
SIMULATION OF MODERN PARALLEL SYSTEMS: A CSIM-BASED APPROACH

Dhabaleswar K. Panda
Debashis Basak

Donglai Dai
Ram Kesavan

Rajeev Sivaram
Mohammad Banikazemi

Vijay Moorthy

Department of Computer and Information Science
The Ohio State University

Columbus, Ohio - 43210-1277, U.S.A.
ABSTRACT

Components of modern parallel systems are becom-
ing quite complex with many features and varia-
tions. An integrated modeling of these components
(interconnection network, messaging layer, program-
ming model, and computation-communication char-
acteristics of applications) is essential to derive de-
sign guidelines for next generation parallel systems.
Most of the current simulation-based modeling plat-
forms do not support such integrated modeling. This
paper presents our effort at The Ohio State Uni-
versity towards integrated modeling of parallel sys-
tems. Basic features of our CSIM-based Wormhole-
routed Multiprocessor Simulator (WORMulSim) are
outlined. A set of techniques used in our simu-
lator to model different network components (such
as switches, links, wormhole/cut-through switching
techniques, routing protocols, network interfaces),
messaging layer with basic communication primitives,
distributed shared memory programming model, and
computation-communication characteristics of appli-
cations are presented. Some sample performance
measures of our simulator on current generation
workstations are reported to demonstrate the feasi-
bility of integrated modeling with low computational
overhead.

1 INTRODUCTION

Design of a parallel system involves the integration
of several hardware and software components. The
overall performance of these systems is dependent on
the interaction between these components as well as
on the computation-communication characteristics of
applications. Since these components interact at an
instruction level, modeling and evaluation of these
components by simulation has been a standard prac-
tice before building a parallel system.

For the purpose of modeling, a parallel system can
be divided into four major layers: 1) the intercon-
nection network layer, 2) the messaging layer with
basic communication primitives, 3) the programming
model layer, and 4) the application layer.

Traditionally, there have been two schools of
thought on modeling the above layers. Under the first
school of thought, the interconnection network layer
is modeled in great detail (topology, switching tech-
nique, flow control, buffering, etc.). These models are
then evaluated in isolation using synthetic traffic such
as uniform and hot-spot traffic, which are generated
based on probabilistic models. These studies model
network contention/congestion accurately. The per-
formance of the interconnection network is typically
evaluated using two measures: latency vs. throughput
and sustained load vs. applied load. However, these
studies typically ignore layers 3 and 4. These stud-
ies also ignore the cause-effect relationship between
messages in a network – an important factor in the
execution of parallel programs. Thus, this approach is
not suitable for evaluating the overall performance of
an application on the parallel system being designed.

The second school of thought focuses on modeling
layers 3 and 4 in great detail. However, these models
use very simplistic assumptions about the intercon-
nection network and messaging layers. These sim-
plistic assumptions ignore contention/congestion in-
side the network as well as at the network interfaces.
Thus, these evaluations ignore important interaction
between computation and communication steps.

Modern interconnection networks and network in-
terfaces are becoming very sophisticated with a lot
of features and flexibilities. Designs of current gen-



1014 Panda, Basak, Dai, Kesavan, Sivaram, Banikazemi, and Moorthy
eration parallel systems show that layers 2 and 3
need to be supported in an extremely efficient manner
on a parallel system (supporting either distributed
memory or distributed shared memory paradigms) to
achieve low-latency and high-bandwidth communica-
tion. Thus, it is critical that all four layers be mod-
eled in an integrated manner to accurately estimate
the overall execution time of an application on a pro-
posed parallel system. We at OSU realized this need
a few years ago and took on the challenge of modeling
parallel systems in an integrated manner.

In order to implement integrated modeling, a sim-
ulation environment is needed where actual applica-
tions (in user-level languages like C or Fortran) can
be executed on the simulated model of the system en-
compassing layers 1-4. Such an environment should
be capable of producing application results during ex-
ecution as well as providing user-level and system-
level performance numbers (such as overall execu-
tion time of an application, time elapsed between two
points in the execution, average latency of messages,
and load on the network).

