
EXECUTION-DRIVEN SIMULATORS FOR PARALLEL SYSTEMS DESIGN

Anand Sivasubramaniam

Department of Computer Science and Engineering
The Pennsylvania State University

University Park, Pennsylvania 16802, U.S.A.
ABSTRACT

Evaluating, analyzing and predicting the performance
of a parallel system is challenging due to the complex
inter-play between the application characteristics and
architectural features. The overheads in a parallel
system that limit its scalability have to be identi-
fied and separated in order to enable performance-
conscious parallel application design and the develop-
ment of high-performance parallel machines. We have
developed an evaluation framework that uses a combi-
nation of experimentation, simulation and analytical
modeling to quantify these parallel system overheads.
At the heart of this framework is an execution-driven
simulation testbed called SPASM which uses a suite
of real applications as the workload. We discuss our
experiences in using this simulator in a wide range of
architectural projects in this paper.

1 INTRODUCTION

High Performance Computing is becoming increas-
ingly important to scientific advancement and eco-
nomic development and is at the point of significantly
improving our standard of living. With the inher-
ent limitations of sequential computing, parallel ma-
chines have been proposed as the solution for high-
performance computing. Despite their promise and
attractiveness to the research community, parallel ma-
chines have not been very successful in the commer-
cial world due to two main reasons. First, their de-
livered performance often falls short of the projected
peak performance. Second, the cost of these machines
is high compared to their sequential counterparts.
For the success of parallel computation, we should
build machines that bridge the gap between projected
and delivered performance over a spectrum of impor-
tant real-world applications in a cost-effective man-
ner. Performance evaluation of parallel systems plays
a crucial role towards this goal.

Applications exhibit different characteristics thus
imposing diverse demands on the underlying hard-
ware, while parallel machines also come in several
flavors. To find out how good a job a machine does
of meeting an application’s demands, we need a way
of evaluating the match between an application and
an architecture. Evaluating the performance of an
application-architecture combination has widespread
applicability in parallel systems research. The results
from such an evaluation may be used to: select the
best architecture platform for an application domain,
select the best algorithm for solving the problem on
a given hardware platform, predict the performance
of an application on a larger configuration of an ex-
isting architecture, predict the performance of large
application instances, identify application and archi-
tectural bottlenecks in a parallel system to suggest
application restructuring and architectural enhance-
ments, and evaluate the cost vs. performance trade-
offs in important architectural design decisions. But
evaluating and analyzing the performance of parallel
systems pose several problems due to the complex in-
teraction between application characteristics and ar-
chitectural features.

Performance evaluation techniques have to grap-
ple with several more degrees of freedom exhibited by
parallel systems compared to their sequential coun-
terparts. Experimentation and measurement on ac-
tual hardware, analytical modeling and simulation
are three well-known performance evaluation tech-
niques. But each technique has its own limitations.
Experimentation requires the hardware to be built,
analytical models often make unreasonable assump-
tions about the underlying system to keep the mod-
eling tractable, and simulation requires immense re-
sources in terms of storage and time.

In this paper, we summarize our previous and on-
going effort in developing a framework for evaluating
the performance of parallel systems and using this
framework to develop cost-effective platforms that
meet the demands of numerous real-world applica-
tions. First, we identify performance metrics which



1022 Sivasubramaniam
are essential to understand the intrinsic algorithmic
and architectural artifacts that impact the perfor-
mance of a parallel system. Next, we outline an eval-
uation framework that we have developed to quantify
these metrics. The framework uses all three perfor-
mance evaluation techniques to alleviate their indi-
vidual limitations. At the heart of this framework lies
SPASM (Simulator for Parallel Architectural Scala-
bility Measurements) which provides detailed perfor-
mance profiles for applications on a range of parallel
hardware platforms. This simulator helps identify,
isolate and quantify the algorithmic and architectural
bottlenecks in an execution, that can be used for ap-
plication restructuring and to suggest architectural
enhancements. In the rest of the paper, we illustrate
the utility of an execution-driven simulator such as
SPASM in several architectural projects.

