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ample evidence that actual network traffic is frac-
tal in nature in that it exhibits statistical features
over many timescales. In particular, these studies
have demonstrated that measured traffic rates (i.e.,
number of packets or cells or bytes per time unit) in
LAN/MAN/WAN environments, where data trans-
fer rates typically vary between 1.5− 155 Mbps, ex-
hibit surprising scaling properties over a wide range
of time scales; that is, actual network traffic looks
statistically the same in the small (i.e., at small time
scales, on the order of milliseconds or seconds) and
in the large (i.e., at time scales on the order of sec-
onds and beyond), and no natural length of a “burst”
is discernible: at every time scale ranging from mil-
liseconds to seconds to minutes and beyond, bursts
have the same qualitative appearance and cause the
resulting traffic to exhibit fractal-like characteristics.

The observed self-similarity properties in measure-
ments from working packet networks is in sharp con-
trast to commonly made modeling choices in today’s
traffic theory and practice (where the focus remains
on reproducing the bursty behavior of network traffic
time scale by time scale) and challenges traditional
approaches to traffic and performance modeling. At
the same time, it provides new insights into the dy-
namic nature of actual network traffic, gives rise to
novel modeling approaches that take into account the
specific features of the underlying networking struc-
ture and hence allows for plausible physical expla-
nations of observed traffic characteristics in the net-
working context. For example, not only can the ob-
served self-similar nature of Ethernet LAN traffic at
the aggregate level (i.e., aggregated over all active
hosts on the network; see Leland, Taqqu, Willinger,
Wilson 1994) be effectively and parsimoniously de-
scribed and captured by self-similar stochastic pro-
cesses, but it can in fact be reduced to a simple
ON/OFF or busy/idle behavior at the microscopic
level (i.e., for the traffic generated by the individ-
ual hosts), with the distinctive feature that the du-
ABSTRACT

Self-similarity concepts relate statistical properties of
processes observed at different time scales through
judicious scaling of time and space. They have re-
cently been shown to be ideally suited to account for
the surprising scaling properties that measured net-
work traffic (e.g., number of packets/bytes per time
unit) exhibits over a wide range of time scales, from
milliseconds to seconds to minutes and beyond. The
observed self-similar property in measurements from
working packet networks is in sharp contrast to com-
monly made assumptions about the bursty nature
of network traffic and challenges many of the tradi-
tional approaches to traffic and performance model-
ing. In this paper, we illustrate how the self-similar
finding gives rise to new mathematical results that
(i) clear the way for physically-based approaches to
network traffic modeling, (ii) can be combined with
high-performance computing capabilities to yield new
and fast (i.e., linear in the number of observations)
methods for generating self-similar traces, and (iii)
provide new insights into the potential performance
implications that self-similar traffic can have on the
design of network equipment and on the perceived
quality-of-service experienced by some of the domi-
nant applications and services. In particular, study-
ing the cell loss dynamics (rather than the traditional
long-term cell loss rate) observed at an ATM switch
that is fed by self-similar traffic, we discuss the im-
pact of network traffic self-similarity on broadband
services such as VBR video and on popular network
protocols such as TCP/IP.

1 INTRODUCTION

Recent empirical studies of high-resolution traffic
measurements from a variety of different commu-
nications networks (e.g., see Willinger, Taqqu, Er-
ramilli 1996 and references therein) have provided
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rations of the ON- and/or OFF-periods themselves
vary over a wide range of time scales (see Willinger,
Taqqu, Sherman, Wilson 1997). In the WAN context,
the observed self-similar characteristic at the aggre-
gate level (see Paxson, Floyd 1995) can be directly
related to high variability phenomena at the micro-
scopic level, where in this case, microscopic refers to
the level of the individual connections/applications
that generate the overall traffic (e.g., WWW, FTP,
TELNET; for details, see Willinger, Paxson, Taqqu
1997).

In this paper, we first review in Section 2 one of
the main mathematical results in self-similar traffic
modeling that clears the way for physically-based ap-
proaches and provides simple physical explanations
for the presence of self-similar traffic patterns in mod-
ern high-speed network traffic, which are, in addition,
fully consistent with traffic measurements at the dif-
ferent layers in the networking hierarchy. In Section
3, we illustrate how this new mathematical result can
be combined with modern high-performance comput-
ing capabilities to yield novel and highly efficient algo-
rithms for synthetically generating self-similar traffic
traces. We outline the advantages of this approach,
and describe three specific implementations. In Sec-
tion 4, we discuss the application of these methods to
evaluate ATM performance, and to gain insights into
the nature of loss processes with self-similar traffic.