A process-oriented simulation package like CSIM
(Schwetman, 1988) is ideal for such integrated mod-
eling of a parallel system. Over the last five years, we
have used such an approach in our Parallel Architec-
ture and Communication (PAC) group at The Ohio
State University. In this paper we present our tech-
niques and methodologies for implementing such an
integrated modeling of parallel systems using CSIM.

We first provide an overview of our Wormhole-
routed Multiprocessor Simulator (WORMulSim) and
introduce its basic features. Next, we illustrate a set
of techniques and methodologies which can be used
with CSIM structures and processes to model the
components of the four layers (interconnection net-
work, messaging and basic communication primitives,
programming model, and application). Finally, some
performance measurements of our simulator on cur-
rent generation workstation platforms are reported.

2 OVERVIEW OF WORMulSim

In this section we present an overview of WORMul-
Sim. This simulator is designed with modularity in
mind, i.e., various different models of interconnec-
tion networks, messaging layers, programming mod-
els, and application models are available to the user.
New models for the above layers can also be eas-
ily incorporated into the simulator. Fig. 1 shows an
overview of WORMulSim, and the various layers of
the integrated modeling approach.

At the lowest layer, the simulator models a wide
range of interconnection networks (Duato et al.,
Models of Interconnection

(topology, switching technique,

Basic Communication

(point-to-point send and recv)
Collective Communication

(broadcast, multicast,
synchronization, ...)

network interface, and others) - dependency

layer 1

layer 2

layer 3

layer 4

Architectural Support and
Algorithms for

Messaging Layer and

Programming Models

Distributed Memory Model Distributed Shared Memory Model

Models for
DSM

(node architecture
and coherence

protocols)

 Networks

Primitives

Models of Applications

Distributed Memory Distributed Shared Memory

Figure 1: Overview of WORMulSim
1994). Techniques to model these components using
CSIM are presented in the following section. Flex-
ibility exists for specifying the following architec-
tural parameters in order to configure an interconnec-
tion network according to an architect’s choice: net-
work resources (number of switches/routers, number
of physical/virtual channels per link, and number of
injection/consumption channels per node), topology
(regular/clustered/irregular interconnection), choice
of switching technique (wormhole/buffered worm-
hole/virtual cut-through), and routing scheme (deter-
ministic/partial adaptive/fully adaptive). The sim-
ulator also provides flexibility to specify a range
of timing parameters for the network: routing de-
lay (troute), switch delay (tsw), time to transfer
a flit across a physical channel (tphys), and injec-
tion/consumption time per flit (tinj, tcons). (A flit
is defined as a unit of data transfer on which the flow
control is used.)

The next layer models message-passing mecha-
nisms and basic communication primitives. Two ma-
jor types of point-to-point communication primitives
are supported: asynchronous non-blocking send and
blocking recv. Flexibility exists to support packetiza-
tion at the network interface level. A user can spec-
ify the following parameters: message length, max-
imum packet size, communication overhead at the
sending and receiving hosts per message (tsendhost , t

recv
host),

and communication overhead at the sender/receiver
network interface per packet (tsendnic , t

recv
nic ). Details of

this layer are described in Section 4.

In addition to the point-to-point communication
primitives, the simulator also supports collective com-
munication as defined by the MPI standard (MPI
Forum, 1994). A lot of current research has fo-
cused on providing communication and architectural
support as well as on designing efficient algorithms
for achieving low-latency collective communication.
Many of these architectural supports and the asso-



Simulation of Modern Parallel Systems: A CSIM-Based Approach 1015
ciated algorithms are implemented in WORMulSim
to provide user-level collective communication primi-
tives (broadcast, multicast, complete exchange, etc.).
However, in order to keep this paper focused, we do
not discuss these issues in this paper.

The next layer implements two popular program-
ming models: distributed memory and distributed
shared memory (DSM). The distributed memory pro-
gramming model directly uses the basic messaging
layer and the send/recv communication primitives.
However, supporting the DSM model requires ad-
ditional architectural support in a parallel system.
WORMulSim supports a wide-range of models for
evaluating hardware cache-coherent DSM systems
(popularly known as CC-NUMA systems). These
systems are designed with integrated node archi-
tecture (processor, memory, cache, directory, and
specialized network interfaces) and cache-coherency
protocols (Stenstrom, 1990). Flexibility exists in
the simulator to configure the organization of the
integrated node architecture (such as the size of
memory/cache, access time of memory/cache, num-
ber of request/reply queues between processor-cache-
memory-directory-network, overhead associated with
these queues), to select suitable cache coherency pro-
tocols (FIFO/non-FIFO, fully/limited), and to select
suitable consistency semantics (sequential/release).
The details of how we model these components are
presented in Section 5.