The rest of this paper is organized as follows. In
Section 2, we identify performance metrics that we
require from evaluating a parallel system and discuss
different evaluation techniques. Section 3 outlines
our evaluation framework and the SPASM simulator.
Section 4 summarizes our experience and results in
using execution-driven simulators for several architec-
tural projects. Finally, Section 5 presents concluding
remarks.

2 EVALUATING PARALLEL SYSTEMS

In conducting any evaluation, we need to identify a
set of performance metrics that we would like to mea-
sure and the techniques and tools that will be used
to gather these metrics.

2.1 Performance Metrics

Metrics which capture the “available” compute power
(MFLOPS, MIPS etc.) are often not a true indi-
cator of the performance actually “delivered” by a
parallel system. Metrics for parallel system perfor-
mance evaluation should quantify this gap between
available and delivered compute power since under-
standing application and architectural bottlenecks is
crucial for application restructuring and architectural
enhancements. Many performance metrics such as
speedup, scaled speedup and isoefficiency, have been
proposed to quantify the match between the appli-
cation and architecture in a parallel system. While
these metrics are useful for tracking overall perfor-
mance trends, they provide little additional informa-
tion about where performance is lost. Some of these
metrics attempt to identify the cause (the application
or the architecture) of the problem when the paral-
lel system does not scale as expected. However, it is
essential to find the individual application and archi-
tectural artifacts that lead to these bottlenecks and
quantify their relative contribution towards limiting
the overall scalability of the system. Traditional met-
rics do not help further in this regard.

Parallel system overheads may be broadly classi-
fied into a purely algorithmic component (algorith-
mic overhead), a component arising from the interac-
tion of the application with the system software (soft-
ware interaction overhead), and a component arising
from the interaction of the application with the hard-
ware (hardware interaction overhead). Algorithmic
overheads arise from the inherent serial part in the
application, the work-imbalance between the execut-
ing threads of control, any redundant computation
that may be performed, and additional work intro-
duced by the parallelization. Software interaction
overheads such as overheads for scheduling, message-
passing, and software synchronization arise due to
the interaction of the application with the system
software. Hardware slowdown due to network la-
tency (the transmission time for a message in the
network), network contention (the amount of time
spent in the network waiting for availability of net-
work resources), synchronization and cache coherence
actions, contribute to the hardware interaction over-
head. Each of these components would cause the per-
formance to deteriorate from the available compute
power (potential peak performance) of the hardware.
To fully understand the scalability of a parallel sys-
tem, it is important to isolate and quantify the impact
of each of these components on the overall execution.
In our earlier research, we have proposed the notion of
an overhead function (Sivasubramaniam et al. 1994)
that tracks the growth of a particular system over-
head with respect to a specific system parameter.

2.2 Evaluation Techniques

Experimentation, analytical modeling and simulation
are three well-known techniques for evaluating par-
allel systems. Experimentation involves implement-
ing the application on the actual hardware and mea-
suring its performance. Analytical models abstract
hardware and application details in a parallel sys-
tem and capture complex system features by simple
mathematical formulae. These formulae are usually
parameterized by a limited number of degrees of free-
dom so that the analysis is kept tractable. Simu-
lation is a valuable technique which exploits com-
puter resources to model and imitate the behavior
of a real system in a controlled manner. Each tech-
nique has its own limitations. The amount of statis-
tics that can be gleaned by experimentation (to quan-
tify the overhead functions) is limited by the monitor-
ing/instrumentation support provided by the under-



Execution-Driven Simulators for Parallel Systems Design 1023
lying system. Additional instrumentation can some-
times perturb the evaluation. Analytical models are
often criticized for the unrealism and simplifying as-
sumptions made in expressing the complex interac-
tion between the application and the architecture.
Simulation of realistic computer systems demand con-
siderable resources in terms of space and time.

