumalla, and Fujimoto
were run on a set of Sun workstations under Solaris
2.5 and PVM 3.3.10 and without any other significant
user activity.

The shape of the curves does not differ by much
between Figure 5 and Figure 6 despite the difference
in the slice length. Similar behavior was observed for
other parameter settings as well. The major fraction
of time is spent in the generation and sending of the
source slices where a slice is sent (by send slice) as
soon as it is produced if it is to be processed by a re-
mote LP. Notably, the send operation is non–blocking
and not in–place (in the PVM sense). Hence, each
send operation involves the copying of the data to be
sent in a separate buffer in order to allow the reuse
of the same allocated area for the generation of the
source RLE tuples in the next loop.

The more the workstations, i.e., the higher the P ,
the fewer the sources produced by each workstation.
Consequently, the Generate & Send Sources part of
the execution time decreases, as a percentage, for in-
creasing P but only to the point where the overhead
due to the send operation becomes the dominant over-
head. Thus, the gain out of splitting the generation of
sources over a gradually larger set of processors is di-
minished by the fact that most of the produced source
slices have to be sent to other workstations. The net
result is that eventually the Generate & Send Sources
percentage remains almost constant as P increases.

On the other hand, the Receive percentage (from
being zero when P = 1) increases as expected as the
number of sources produced at other LPs increases.
The time spent in Receive reaches an almost con-
stant percentage for increasing P . This is due to the
fact that as the LP gets more delayed in the Gen-
erate & Send Sources part, a longer time is given to
the LPs (in fact to PVM) to receive the slice data
from other LPs and hence, then the receive slice
(in line 14) returns almost instantly since the re-
ceived data is already local to the workstation and
hence, receive slice does not block as often. At the
same time, the volume of received data increases with
larger P , and hence the two trends balance out at an
almost constant percentage, in a much similar fashion
as it occurs in the Generate & Send Sources step.

A good example of how the computation is penal-
ized due to the scaling to a larger P , is given by the
Generate Departures step. The average time spent
here is constant (subject to the slice length) inde-
pendent of P . Hence, its decrease demonstrates the
gradual increase of overheads related to the scaling of
the simulation to a larger P . However, the combined
effect of the Generate & Send Sources and the Receive
steps, results in an eventually constant percentage of
time covered by the Generate Departures step. The
only significant remaining portion of time is the Wait
for Fixup step. This step is largely unrelated to the
message–passing overheads (the data conveyed is very
small, only a queue size), but rather to the nature of
the time–parallel algorithm.

Note that the time spent waiting for the queue size
in the Wait for Fixup is less than 10 % of the total
time in all configurations. Hence, the overhead due
to the time–parallel nature of the simulation is small.
In fact, the average time waiting for fixup decreases
slightly as the number of workstations increases al-
though its variance increases depending on the differ-
ent processing speeds of the individual workstations.
A fast workstation will complete the Generate and
Send Sources stage faster but will have to wait in the
Receive step for longer. Similarly, it will complete
the Generate Departures faster, but will have to wait
longer in the Wait for Fixup step. Summarizing, the
algorithm deals with load imbalances at the cost of
performance due to the synchronization points be-
tween processors at the blocking receive operations.
To cancel out effects where a certain run for P work-
stations was performed with the faster workstations
and a run at P + 1 with slower ones, the set of work-
stations used at P + 1 is the exact same set as the
ones used in the run for P plus one additional (new)
workstation.

0

20

40

60

80

100

1 2 3 4 5 6 7 8

%

Workstations (P)

Generate & Send Sources
Receive

Generate Departures
Wait for Fixup

Figure 5: Execution Time Profile (slice=25sec).