Modeling computation-communication characteris-
tics of applications is very important in the integrated
modeling approach. Since our simulator is designed
using CSIM, layers 1-3 provide a SPMD (Single Pro-
gram Multiple Data) interface to the applications.
This provides the ability to directly run distributed
memory and DSM programs written in the SPMD
style on WORMulSim. The computation blocks of
the programs are instrumented to reflect the actual
latency incurred while executing these blocks on a
processor. Flexibility exists for specifying the clock
rate of the processor. Thus, WORMulSim provides
very accurate estimation of the execution time of an
application. These issues are discussed in detail in
Section 6.

3 MODELING INTERCONNECTION
NETWORKS

We now describe the components of the interconnec-
tion layer in a parallel system and the method that
we adopt to model it using CSIM.

3.1 Network Resources

CSIM (Schwetman, 1988) is a process-oriented sim-
ulation package. It allows multiple processes to be
created, and manages the mutually exclusive sharing
of resources by these processes. This is done by a
CSIM feature called a facility. A process can reserve
a facility for any number of clock ticks and subse-
quently release it. Another useful feature of CSIM is
an event. This corresponds to a signal that a process
can set or wait upon. We use these two basic CSIM
features to model most of the network resources in
WORMulSim.

A typical parallel system consists of hosts con-
nected together through an interconnection network.
In such systems, the job of sending and receiving mes-
sages is either completely handled by the host pro-
cessor, or a network interface card (NIC) processor
handles some part of the job. Each host processor
and NIC processor corresponds to a facility in WOR-
MulSim, which allows various processes to reserve
these processors in a mutually exclusive manner to
model their computational requirements. Each injec-
tion and consumption channel of a host also corre-
sponds to a facility which can be reserved and re-
leased by outgoing and incoming packets from and to
the host.

The interconnection consists of a set of physical
links and routers (or switches). By modeling each
physical link as a facility, WORMulSim ensures that
no two packets traverse a physical link at the same
instant, which is typical of parallel system intercon-
nects. In most modern networks, to improve through-
put, each physical link has multiple virtual channels
multiplexed on it. Before a message can traverse a
physical link, it needs to reserve one of the virtual
channels corresponding to that physical link. Again,
each virtual channel is modeled as a facility in the
simulator to capture the above property.

In summary therefore, each host processor, NIC
processor, injection channel, consumption channel,
physical link and virtual channel is modeled as a fa-
cility in the simulator, and signals in the system are
are modeled as events.

We now describe the method adopted for model-
ing the various components of message communica-
tion in the network, viz. the switching technique and
the routing mechanism. In the following, we use the
terms switch and router interchangeably.

3.2 Switching Techniques

WORMulSim models various forms of cut-through
switching: wormhole switching, buffered wormhole
switching, and virtual cut-through switching. Under
cut-through switching, a router can begin forward-
ing an arriving packet once the (relevant portion of
the) packet header has arrived. Once the packet rout-
ing decision is made and the (relevant portion of the)



1016 Panda, Basak, Dai, Kesavan, Sivaram, Banikazemi, and Moorthy
packet header is forwarded to the appropriate output
port, the remaining packet flits are forwarded one af-
ter another to the same port. Thus, arriving packet
flits can be routed in a continuous pipelined stream
through the network.

The various forms of cut-through switching differ
in the number of flits that can be buffered at the
switch if a required output port cannot be obtained
(because it is has been reserved by another packet, i.e.
due to link contention). Under wormhole switching a
single flit can be buffered at a switch, under buffered
wormhole switching a few of the packet flits can be
buffered at a switch (without the guarantee that the
entire packet can be buffered), and under virtual cut-
through switching, the entire packet is guaranteed to
be buffered at the switch.

Although WORMulSim models all these forms of
cut-through switching, in this paper we focus only on
the methods adopted for modeling wormhole switch-
ing. The methods adopted for modeling buffered
wormhole and virtual cut-through switching are vari-
ations of this.