3 THE FRAMEWORK

Results

Analytical

Experimentation

Simulation

Kernels

Validation

Refine Models

Applications

Speedup Simulation

Figure 1: The Framework

We have developed an evaluation framework that uses
a combination of the three techniques to avoid some
of their individual drawbacks. Experimentation is
used to implement real-world applications on parallel
machines, to understand their behavior and extract
interesting kernels (abstractions of applications that
capture representative phases of the execution) that
occur in them. These kernels are fed to an execution-
driven simulator called SPASM which faithfully mod-
els the details of the parallel system interactions. The
statistics that are drawn from the simulation are used
to develop new analytical models or to validate and
refine existing models. Simulation is used for detailed
study of smaller systems in a non-intrusive manner.
Analytical models are used to complement the sim-
ulation results to project the performance and over-
heads for larger systems (than those that can be sim-
ulated). When an analytical model is sufficiently val-
idated/refined, it may be possible to use this model
in the simulator itself to abstract details in the sim-
ulation to ease resource requirements. Using this ap-
proach, we have illustrated (Sivasubramaniam et al.
1995a) how the details of cache simulation and the
details of interconnection network simulation may be
abstracted by suitable models to gain substantial sav-
ings in the simulation time.

At the heart of our evaluation framework lies a
simulation platform called SPASM which is used to
identify, isolate and quantify the individual parallel
system overheads.

SPASM is an execution-driven simulator written
in CSIM used for simulating the execution of a par-
allel program on a parallel machine. As with other
recent simulators the bulk of the instructions in the
parallel program is executed at the speed of the native
processor (SPARC in our studies) and only instruc-
tions such as LOADs/STOREs on a shared memory
platform, and SENDs/RECEIVEs on a message pass-
ing platform, that may potentially involve a network
access are simulated. The rationale behind this ap-
proach is that since uniprocessor architecture is get-
ting standardized with the advent of RISC technol-
ogy, we can fix most of the processor characteristics
(such as instruction sets, clocks per instruction, float-
ing point capabilities, pipelining) by using a com-
modity processor as the baseline for each processor
in our parallel system. A detailed simulation of the
processor architecture is not likely to contribute sig-
nificantly to our understanding of the scalability of a
parallel system. The input to the simulator is parallel
applications written in C. On a message passing sys-
tem, the calls (SENDs/RECEIVEs) which trap to the
simulator are inserted into the application program
explicitly by the programmer. On a shared memory
system, a pre-processor inserts code into the appli-
cation program to trap to the simulator on a shared
memory reference. On both systems, the compiled
assembly code is augmented with cycle counting in-
structions which is used to keep track of the time
spent in the application program since the last trap
to the simulator. Finally, the assembled binary is
linked with the rest of the simulator code.

A simulation platform like SPASM allows us to
vary a wide range of hardware parameters such as
the number of processors, the CPU clock speed, the
network topology, the bandwidth of the links in the
network, the network switching delays, and the cache
parameters (the block size, cache size, associativity,
etc). SPASM gives a wide range of statistics that
isolate and quantify the contribution of each parallel
system overhead on the overall execution time of the
application. Further, these overheads can be quanti-
fied for different phases of the execution that can help
in performance debugging for application restructur-
ing and for suggesting architectural enhancements.

4 PROJECTS USING THE FRAMEWORK

We have used the above framework in a wide spec-
trum of architectural projects that are summarized
below. Even though SPASM has been used to model
and study message passing systems, the projects dis-



1024 Sivasubramaniam
cussed here have used only its shared memory capa-
bilities.

4.1 Validating Abstractions

Abstracting features of parallel systems is a tech-
nique often employed in performance analysis and al-
gorithm development. For instance, abstracting par-
allel machines by theoretical models like the PRAM
has facilitated algorithm development and analysis.
Such models try to hide hardware details from the
programmer, providing a simplified view of the ma-
chine. Similarly, analytical models used in perfor-
mance evaluation abstract complex system interac-
tions with simple mathematical functions, parame-
terized by a limited number of degrees of freedom
that are tractable. Abstractions are also useful in
execution-driven simulators where details of the hard-
ware and the application can be captured by abstract
models in order to ease the demands on resource (time
and space) usage in simulating large parallel systems.
Some simulators already abstract details of instruction-
set simulation, since such a detailed simulation is not
likely to contribute significantly to the performance
analysis of parallel systems.