2 SELF-SIMILARITY

2.1 Definitions

For a covariance-stationary process X = (Xi : i ≥
1), consider the aggregated processes X(m) with
level of aggregation m ≥ 1, defined by X(m)(k) =
m−1(X(k−1)m+1 + · · ·+Xkm); k ≥ 1. Self-similarity
concepts relate statistical properties of X to those
of X(m) through judicious scaling of time and space.
Following Cox (1984), we call X exactly self-similar
with self-similarity parameter H if

X
d
= m1−HX(m) , m ≥ 1, 0 < H < 1,  (1)

where the equality in (1) means that X and
m1−HX(m) have the same finite-dimensional distri-
butions. X is said to be asymptotically self-similar if
(1) holds as m→∞. Similarly, we call a covariance-
stationary process X exactly second-order self-similar
or asymptotically second-order self-similar (with self-
similarity parameter H) if m1−HX(m) has the same
variance and autocorrelation function as X, for all
m, or as m → ∞. Fractional Gaussian noise with
1/2 < H < 1 is the standard example of an exactly
self-similar (Gaussian) process with self-similarity pa-
rameter H.

Mathematically, autocorrelations that decay hy-
perbolically (i.e., X exhibits long-range dependence),
a spectral density that exhibits the 1/fα-phenomenon
around the origin, and variances of the arithmetic
mean that decrease more slowly than the reciprocal
of the sample size are different manifestations of the
property that the underlying process X is statisti-
cally self-similar with self-similarity parameter 1/2 <
H < 1. All four notions concern statistical proper-
ties of X on all time scales and relate them through
proper scaling behavior. Intuitively, the most striking
feature of (exactly or asymptotically) self-similar or
(exactly or asymptotically) second-order self-similar
processes with 1/2 < H < 1 is that their aggre-
gated processes X(m) possess a non-degenerate auto-
correlation function r(m) as m → ∞. This behavior
is in stark contrast to the conventional short-range
dependent processes, all of which have the property
that their aggregated processes X(m) tend to second-
order pure noise as m → ∞; that is, they satisfy
r(m)(k) → 0, k > 0. For further details, see Leland,
Taqqu, Willinger, Wilson (1994).

2.2 Physical Explanations

The observed self-similarity properties in measure-
ments from working packet networks is in sharp con-
trast to commonly made modeling choices in today’s
traffic theory and practice (where the focus remains
on reproducing the bursty behavior of network traf-
fic time scale by time scale) and challenges tradi-
tional approaches to traffic and performance model-
ing. At the same time, it provides new insights into
the dynamic nature of actual network traffic, gives
rise to novel modeling approaches that take into ac-
count the specific features of the underlying network-
ing structure and hence allows for plausible physical
explanations of observed traffic characteristics in the
networking context. For example, the observed self-
similar nature of Ethernet LAN traffic at the aggre-
gate level (i.e., aggregated over all active hosts on the
network; see Leland, Taqqu, Willinger, Wilson 1994)
can be reduced to a simple ON/OFF or busy/idle be-
havior at the microscopic level (i.e., for the traffic gen-
erated by the individual hosts), with the distinctive
feature that the durations of the ON- and/or OFF-
periods themselves vary over a wide range of time
scales.

Mathematically, variability over a wide range of
time scales for single random variables such as the du-
rations of successive ON- or OFF-periods of an active
network host can be efficiently modeled using heavy-
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tailed distributions with infinite variance. To this end,
a random variable X with distribution function F is
called heavy-tailed (with index α > 0) if

1− F (x) = P [X > x] ≈ cx−α, as x→∞,  (2)

where c is a finite positive constant that does not de-
pend on x. Such distributions are also called hyper-
bolic or power-law distributions, and include, among
others, the well-known class of Pareto distributions.
Note that the case 1 < α < 2 is of special interest and
concerns heavy-tailed distributions with finite mean
but infinite variance. Intuitively, infinite variance dis-
tributions allow random variables to take exception-
ally large values with non-negligible probabilities and
hence allow for compact descriptions of high variabil-
ity phenomena that dominate traffic-related measure-
ments at all layers in the networking hierarchy.

To explain self-similarity at the macroscopic level
via high variability at the microscopic level, consider
M i.i.d. sources, each with its own reward process
W (m) = (W (m)(t), t ≥ 0), where W (m)(t) = 1 or 0,
depending on whether source m is in an ON-period or
OFF-period, where the distributions of the ON/OFF-
periods satisfy the heavy-tailed property (2) with α =
αON and α = αOFF , respectively. Let

W ∗M (Tt) =

∫ Tt

0

(
M∑
m=1

W (m)(u))du (3)

denote the aggregated (over all sources) cumula-
tive packet counts in the interval [0, T t]. Willinger
et al. (Willinger, Taqqu, Sherman, Wilson 1997;
Taqqu, Willinger, Sherman 1997) determined the sta-
tistical behavior of the stochastic process W ∗M =
(W ∗M (Tt), t ≥ 0) for large M and T and proved the
following fundamental theorem in self-similar traffic
modeling.