Modeling Wormhole Switching: Worms
(packets in transit through the network) are mod-
eled as CSIM processes, one process representing the
movement of the worm header and the other processes
modeling the flow of the remaining worm flits.

The process modeling the worm header movement
traverses the path from the source to the destination
reserving virtual channels along the path. If system
links have only one virtual channel, this has the effect
of reserving all the links on the path from the source
to the destination. For systems supporting destina-
tion based routing, the path from the source to the
destination can be obtained at every router in the
worm’s path by calling a routing function (see Sec. 3.3
below). Delays are introduced to model such routing
overhead at the routers/switches. Alternatively, for
systems supporting source based routing, the path is
pre-computed and carried with the header. The pro-
cess modeling the worm header movement extracts
information from this pre-computed route to choose
an output link at the routers on its path.

Once the header reserves a link at a router and pro-
ceeds ahead, it creates a tail process for that router.
Thus, one tail process is associated with every router
on the worm’s path. Each tail process takes care of
transferring arriving data through the router and over
the next link to the succeeding router whose tail pro-
cess repeats a similar function. These tail processes
collectively transfer the data flits of the worm over
the reserved virtual channels on the path to the des-
tination. They also have the function of releasing the
virtual channels once all of the data flits have been
transferred over them so that they may be used by
other worms. Since flits are pipelined through the
network, a tail process can begin transferring a flit
as soon as the tail process corresponding to the pre-
vious router has delivered it. Thus, there is a cou-
pling among the successive tail processes that has
to be modeled. We model such coupling by using
an event known as xfer-done associated with every
router. Once a flit has been transferred by a tail
process through its router and the next link, it sets
the xfer-done event corresponding to the next router.
The tail process corresponding to the next router can
then begin transferring the arrived flit to the succeed-
ing router and so on.

tailtail

buff-empty

xfer-done

input
buffer

output
buffer

xfer-done

buff-empty
Link

Figure 2: Interaction Between the Processes that
Model a Worm

Every router can buffer a single flit at the input
port under wormhole routing. When an output chan-
nel is acquired, the flit can be transferred to a similar
one flit buffer at the next input port, thereby freeing
the buffer at the input port for the next flit. When
a worm header cannot acquire the channels that it
requests, it remains blocked at the input port buffer
and the remaining worm flits are also blocked in place
since they find no available buffers at the input ports
of the succeeding routers. To model this, we use an
event called buff-empty associated with every router.
The buff-empty event is set as soon as a flit is trans-
ferred from an input to the output buffer of a switch.
A tail process transfers a flit from the input buffer
to the output buffer only when the xfer-done event
corresponding to its router has been set. Once this
transfer is made, the tail sets the buff-empty signal
corresponding to its router. It then transfers this
flit from the output buffer to the input buffer of the
next router when the buff-empty event correspond-
ing to the next router has been set. The tail process
then sets the xfer-done event corresponding to the
next router Fig. 2 shows some of the above described
events. If a worm header is blocked, a buff-empty
event is not set by the process modeling the worm’s
header. This has a cascading effect causing all the tail
processes to block, thereby modeling the blocking of
the entire worm.

3.3 Routing

As mentioned above, some mechanism is required for
the header process to make its way to the destina-
tion. Many routing algorithms have been proposed



Simulation of Modern Parallel Systems: A CSIM-Based Approach 1017
for this. A routing algorithm provides the next link
that a worm should take, given the worm header and
the link on which the worm arrives at a router as
input. Various routing algorithms have been pro-
posed in the recent years (Duato et al., 1997) and
WORMulSim supports a number of them (such as
Dally’s e-cube, Glass and Ni’s turn model, Chien
and Kim’s planar adaptive, Duato’s fully adaptive,
and Autonet’s up*/down* routing algorithms). Any
(new) routing algorithm can be plugged in to work
with WORMulSim because of the modular fashion in
which the routing algorithm is integrated into the rest
of the simulator.

Some machines, such as the IBM SP2, support
source based routing where the worm header carries
a pre-computed route. WORMulSim also supports
such routing. In addition, some switch-based paral-
lel systems like DEC Autonet use static routing ta-
bles within the switch to provide routing information.
WORMulSim also provides flexibility to create such
routing tables.