An important question that needs to be addressed
in using abstractions is their validity. Our framework
serves as a convenient vehicle for evaluating the accu-
racy of these abstractions using real applications. In
(Sivasubramaniam et al. 1995a), we have illustrated
the use of the framework to evaluate the validity and
use of abstractions in simulating the interconnection
network and locality properties of parallel systems.
An outline of the evaluation strategy and results are
presented below.

For abstracting the interconnection network, we
have used the recently proposed LogP model that in-
corporates the two defining characteristics of a net-
work, namely, latency and contention. For abstract-
ing the locality properties of a parallel system, we
have modeled a private cache at each processing node
in the system to capture data locality. Shared mem-
ory machines with private caches usually employ a
protocol to maintain coherence. With a diverse range
of cache coherence protocols, it would become very
specific if our abstraction were to model any partic-
ular protocol. Further, memory references (locality)
are largely dictated by application characteristics and
are relatively independent of cache coherence proto-
cols. Hence, instead of modeling any particular proto-
col, we have chosen to maintain the caches coherent
in our abstraction but do not model the overheads
associated with maintaining the coherence. Such an
abstraction would represent an ideal coherent cache
that captures the true inherent locality in an applica-
tion. Furthermore, if our abstraction closely models
the behavior of a machine with a simple cache coher-
ent protocol, then it would even more closely model
the behavior of a machine with a fancier cache coher-
ence protocol.

We have used our simulation framework for eval-
uating these abstractions. We have compared the re-
sults from simulating the five applications on a ma-
chine incorporating these abstractions with the re-
sults from an exact simulation of the actual hardware.
Our results show that the latency overhead modeled
by LogP is fairly accurate. On the other hand, the
contention overhead modeled by LogP can become
pessimistic for some applications since the model does
not capture communication locality. The pessimism
gets amplified as we move to networks with lower con-
nectivity. With regard to data locality, results show
that our ideal cache, which does not model any co-
herence protocol overheads, is a good abstraction for
capturing locality over the chosen range of applica-
tions.

Apart from evaluating these abstractions in the
context of real applications, the isolation and quan-
tification of parallel system overheads has helped us
validate the individual parameters used in each ab-
straction. The simulation of the system which incor-
porates these two abstractions is around 250-300%
faster than the simulation of the actual machine. Us-
ing a similar approach, one may also use this frame-
work to refine existing models (like reducing the pes-
simism in LogP in modeling contention), or even de-
velop new models for accurately capturing parallel
system behavior.

4.2 Synthesizing Network Requirements

For building a general-purpose parallel machine, it
is essential to identify and quantify the architectural
requirements necessary to assure good performance
over a wide range of applications. Such a synthesis of
requirements from an application view-point can help
us make cost vs. performance trade-offs in important
architectural design decisions. Our framework pro-
vides a convenient platform to study the impact of
hardware parameters on application performance and
use the results to project architectural requirements.
We have conducted such a study in (Sivasubrama-
niam et al. 1995b) towards synthesizing the network
requirements of the applications mentioned earlier,
and the experimental strategy along with interesting
results from our study are summarized here.

To quantify link bandwidth requirements for a
particular network topology, we have simulated the
execution of the applications on such a topology and
vary the bandwidth of the links in the network. As



Execution-Driven Simulators for Parallel Systems Design 1025
the bandwidth is increased, the network overheads
(latency and contention) decrease, yielding a perfor-
mance that is close to the ideal execution. From
these results, we have arrived at link bandwidths that
are needed to limit network overheads (latency and
contention) to an acceptable level of the overall ex-
ecution time. We have also studied the impact of
the number of processors, the CPU clock speed and
the application problem size on bandwidth require-
ments. Computation to communication ratio tends
to decrease when the number of processors or the
CPU clock speed is increased, making the network
requirements more stringent. An increase in problem
size improves the computation to communication ra-
tio, lowering the bandwidth needed to maintain an
acceptable efficiency. Using regression analysis and
analytical techniques, we have extrapolated require-
ments for systems built with larger number of proces-
sors.