Figure 7 compares the percentage of time spent in
the Generate and Send Sources for the two different
slice lengths. The difference is evident in the tran-
sient around P = 2, where the shorter slice presents
a more sudden drop in its percentage. Note that as
long as P = 1 the two different slice lengths should
cause no difference in performance, as indeed is the



Time-Parallel Generation of Self-Similar ATM Traffic 1077
0

20

40

60

80

100

1 2 3 4 5 6 7 8

%

Workstations (P)

Generate & Send Sources
Receive

Generate Departures
Wait for Fixup

Figure 6: Execution Time Profile (slice=12.5sec).

case. However, when P > 1, the shorter the slice, the
more frequent the communication. Hence, the con-
tention brought to the communication medium and
the overheads due to the frequency of the send oper-
ations are more intense for shorter slices. Note that
the volume of data sent are the same in both slice
sizes, but the smaller size sends them by calling more
frequently (in the examples: twice as frequently) the
send operation. Eventually, the difference due to the
different slice lengths becomes less significant as in-
creasingly more data are sent over the network, i.e.,
for higher P .

40

42

44

46

48

50

52

54

56

58

60

1 2 3 4 5 6 7 8

%

Workstations (P)

Slice ~= 25 Simulated Secs.
Slice ~= 12.5 Simulated Secs.

Figure 7: Time Spent in Generate & Send Sources.

Figure 8 captures the benefit of time–parallel simu-
lation. That is, the almost linear speedup to the num-
0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8

S
im

ul
at

ed
 S

ec
on

ds
 p

er
 W

al
l C

lo
ck

 S
ec

on
d

Workstations (P)

Slice ~= 25 Simulated Secs.
Slice ~= 12.5 Simulated Secs.

Figure 8: Simulation Speed in Simulated Seconds.

ber of used processors, even when the overheads due
to communication contention are considered. The
waiting time for a fixup value as well as the fixup op-
eration are not the dominant overheads. The speedup
for different slice lengths may be very similar but the
shorter slices can rapidly reach the point of diminish-
ing returns as the shape of the line for a slice length
of 12.5 seconds illustrates (between 7 and 8 worksta-
tions). The linear behavior is lost sooner or later for
increasing P , but we have systematically produced
good results following the linear speedup for a small
aggregation of workstations (typically a dozen or less
of them).

Figure 8 presents the simulation speed in seconds
of simulated operation of a 155 Mbps ATM link. It is
easy to see that the technique enables the generation
of self–similar traffic faster than real–time. That is,
for any P > 2, one second of link activity of a 155
Mbps ATM link can be generated in less than a sec-
ond of wall clock simulation time. Furthermore, the
fact that the simulation speed reaches almost four
times the speed of the 155 Mbps link (in fact, 3.5)
indicates that the technique can be safely used with
minor modifications for the generation of real–time
ATM link workloads of even 620 Mbps links. Consid-
ering that the reported performance is achieved using
commodity workstations and low speed (10 Mbps)
networking infrastructure, it is safe to assume that
it can give even better results on a multiprocessor
system for an embedded ATM link testing device.



1078 Nikolaidis, Cooper, Perumalla, and Fujimoto
5 CONCLUSIONS

We have presented a time–parallel technique for the
fast parallel generation of self–similar traffic. A
message–passing implementation of the algorithm
over a cluster of scientific workstations communicat-
ing over a 10 Mbps Ethernet shows that it is possible
to generate self–similar traffic for 155 Mbps or faster
ATM links in real–time by utilizing less than a dozen
workstations. The property of real-time generation is
of particular importance for use by equipment (ATM
switches in particular) manufacturing companies. To
our knowledge, currently, no commercial ATM testing
product can supply continuous real–time self–similar
traffic. The work detailed in this paper targets at
solving this problem with the aid of small scale paral-
lel processing using commodity workstations attached
on a general purpose Ethernet.