3.4 Topologies

Topologies of parallel systems can be broadly divided
into two classes. The first class consists of router-
based regular topologies such as k-ary n-mesh, k-
ary n-cube, k-ary n-cube cluster-c, etc. The sec-
ond class consists of switch-based topologies rang-
ing from unidirectional/bidirectional multistage in-
terconnection networks (MINs) to irregular networks.
WORMulSim allows the modeling of any of these net-
works, as described below.

The simulator, during its initialization phase, runs
a procedure which allocates the previously described
facilities and events corresponding to the various net-
work resources. Once this is done, a procedure is
called to configure the links and routers into a regular
or irregular topology. For regular topologies, routines
can be called that set up most of the commonly used
interconnections (including various forms of the k-ary
n-cube such as the multidimensional meshes and tori,
and various types of unidirectional and bidirectional
MINs, such as the omega, butterfly, and cube). To
model an irregular topology, data structures are set
up to model the interconnection. These data struc-
tures can be set up with the use of a random num-
ber generator to give us randomly generated irregular
topologies. Alternatively, values can be read from a
file, thus providing the user with the flexibility to
specify a particular topology.

Any new topology can be modeled by plugging in
an appropriate module that sets up the interconnec-
tions among the routers and among the hosts and
routers. This is again a result of the modular design
of WORMulSim.

4 MODELING MESSAGING LAYER

In the previous section, the process of transmitting
a message through the wormhole routed intercon-
nection network is discussed. In this section, we
describe how the overhead associated with prepar-
ing and transmitting messages to the network at the
sender side is modeled. We also describe how a mes-
sage is absorbed at the receiver side and delivered to
the receiving host processor with the associated over-
head. The details on the implementation of the two
basic communication primitives (asynchronous non-
blocking send and asynchronous blocking recv) are
discussed. Further, we consider the effect of packeti-
zation in systems where there is a constraint on the
maximum packet size being transmitted and indicate
how we model this in WORMulSim.

4.1 Accounting for Messaging Overheads

A message being sent using the send primitive needs
to be first transferred from the user space of the host
processor to the kernel. The message is then trans-
ferred to the NIC and then to the network via an
injection channel. The overhead of adding the appro-
priate header to the message, context switching and
copying of the message from the user space to the ker-
nel is modeled by holding the host processor resource
for tsendhost units of time. The time required for process-
ing the message at the NIC is modeled by holding the
NIC resource for tsendnic units of time. In addition to
these, the time required for injecting a message flit to
the network through an injection channel is modeled
by tinj.

Similarly, at the receiving end, the delay introduced
by the consumption channel is modeled by tcon time
units per flit. The processing times at the NIC and
host processor are modeled by trecvnic and trecvhost, respec-
tively. All messages arriving at a processing node are
posted to its mailbox and the host processor is sig-
naled by setting an mb recv event. It should be noted
here that although we accurately model the transmis-
sion of a message from one node to another, we do not
overload the simulator by sending actual data. Only
a pointer to the data is passed to the receiving node.

A host processor receives a particular message by
invoking the recv primitive. The receive mailbox is
checked for the particular message. If the message is
found in the mailbox, it is forwarded to the receiving
host processor which continues with normal program
execution. Otherwise, the host processor is blocked
until the message is posted by the network into its
mailbox because the recv primitive is a blocking re-
ceive. On arrival of each message the host processor



1018 Panda, Basak, Dai, Kesavan, Sivaram, Banikazemi, and Moorthy
is awakened (by mb recv signal) to check if the desired
message has arrived. On arrival of the specified mes-
sage the host processor is allowed to continue normal
execution.

4.2 Packetization

In most current systems the size of packets being
transmitted through the network can not be arbi-
trarily large. Therefore, it is necessary to partition
a message longer than the maximum packet size into
a set of packets. WORMulSim allows the flexibility
to set such maximum packet size parameter and to
partition longer messages into smaller packets. Each
packet has a sequence number and the number of
packets for each message is recorded. On arrival of
each packet the NIC processor is signaled (through
an mb nic recv event). The NIC processor is respon-
sible for reassembling the packets and signaling the
host processor (through the mb recv event) when all
packets of a message arrive.