The results from the study suggest that existing
link bandwidth of 200-300 MBytes/sec available on
machines like Intel Paragon and Cray T3D can easily
sustain the requirements of some applications even on
high-speed processors of the future. For the other ap-
plications studied, one may be able to maintain net-
work overheads at an acceptable level if the problem
size is increased commensurate with the processing
speed.

The separation of the parallel system overheads
plays an important role in synthesizing the communi-
cation requirements of applications. For instance, an
application may have an algorithmic deficiency due
to either a large serial part or due to work-imbalance,
in which case 100% efficiency is impossible regardless
of other architectural parameters. The separation of
overheads enables us to quantify bandwidth require-
ments as a function of acceptable network overheads
(latency and contention). The framework may also be
used for synthesizing requirements of other architec-
tural features such as synchronization primitives and
locality capabilities from an application perspective.

4.3 Deriving Architectural Mechanisms

The single most important overhead limiting perfor-
mance of parallel applications is the communication
overhead. One solution is to make the network as
fast as possible so that even though the application
does not make any fewer network accesses, the over-
heads will not manifest as a significant component of
the total execution time. But the resources to sustain
the necessary bandwidth may simply not be available
in some cases. The second approach is to reduce the
network accesses incurred in the execution or to toler-
ate the communication overhead if these accesses are
unavoidable. Cache coherence protocols, weak mem-
ory consistency models, prefetch, poststore, and mul-
tithreading are some of the proposed latency reduc-
ing and tolerating techniques in the context of shared
memory architectures. It has been shown that no one
technique is universally applicable for all applications.
On the other hand, a close examination of the com-
munication behavior of a range of applications can
help derive a set of architectural mechanisms that
may prove beneficial and we have conducted such a
study in (Ramachandran et al. 1995) using our eval-
uation framework. By examining the communication
properties of applications, we have proposed a set of
explicit communication primitives that are general-
izations of the poststore and prefetch mechanisms.

Cache coherence protocols broadly fall into two
categories: write-invalidate and write-update. Invalidation-
based schemes are more suited to migratory data and
can become inefficient when the producer-consumer
relationship for shared data remains relatively un-
changed during the course of execution. On the other
hand, update-based protocols can result in significant
overheads due to repeated updates to the same data
before they are used by another processor, as well
as redundant updates when there are changes to the
sharing pattern of a data item. The update and in-
validation based schemes thus have their relative ad-
vantages and disadvantages, and based on application
characteristics one may be preferable over the other.
Invalidations are useful when an application changes
its sharing pattern, and updates are useful to effect
direct communication once a sharing pattern is estab-
lished.

By examining the communication properties of a
spectrum of applications, we have derived a set of
explicit communication primitives that use sender-
initiated communication within the context of an un-
derlying invalidation-based protocol. The three pro-
posed primitives intelligently propagate the data items
to one or more consumers as soon as the data items
are produced. The first primitive is intended for ap-
plications with static communication behavior where
the consumer set of a data item is available at compile
time. As a result, this set can be directly supplied to
the hardware when the data item is produced. The
second primitive is intended for variables governed by
locks and it uses the lock structure to propagate data
items to the processor next in line for the lock. The
third primitive is for applications with dynamic com-
munication behavior which detects the arrival of a
new consumer to a current sharing pattern, and uses
this information to intelligently mix invalidates with
updates.

The execution-driven simulation of real applica-
tions has played an important role in this exercise. It



1026 Sivasubramaniam
has helped us identify and isolate typical communi-
cation scenarios in applications and derive a set of
mechanisms that can optimize these scenarios. It
has also helped us evaluate the cost-effectiveness of
these primitives, and the benefits of these primitives
over alternate mechanisms. A related study (Shah,
Singla, and Ramchandran 1995) develops a realis-
tic model for a shared memory machine, and using
SPASM shows that for a spectrum of applications al-
most all the inherent communication in them may
be overlapped with computation. This serves as the
motivation for further research in developing explicit
sender-initiated communication mechanisms.