The paper also serves as a case study for im-
plementing time–parallel simulation techniques on a
loosely coupled network of scientific workstations. It
illustrates that even with a limited communication
bandwidth, it is possible to achieve a speedup al-
most linear to the number of utilized workstations
when the fixup stage of the algorithm is computa-
tionally inexpensive. Indeed, in the tests we have
conducted the linear speedup is only impaired by the
communication overhead inherent in any message–
passing scheme and not by the fixup phase of the algo-
rithm. The results are particularly impressive when
compared to previous techniques that were distinctly
inefficient due to the fact that their computational
complexity was not linear to the number of samples
generated.

Future work includes the extension of the technique
to fit both LRD and SRD artifacts in the produced
traffic. Another objective is the simulation of ATM
multiplexers fed by several self–similar streams in or-
der to study the effects of multiplexing self–similar
processes with different Hurst parameters.

REFERENCES

Garrett, M. W. and W. Willinger. 1994. Analy-
sis, Modeling and Generation of Self–Similar VBR
Video Traffic. In Proceedings of ACM SIGCOMM
94. 269–280.

Hoskings, J. R. M. 1984. Modeling Persistence in
Hydrological Time Series Using Fractional Differ-
encing. Water Resources Research 20:1898–1908.

Huang, C., M. Devetsikiotis, I. Lambadaris and A.
R. Kaye. 1995. Modeling and Simulation of Self–
Similar Variable Bit Rate Compressed Video. In
Proceedings of ACM SIGCOMM 95. 114–125.
Leland, W. E., M. S. Taqqu, W. Willinger and D.
V. Wilson. 1994. On the Self–Similar Nature of
Ethernet Traffic (Extended Version). IEEE/ACM
Transactions on Networking 2:1–15.

Lin, Y.-B. and E.D. Lazowska. 1991. A time-
division algorithm for parallel simulation. ACM
Transactions on Modeling and Computer Simula-
tion (TOMACS) 1:73–83.

Nikolaidis, I., R. M. Fujimoto and C. A. Cooper. 1994
Time–Parallel Simulation of Cascaded Statistical
Multiplexers. In Proceedings of ACM SIGMET-
RICS 94. 231–240.

Paxson V. and S. Floyd. 1994. Wide–Area Traffic:
The Failure of Poisson Modeling. In Proceedings of
ACM SIGCOMM 94. 2576–268.

Paxson, V. 1995. Fast Approximation of Self–Similar
Network Traffic. Technical Report LBL–36750,
Lawrence Berkeley Laboratories.

Willinger, W., M. S. Taqqu, R. Sherman and D.
V. Wilson. 1995. Self–Similarity Through High–
Variability: Statistical Analysis of Ethernet LAN
Traffic at the Source Level. In Proceedings of ACM
SIGCOMM 95, 100-113.

AUTHOR BIOGRAPHIES

IOANIS NIKOLAIDIS is an Assistant Professor
with the Computing Science Department at the Uni-
versity of Alberta, in Edmonton, Canada. His re-
search interests are parallel simulation and network
performance.

C. ANTHONY COOPER is a member of techni-
cal staff in Lucent. Previously he has worked for Bell
Communications Research (Bellcore). His interests
are in the performance and standards for fast packet
switching and ATM networks.

KALYAN S. PERUMALLA is a Research Scien-
tist and a Ph.D. student at Georgia Tech. His inter-
ests are in parallel and distributed simulation and in
network modeling. He has developed the TeD net-
work modeling language.

RICHARD M. FUJIMOTO is a Professor with
the College of Computing at the Georgia Institute
of Technology. He has been working in the field of
parallel and distributed simulation over the last 14
years.


	TIME–PARALLEL GENERATION OF SELF-SIMILAR ATM TRAFFIC
	ABSTRACT
	1 INTRODUCTION
	2 THE SIMULATION MODEL
	2.1 Heavy {Tailed ON/OFF RLETrace Generation
	2.2 RLE Trace Merging and Aggregation
	2.3 The Fixup Operation

	3 A MESSAGE{PASSING IMPLEMENTATION
	4 EXPERIMENTS AND PERFORMANCE EVALUATION
	5 CONCLUSIONS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 1071
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