5 DISTRIBUTED SHARED MEMORY
PROGRAMMING MODEL LAYER

So far, we have described how WORMulSim models
the interconnection networks and basic communica-
tion primitives. Programs using distributed memory
model can be directly executed by using these com-
munication primitives. However, for systems sup-
porting the distributed shared memory (DSM) pro-
gramming model, more architectural components are
needed. In this section, we briefly describe how the
DSM model has been incorporated into WORMul-
Sim. We focus on the modeling of two essential as-
pects of a DSM system: node architecture and cache-
coherence protocol.

5.1 Node Architecture

In addition to the network, a key factor in model-
ing a DSM system is to capture the architecture and
the operations of every processing node in sufficient
detail. The node architecture modeled in WORMul-
Sim, as shown in Fig. 3, is similar to the Stanford
FLASH system. Each node in the system consists of
a processor, a cache, a portion of global memory, a
node controller, and a network interface. Transaction
buffers for resolving outstanding memory requests are
also modeled to support various relaxed memory con-
sistency semantics.

The processor executes the instructions of a user
program and directs all shared memory accesses to
the cache. When there is a cache miss, a request is
sent to the local node controller. Depending on the
current state of the cache/memory block and the un-
derlying cache coherence protocol, different actions
are taken by the node controller to satisfy the re-
quest (see following subsection). While an outstand-
ing request is being resolved, the processor at the
requesting node can either proceed or suspend its ex-
ecution depending on the memory consistency model
supported, data dependency and the depth of the
transaction buffers.

Node

Network
Interface

Memory Node
Controller

Transact.
Buffer

Cache

Processor

Figure 3: Node Architecture of the Modeled DSM
System

All types of storage (caches lines/tags, memory
blocks/directories, transaction buffers, and transmit-
ting/receiving buffers at the network interface) are
implemented as arrays in WORMulSim. Potentially
overlapped operations via multiple ports of these stor-
age units (like dual ports in the cache) are modeled by
fixing the maximum simultaneous requesters allowed,
associating a separate lock at a finer granularity of
the storage (like a cache line), and assigning different
priorities to the requesters. The functional units such
as the cache controller, the node controller, and the
network interface are simulated as concurrent CSIM
processes. Intra-nodal communication among these
units is simulated using queues coupled with event
signals.

5.2 Cache-Coherence Protocol

The actions taken by a node in dealing with
a shared memory access are dictated by the
cache coherence protocol used. Specifically, the
cache/node controllers manipulate the corresponding
tags/directories of the memory blocks and exchange
messages between the nodes to enforce the designated
memory consistency semantics. Current generation
DSM systems support a range of coherency protocols
(such as fully-mapped, limited) (Stenstrom, 1990).
WORMulSim models these protocols.

In WORMulSim, a cache coherence protocol is en-
forced by the processes of the cache controller and
the node controller via dispatching tables and a set
of transaction handlers. These handlers are invoked
based on the combination of the current states of
cache lines or memory blocks and the types of mes-
sages being processed. These techniques provide us
with the desired flexibility with respect to the selec-
tion of coherence protocols.



Simulation of Modern Parallel Systems: A CSIM-Based Approach 1019
6 MODELING APPLICATION LAYER

WORMulSim can be driven by either synthetic or real
application programs. It is commonly known that the
overall execution time of any parallel application con-
tains two portions: computation time and communi-
cation time. To estimate the communication time,
we use the message passing primitives in distributed
memory programs and global memory accesses and
synchronization operations in DSM programs. The
time delays for these operations are determined by
WORMulSim in a dynamic and integrated manner
during execution, as described in earlier sections.

The computation time of each application is esti-
mated as follows. We first compile the source code
of each application by the DLXcc compiler (Hen-
nessy, 1996) using the optimization level equivalent
to O2 of gcc. Next, we examine the generated ob-
ject code instruction by instruction on each processor
and instrument the program (by inserting instruc-
tions in each basic block of the code) to count the
instructions executed between two successive commu-
nication operations. The computation time between
two successive communication operations is now es-
timated as a product of the instruction count and
the CPI (cycles per instruction) of the processors
of the target system. CSIM hold primitives with
these computation times are now inserted into the
basic blocks of the code. Using such an approach,
WORMulSim maintains the temporal relationships
between computation-communication steps and mod-
els the behavior of an application accurately.