4.4 Evaluating Network Designs

The complex interaction between a parallel architec-
ture and an application makes it essential to use real-
istic workloads for evaluating parallel systems. Per-
formance analyses of processors, caches, memory and
I/O subsystems have therefore been conducted with
parallel benchmarks. However, unlike other subsys-
tems, the design and analysis of the interconnection
network, which is perhaps the most crucial hardware
component in a parallel machine, has rarely used the
knowledge of workloads generated by parallel appli-
cations.

There are two differing perspectives of viewing
the multiprocessor interconnection network. From
the viewpoint of a software designer or an applica-
tion programmer, it helps to make certain simplify-
ing assumptions about the interconnection network
such as assuming a constant delay or a simple model
which does not take into account the details of mes-
sage traversal within the actual network. These as-
sumptions are sufficiently accurate when the objec-
tive is to minimize the communication required. By
making these assumptions, performance evaluation of
the system can be simplified and speeded-up. Inter-
connection network designers have a more network-
centric viewpoint. From this viewpoint, improving
the network performance is critical. Network topol-
ogy, switching mechanism, routing, flow control, and
communication workload, together determine the net-
work performance. Until recently, network research
has primarily focussed on the first four parameters to
optimize network latency and throughput. Network
designers have traditionally used synthetic benchmarks
to evaluate their designs. At best, these benchmarks
try to mimic some typical communication behavior in
applications. The performance results derived from
synthetic workloads can provide a general guideline
or bounding values, while it may be difficult to make
cost-performance architectural design decisions using
these results.
SPASM is perhaps the first execution-driven simu-
lator that has been used to integrate both these view-
points into a single evaluation framework. It has been
used extensively to study performance over a wide
range of real applications and network parameters.
For instance, in (Vaidya, Sivasubramaniam, and Das
1997a) we have used it to study the performance of a
2-dimensional mesh network for 5 shared memory ap-
plications. The specific aim in this study is to verify
whether the promised performance improvement (for
synthetic workloads) using recently proposed network
enhancements, such as virtual channels and adaptive
routing, is indeed obtained for real applications, and
if so do these benefits override the cost of providing
these enhancements.

The performance results show that there is a mod-
est performance benefit with these enhancements in
the average network latency for the messages. How-
ever, with respect to the overall execution time, this
improvement is dwarfed in comparison to the other
components which constitute the execution time. When
considered in the context of application scalability
in terms of the number of processors and the prob-
lem considered, even though many of the considered
applications inject a large number of messages into
the network, their arrival into the network does not
seem to generate any significant contention for net-
work resources. Consequently, virtual channels and
adaptive routing algorithms, which attempt to lower
the network contention and not the raw network la-
tency, do not show substantial saving in execution
time. Further, our results suggest that the perfor-
mance rewards may not justify the cost of these en-
hancements unless an application is highly commu-
nication intensive and potentially scaling poorly. On
the other hand, if any of these enhancements were to
slow down the network router, then there is a signif-
icant degradation in performance.

This study (Vaidya, Sivasubramaniam, and Das
1997a) has served has the motivation for yet another
project (Vaidya, Sivasubramaniam, and Das 1997b)
where we are trying to develop better routers for
interconnection networks. In this project, we have
formalized a pipelined model for the network router,
and we have evaluated the trade-offs between differ-
ent router designs using our simulator. We have also
proposed and evaluated dynamically adaptable selec-
tion functions within the router to route messages
along less congested paths.

4.5 Characterizing Communication Behavior

Characterization of the communication in parallel ap-
plications is essential in understanding their interplay
with parallel architectures, to maximize the perfor-



Execution-Driven Simulators for Parallel Systems Design 1027
mance of existing architectures and to design better
architectures in the future. The communication traf-
fic of a parallel application can be captured by three
attributes namely the temporal, spatial and volume
components. Temporal behavior is captured by the
message generation rate, spatial behavior is expressed
in terms of the message distribution or traffic pattern,
and volume of communication is specified by the num-
ber of messages and the message length distribution.
These three attributes together define the communi-
cation workload and have been used extensively in
many types of architectural evaluations. In particu-
lar, one of the most extensively studied areas of re-
search in parallel architectures is the interconnection
networks. A plethora of network topologies that sup-
port various types of switching mechanism and mes-
sage routing algorithms have been proposed to design
scalable parallel machines. Performance analyses of
all these networks either via simulation or analysis
require the above three communication attributes.