Theorem. As M → ∞ and then T → ∞, the
aggregate cumulative packet count process W ∗M =
(W ∗M (Tt), t ≥ 0) satisfies(

W ∗M (Tt)− TM µ1

µ1+µ2
t
)

THL1/2(T )M1/2
→ σlimBH(t), (4)

where H = (3 − min(αON , αOFF ))/2, σlim is a con-
stant, and where the convergence is in the sense of
the finite-dimensional distributions.

Heuristically, the Theorem states that the mean
level given by TM(µ1/(µ1 + µ2))t provides the main
contribution for large M and T . Fluctuations from
that level are given by the fractional Brownian
motion σlimBH(t) scaled by a lower order factor
THL(T )1/2M1/2.
In the WAN context, the observed self-similar char-
acteristic at the aggregate level (see Paxson, Floyd
1995) can also be related to high variability phenom-
ena at the microscopic level. However, in this case,
microscopic refers to the level of the individual con-
nections/applications that generate the overall traffic
(e.g., WWW, FTP, TELNET; for details, see Will-
inger, Paxson, Taqqu 1997).

3 SYNTHETIC TRAFFIC GENERATION

There are over a dozen techniques to generate self-
similar traffic - exact generation using Cholesky de-
composition, the Random Midpoint Displacement
(RMD) method, FFT based generation, the Hosk-
ings method, to name a few. The various techniques
have features that make them well suited for certain
applications (e.g., accuracy in the exact method) but
unsuitable for others (e.g., the exact method is only
practical for short traces). As we demonstrate in the
next section, the class of physically-based generation
methods is well-suited for network simulations, and is
an obvious choice for ATM performance evaluation.

3.1 Physically-based generation

There are several distinct techniques in this class of
generation methods, but the common feature is to
mimic the physical basis of self-similarity in network
traffic by superposing the output of a large number of
individual ON/OFF sources. There are several fea-
tures of this class of generation methods that makes
them well-suited for network simulations: i) they
are efficient - generating N samples requires O(N)
complexity, while several of the other techniques are
O(N2) (e.g., Hoskings method) or worse; ii) they en-
able “on-the-fly” generation of traffic, in contrast to
other methods (notably, the RMD and FFT meth-
ods) which require the generation of the entire trace
before the simualtion can proceed; iii) by varying M
(the number of sources) and T (the aggregation pe-
riod), they offer the complete range of speed vs ac-
curacy trade-offs; iv) depending on the specific con-
text, network simulations require generation at the
level of individual sources, or of limited aggregates,
or of a large number of sources; by definition, this
class of methods incorporates all these scenarios as
special cases v) some methods (e.g., RMD, FFT) oc-
casionally result in negative “arrivals” - while this is
a limitation of all Brownian motion traffic models,
the physically-based generation methods avoid this
problem entirely vi) these methods are well suited for
parallel simulation for e.g., each ON/OFF source can
be implemented on a separate processor.
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We will discuss three specific methods that are
based on the principle of physically-based generation.
The first method is based on simulating an M/G/∞
queueing system, with Poisson arrivals, an infinite
number of servers (i.e., a pure delay system), and
a service time distribution with infinite variance. It
is well-known that the queue length distribution of
such a system is Poisson, and that the queue length
process is LRD (Cox 1984); thus a discrete sampling
of the continuous time M/G/∞ queue will yield an
approximation to a self-similar process. Physically,
this system is an abstract representation of the ar-
rival of TCP connections to a network (which is ob-
served to be Poisson), and the empirically observed
heavy-tailed densities that characterize session dura-
tions. Details of the traffic patterns within a session
(such as TCP dynamics) are abstracted out, and traf-
fic is effectively assumed to arrive at a constant rate
within the session. If the service time distribution is
taken to be Pareto (Equation (2) for x ≥ β; 0 other-
wise), the average value of the queue length process
is:

λβα

α− 1
(5)

and its autocorrelation function is:

r(k) = r0k
−(2−2H) (6)

Speed vs accuracy trade-offs are controlled by the
relative rate of sampling / aggregating the M/G/∞
queue vs the Poisson rate of arrivals and the average
service rate. If the arrival rate relative to the sam-
pling interval is high, in effect many events are being
simulated to generate a sample point.