7 PERFORMANCE MEASURES OF
WORMulSim

In this section we present some sample performance
evaluation results for WORMulSim. Two types of re-
sults are presented: communication patterns for dis-
tributed memory systems (one-to-all, all-to-one, and
multiple-multicast) and application-driven evaluation
for two DSM applications. The pattern-based eval-
uations use layers 1-2 of the simulator where as the
application-driven evaluations consider all four layers.

The results were obtained by running the simula-
tor on an 99 MHz HP 735 with HP-UX 9.05 oper-
ating systems. Table 1 shows the execution time of
the simulator to implement all-to-one and one-to-all
communication in an 8x8 distributed memory sys-
tem. The patterns are implemented with point-to-
point send and recv primitives. In the all-to-one pat-
tern 63 nodes send individual messages to node 0.
Communication takes place in the reverse order for
the one-to-all pattern.

Table 2 presents simulation times for evaluating
Table 1: Simulation Times for One-to-all and All-to-
one Communication Patterns on an 8x8 System

One-to-all All-to-one
Message Length Time Time

(in bytes) (in seconds) (in seconds)

4 0.17 0.24
64 2.16 2.71
256 8.30 10.30
1024 33.42 43.27

multiple-multicast pattern. A set of sources partic-
ipate in this pattern where each source sends a mes-
sage to a set of destinations. Number of destinations
and message size were fixed at 32 and 4 bytes, re-
spectively in this experiment. A binomial tree-based
algorithm was used for this pattern. Based on these
results as well as the results in Table 1, it can be
observed that various communication patterns in dis-
tributed memory systems can be evaluated extremely
fast using WORMulSim.

Table 2: Simulation Times for Multiple-multicast

No. of Sources 1 16 32 64

Time (in seconds) 0.40 0.57 1.30 2.81

The next set of results show the time needed to
evaluate the execution of complete applications (at an
instruction-level) on an 8x8 DSM system using WOR-
MulSim. Two applications (Barnes and Radix) were
considered. Barnes is an application, representative
of the class of hierarchical N-body methods used in as-
trophysics, electrostatics, and plasmaphysics, among
others. The communication pattern in Barnes is hi-
erarchical and irregular. Radix is the integer radix
sort kernel, a major task in data base applications.
Table 3 shows the simulation times for these two ap-
plications. These data points indicate that integrated
modeling of parallel systems by considering all four
layers is feasible by using current generation worksta-
tions.

Table 3: Simulation Times for Two DSM Applica-
tions

Application Size Time (in seconds)

Barnes 8K bodies 22560.43
Radix 1M Keys 49597.49

8 CONCLUSIONS AND FUTURE WORK

In this paper we have presented an integrated mod-
eling approach for evaluating parallel systems design.
This approach considers four layers of a parallel sys-



1020 Panda, Basak, Dai, Kesavan, Sivaram, Banikazemi, and Moorthy
tem: interconnection network, messaging layer, pro-
gramming model, and application. An overview of
our simulator testbed, implementing the integrated
modeling approach, together with a set of techniques
for modeling different components in CSIM are pre-
sented. Sample execution times for evaluating com-
munication patterns and applications on our simula-
tor are reported. These measures demonstrate that
simulation-based integrated modeling and evaluation
of parallel systems design is feasible on current gen-
eration workstations.

Many new developments are currently taking place
in parallel system design with respect to interconnec-
tion networks (pipelined flit transfer on links, central-
buffer organization in a switch, stop-and-go flow con-
trol), messaging layer (active messages, get/put), and
programming model (multithreading). We plan to
enhance WORMulSim so that parallel systems de-
sign with these new features can also be modeled and
evaluated.

REFERENCES

Duato, J., S. Yalamanchili, and L. Ni. 1997. In-
terconnection networks: An engineering approach.
The IEEE Computer Society Press.

Hennessy, J., and D. Patterson. 1996. Computer ar-
chitecture: A quantitative approach. 2nd ed. Mor-
gan Kaufmann.

MPI: A Message-Passing Interface Standard. Mes-
sage Passing Interface Forum.