In the previous subsection, we discussed two stud-
ies that have studied the network for real applications
using execution-driven simulation. But, such a de-
tailed simulation of the network makes the evaluation
exceedingly slow. Mathematical models, on the other
hand, do not suffer from this drawback. However,
most of these models for interconnection networks
have been accused of making unrealistic assumptions
about the communication workload. It is not clear
what different traffic patterns are generated by par-
allel applications and how these traffic patterns can
be captured by a distribution function for subsequent
study. Therefore, the credibility of many model-based
performance results has been questioned frequently.

It is thus crucial to develop some formal tech-
niques to capture the communication properties of
parallel applications. The novelty of such a charac-
terization is that these attributes can be useful for
many divergent studies: a system architect can use
the communication information for better architec-
tural design; an algorithm developer can use the com-
munication cost for better algorithm design and anal-
ysis; and a system analyst can develop more accurate
performance models using realistic workloads.

In (Chodnekar et al. 1997) and (Seed, Sivasubra-
maniam, and Das 1997), we have embarked on char-
acterizing the communication traffic generated by a
spectrum of applications using SPASM. We conduct
a detailed execution-driven simulation on a chosen
network configuration for each application. The net-
work logs the arrival of messages along with the time
of arrival, length and destination information. These
logs are then presented to a statistical package (SAS)
for regression analysis to calculate the message gen-
eration rate, the message length distribution, and the
destination distribution.
The results obtained from the analysis of the ap-

plication traces show that the inter-arrival times of
all applications except one can be fitted to known
probability distribution functions, which are varia-
tions of exponential distribution. Also, the average
message generation rate can be obtained for the un-
derlying distribution. For the spectrum of applica-
tions considered, the message generation distribution
can be expressed in terms of exponential, hypoex-
ponential or weibull distributions. Our results also
confirm that the spatial distributions of parallel ap-
plications can be captured mathematically. For the
applications considered, the spatial distributions are
uniform, bimodal uniform and univariate polynomial.
The sensitivity of these results to different application
and hardware parameters has also been studied. We
have found that only the means of the distributions
change as we vary many of the parameters. These
results lead us closer to the belief that it is possible
to abstract the communication properties of parallel
applications in convenient mathematical forms that
have wide applicability.

5 CONCLUDING REMARKS

Performance evaluation is an integral part of any sys-
tems design process to: evaluate the cost-effectiveness
of a given design, compare different designs, and de-
rive alternate designs. This process is particularly
made more difficult for parallel systems where the
complex interaction between application and archi-
tecture introduces several more degrees of freedom
compared to their sequential counterparts.

Performance evaluation techniques should clearly
isolate and quantify the different overheads in a paral-
lel system execution that limit its scalability. Exper-
imentation on the actual system, analytical modeling
and simulation are three well-known techniques. But
each has its own limitations. Execution-driven simu-
lation offers the most promise because of its ability to
study the parallel system accurately and in great de-
tail in a non-intrusive manner. However, we need to
confine ourselves to smaller systems with this tech-
nique, and complement the evaluation with mathe-
matical models and experimentation to extrapolate
performance for larger systems. In this paper, we
have described one such simulator called SPASM that
has been used extensively to study parallel architec-
tures over a spectrum of applications. We have also
briefly discussed five architectural projects that have
used this simulator.

Recent trends show that a Network of Worksta-
tions (NOW) is a cost-effective solution for high per-
formance computing. There are a wide range of ar-



1028 Sivasubramaniam
chitectural issues that need to be addressed if this
platform is to become more prevalent. Our ongo-
ing research is focusing on architectural projects to-
wards this goal. We have recently implemented an
execution-driven simulator called pSNOW (Kasbekar,
Nagar, and Sivasubramaniam 1997) to specifically study
hardware and system software issues for NOW plat-
forms. We intend to use this simulator to design and
evaluate architectural innovations concurrently with
the development of an actual prototype in our labo-
ratory.