A second method models the ON/OFF sources ex-
plicitly with heavy-tailed sojourn times. Samples yi
are drawn from a uniform density and transformed to
follow a Pareto density as follows:

τi = c/yi
1/α (7)

For simplicity, the ON/OFF times can be assumed
to follow Pareto distributions with the same expo-
nent between 1 and 2. In the ON state, packets
are once again assumed to arrive at a constant rate.
Physically, each of the sources can be interpreted
as representing a permanent virtual circuit or PVC,
and the ON/OFF periods represent successive idle
and busy periods on the PVC. As before, aggrega-
tion first in sources reduces the effects of higher-order
statistics (in the limit leading to a Gaussian), and
then aggregating in time attenuates non-scaling high-
frequencies (in the limit leading to an exactly self-
similar process).
The third method is a deterministic implementa-
tion of the above method, using the notion of de-
terministic chaotic maps. In this approach, a single
source is modeled by a chaotic map which describes
the evolution of a bounded state variable. A packet is
generated every time the state variable is in a speci-
fied sub-interval. The map and its parameters can be
carefully chosen to model the full range of ON/OFF
behavior (from periodic, to exponential to Pareto, for
example). For the example, the following so-called
“fixed point double intermittency” map generates so-
journ times in the ON/OFF states that are heavy-
tailed (Pruthi 1995):

f1(x) =
x

(1− c1xm−1)1/m−1
,

x ≤ d OFF − state; (8)

f2(x) = 1−
1− x

(1− c2(1− x)
m−1

)1/m−1
,

x > d ON − state. (9)

Aggregate flows can be derived from this map in a
number of ways. The most direct approach is to su-
perpose the outputs of a large number of such maps
(or alternately, one can use invariant densities which
characterize the limiting distribution of the state vari-
able also to describe aggregation). Simulation time
can be sharply reduced by calculating sojourn times
directly, rather than calculating the evolution of the
map at every step. The above fixed point double in-
termittency map exhibits interesting scaling behav-
ior, and one can directly express the map in terms of
an evolution of successive ON/OFF periods.

Nominally, all three methods provide batch gener-
ation of traffic arrivals, and one can distribute the
arrivals within the generation interval in a number of
ways: deterministic spacing, or uniform distribution
(which is equivalent to a process that is locally Pois-
son), or by using RMD (which is fundamentally an
interpolation scheme) to extend the scaling behavior
to within the generation interval. One motivation for
using self-similar traffic models is of course that such
fine timescale structure is relatively inconsequential
in determining performance (see Erramilli, Narayan
and Willinger 1996).

4 ATM PERFORMANCE EVALUATION

In this section, we will illustrate the use of physically
based generation methods in ATM performance eval-
uation. The complexity of ATM traffic controls, the
nature of ATM traffic (mixtures of a number of ser-
vice categories and priority levels) as well as the need
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to estimate stringent performance objectives (e.g.,
cell loss rates of the order of 10−7 or less) makes
ATM performance evaluation particularly challeng-
ing. While recent analytical results e.g, Narayan
(1997), on the queueing behavior induced by self-
similar traffic are promising, in-depth evaluation of
ATM peformance still requires detailed simulations.
Analytical results are useful in validating simulations,
and as discussed below, in extrapolating simulation
results.

4.1 ATM Simulations Using Physically-
Based Generation

Traditionally, ATM simulations have relied on hier-
archical models of traffic behavior, e.g., cell level,
burst level, connection level and so on. Rather
than modeling “one timescale at a time” explicitly,
self-similar traffic models describe the fluctuations
in traffic intensity in a unified, parsimonious man-
ner. Physically-based generation is particularly well
suited for ATM performance evaluation. The efficient
and “on the fly” nature of the generation scheme al-
lows the simulation of long traces needed to estimate
small probabilities adequately. A second aspect of
traffic characterization is the need to model spatial
dependencies in traffic, beyond temporal character-
istics such as correlations. In output buffered ATM
switches, for example, cell losses do not occur until
multiple input ports generate traffic to the same out-
put port for an interval of time. Persistence in spatial
patterns is therefore important to model. Physically
based methods implicitly capture this dependence.
For example, one can represent a single VC as car-
rying traffic from one or more heavy-tailed ON/OFF
sources, with one or more VCs carrying traffic over a
VP. All the traffic in an ON period for a given source
would then be bound to the same output port. In
contrast, generating traffic in bulk and uniformly dis-
tributing it over a number of output ports will lead
to an underestimation of cell losses.