Schwetman H. D. 1998. Using CSIM to model com-
plex systems. In Proceedings of the 1988 Winter
Simulation Conference, 246–253.

Stenstrom P. June 1990. A survey of cache coher-
ence schemes for multiprocessors. IEEE Computer,
23(6):12–24.

ACKNOWLEDGMENTS

This work was supported in part by NSF Grant MIP-
9309627, NSF Career Award MIP-9502294, an Ohio
State University Presidential Fellowship, and an IBM
Cooperative Fellowship. Thanks to several other stu-
dents who participated in developing different com-
ponents of this simulator testbed over a period of
time. They are Shobana Balakrishnan, Vibha Dixit-
Radiya, Sandeep Gupta, I-Lang Hour, Scott King,
T.-H. Lin, Raghu Machiraju, Pradeep Prabhakaran,
Po-Wen Shi, Sanjay Singhal, Shifang Sun, and Yu-
Chee Tseng.

AUTHOR BIOGRAPHIES

DHABALESWAR K. PANDA is an Associate
Professor in the Department of Computer and Infor-
mation Science at The Ohio State University. He re-
ceived his Ph.D. in computer engineering from the
University of Southern California in 1991. His re-
search interests include parallel computer architec-
ture, wormhole-routing, interprocessor communica-
tion and synchronization, networks of workstations,
clustered systems, and high-performance computing.
Dr. Panda is a 1995 recipient of the NSF Faculty
Early CAREER Development Award.

DEBASHIS BASAK received the B.Tech degree in
Computer Science and Engineering from the Indian
Institute of Technology, N. Delhi, India, in 1991 and
the M.S. and Ph.D. in Computer Science from The
Ohio State University, Columbus, USA, in 1992 and
1996, respectively. He is currently part of the ATM
Switch Design Group at FORE Systems, Pittsburgh,
USA. His research interests include inter-processor
communication, interconnection networks, and ATM
switch design.

DONGLAI DAI received an M.S. degree in Com-
puter Science from The Ohio State University in 1994.
He is currently a Ph.D. candidate at OSU. His re-
search interests include design and performance eval-
uation of DSM systems with emphasis on communi-
cation, synchronization, and coherence protocols.

RAM KESAVAN received a B.Tech. degree in
Computer Science & Engineering from the Indian In-
stitute of Technology, Madras in 1993, and an M.S.
degree in Computer Science from The Ohio State Uni-
versity in 1994. He is currently a Ph.D. candidate at
OSU.

RAJEEV SIVARAM received a B.Tech. degree
in Computer Science & Engineering from IT-BHU,
Varanasi in 1993 and an M.S. degree in Computer Sci-
ence from The Ohio State University (OSU) in 1994.
He is currently a Ph.D. candidate at OSU.

MOHAMMAD BANIKAZEMI is a Ph.D. stu-
dent in the Department of Computer and Informa-
tion Science at The Ohio State University. He re-
ceived a B.S. degree in Electrical Engineering from
Isfahan University of Technology, Iran and an M.S.
degree in Electrical Engineering from The Ohio State
University in 1996.

VIJAY MOORTHY received a B.E. degree in
Computer Science & Engineering from Regional Engi-
neering College, Trichy, India in 1996. He is currently
an M.S. student at The Ohio State University.


	SIMULATION OF MODERN PARALLELSYSTEMS:ACSIM-BASED APPROACH
	ABSTRACT
	1 INTRODUCTION
	2 OVERVIEW OF WORMulSim
	3 MODELING INTERCONNECTION NETWORKS
	3.1 Network Resources
	3.2 SwitchingTechniques
	3.3 Routing
	3.4 Topologies

	4 MODELING MESSAGING LAYER
	4.1 Accounting for Messaging Overheads
	4.2 Packetization

	5 DISTRIBUTED SHARED MEMORY PROGRAMMING MODEL LAYER
	5.1 Node Architecture
	5.2 Cache-Coherence Protocol

	6 MODELING APPLICATION LAYER
	7 PERFORMANCE MEASURES OF WORMulSim
	8 CONCLUSIONS AND FUTURE WORK
	REFERENCES
	ACKNOWLEDGMENTS
	AUTHOR BIOGRAPHIES

	page1: 1013
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