ACKNOWLEDGMENTS

This research is supported in part by a NSF Career
Award MIP-9701475 and equipment grants from NSF
and IBM.

REFERENCES

Chodnekar, S., V. Srinivasan, A. Vaidya, A. Sivasub-
ramaniam, and C. Das. 1997. Towards a commu-
nication characterization methodology for parallel
applications. In Proceedings of the Third Inter-
national Symposium on High Performance Com-
puter Architecture, 310–319.

Kasbekar, M., S. Nagar, and A. Sivasubramaniam.
1997. pSNOW: A tool to evaluate architectural
issues for NOW environments. In Proceedings of
the ACM 1997 International Conference on Su-
percomputing, 100–107.

Ramachandran, U., G. Shah, A. Sivasubramaniam,
A. Singla, and I. Yanasak. 1995. Architectural
mechanisms for explicit communication in shared
memory multiprocessors. In Proceedings of Super-
computing ’95.

Seed, D., A. Sivasubramaniam, and C. Das. 1997.
Communication in Parallel Applications: Charac-
terization and Sensitivity Analysis. To appear in
Proceedings of the 1997 International Conference
on Parallel Processing.

Shah, G., A. Singla, and U. Ramachandran. 1995.
The quest for a zero overhead shared memory par-
allel machine. In Proceedings of the 1995 Inter-
national Conference on Parallel Processing, 194–
201.

Sivasubramaniam, A. 1997. Reducing the communi-
cation overhead of dynamic applications on shared
memory multiprocessors. In Proceedings of the
Third International Symposium on High Perfor-
mance Computer Architecture, 194–203.

Sivasubramaniam, A., A. Singla, U. Ramachandran,
and H. Venkateswaran. 1994. An approach to
scalability study of shared memory parallel sys-
tems. In Proceedings of the ACM SIGMETRICS
1994 Conference on Measurement and Modeling
of Computer Systems, 171–180.

Sivasubramaniam, A., A. Singla, U. Ramachandran,
and H. Venkateswaran. 1995. Abstracting net-
work characteristics and locality properties of par-
allel systems. In Proceedings of the First Inter-
national Symposium on High Performance Com-
puter Architecture, 54–63.

Sivasubramaniam, A., A. Singla, U. Ramachandran,
and H. Venkateswaran. 1995. On characteriz-
ing bandwidth requirements of parallel applica-
tions. In Proceedings of the ACM SIGMETRICS
1995 Conference on Measurement and Modeling
of Computer Systems, 198–207.

Vaidya, A., A. Sivasubramaniam, and C. Das. 1997.
Performance benefits of virtual channels and adap-
tive routing: An application-driven study. In Pro-
ceedings of the ACM 1997 International Confer-
ence on Supercomputing, 140–147.

Vaidya, A., A. Sivasubramaniam, and C. Das. 1997.
The PROUD pipelined routers for high perfor-
mance networks. Technical Report CSE-97-007,
Department of Computer Science and Engineer-
ing, The Pennsylvania State University.

AUTHOR BIOGRAPHY

ANAND SIVASUBRAMANIAM is an Assistant
Professor in the Department of Computer Science and
Engineering at The Pennsylvania State University.
He received his B.Tech in Computer Science from the
Indian Institute of Technology, Madras, in 1989, and
the MS and Ph.D. degrees in Computer Science from
the Georgia Institute of Technology in 1991 and 1995
respectively. His research interests are in architec-
ture, operating systems, performance evaluation and
application aspects of high performance computing.


	EXECUTION-DRIVEN SIMULATORS FOR PARALLELSYSTEMSDESIGN
	ABSTRACT
	1INTRODUCTION
	2 EVALUATING PARALLE LSYSTEMS
	2.1 Performance Metrics
	2.2 Evaluation Techniques

	3 THE FRAMEWORK
	4 PROJECTS USINGTHEFRAMEWORK
	4.1 Validating Abstractions
	4.2 Synthesizing Network Requirements
	4.3 Deriving Architectural Mechanisms
	4.4 Evaluating Network Designs
	4.5 Characterizing Communication Behavior

	5 CONCLUDING REMARKS

	page1: 1021
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