Self-similarity can also be exploited to reduce sim-
ulation time. Nominally, the FBM model is described
by three parameters - a mean rate m, the Hurst pa-
rameter H, and a “peakedness” parameter a that
quantifies the magnitude of fluctuations. In addi-
tion, an ATM queue, at the highest abstraction level,
can be described by a link capacity C and a finite
buffer B. Even this very abstract representation of
ATM traffic contention therefore requires exploration
of cell loss rate as a function of 5 parameters, which
can be prohibitive even with fast traffic generation
methods. Scaling relationships can be used to ex-
trapolate performance from one combination of pa-
rameters to other combinations. Two sets of param-
eters (m1, a1, H, C1, B1) and (m2, a2, H, C2, B2) will
result in the same buffer-level exceedance probability
provided:

C1 −m1

(a1m1)
1/2H

B1
(1−H)/H =

C2 −m2

(a2m2)
1/2H

B2
(1−H)/H

(10)
Thus if the dependence of CLR on the mean rate
(for example) was determined for one combination of
(a,H, C,B) through exhaustive simulations, the CLR
vs mean rate curve for other values of these parame-
ters can be directly estimated from the above scaling
relation. Note that the scaling relation is fairly gen-
eral in that it holds for all values of buffer sizes and
for any self-similar process. The limitation is that
the scaling relation does not apply when the Hurst
parameter changes.

4.2 On the Dynamics of Cell Losses in an
ATM Switch

Cell losses are a primary source of performance degra-
dation in ATM networks, and it is invariably charac-
terized by an average rate in performance evaluation.
One basic lesson from the study of fractal processes is
that average rates are not very meaningful in describ-
ing bursty processes, and cell losses are notoriously
bursty. We illustrate this point in this section using
simulations based on chaotic maps.

Cell losses can have a dramatic impact on applica-
tion level performance, beyond the actual cells lost,
because of the way applications react to losses. The
performance of many video coders/decoders is tightly
coupled not only to average cell losses but also the
manner in which losses occur (i.e., if losses occur in
bursts or are completely random). Similarly, flow
control algorithms like TCP employ techniques to
reduce congestion and various versions of TCP em-
ploy different techniques for handling and recover-
ing from packet losses; and the performance of all
these schemes depends upon the nature of the losses.
Therefore, a more complete characterization of the
cell loss process is essential for evaluating the per-
formance of data transmission (as the performance
of flow control algorithms depends upon the nature
of the losses) and real-time services (as audio/video
coders are optimized for dealing with certain pre-
scribed loss characteristics).

We simulate a simple Permanent Virtual Circuit
on a ATM switch where the output link has a finite
FIFO buffer leading to losses under heavy loads. The
input into the switch is assumed to be self-similar
and is modeled by an aggregation of chaotic maps as
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Figure 1: A Synthetically Generated Traffic Process
Showing Number of Cells per Unit Time on a Per-
manent Virtual Circuit Connection. Note the Highly
Bursty Nature of the Arrivals as well as the Existence
of Significant Power in the Low-Frequency Compo-
nent Indicating Long-Range Correlations.

described in Pruthi (1995). The parameters for the
input traffic are taken from various emperical studies
and in particular the Hurst parameter H is > 0.5.

Figure 1 shows a sample traffic trace into the ATM
switch, specifically, a time series of the number of cells
per unit time (which is some multiple of a cell time
slot). Note the highly bursty nature of the incident
traffic, and in particular note the presence of low-
frequency components which indicate the presence of
1/f-noise characteristic of self-similar processes. This
low-frequency component gives rise to cell losses that
are highly clustered and bursty.

In Figure 2 we simultaneously show both the input
trace to the ATM switch (top) and the resulting loss
process (bottom). Note that the zero of the input
process is marked by a line at the center of the figure
(pointed to by a arrow) and the zero of the cell loss
process is marked by the line at the bottom of the
figure (also pointed to by another arrow). Also note
that both figures are to scale which illustrates that
the higly variable nature of the input can lead to a
large number of losses in a short period of time (al-
though the average number can be very small). For
the illustration shown in this figure the mean num-
ber of cells lost was 3.97 whereas the peak cell loss
was as high as 100. This illustration clearly shows
the highly bursty and clustered nature of cell losses
with self-similar input traffic and the need for new
metrics other than averages to characterize such pro-
cesses. Similar results are obtained for other choices
of parameters.
0

0

Figure 2: The Packet Arrival Process (top panel) and
Resulting Cell Loss Process (bottom) Indicating the
Highly Bursty Nature of Cell Losses. Cell Losses Can
Be Either Zero or Very Large Due to the Highly Vari-
able Nature of the Input Traffic. For Illustration We
Have Shown the Loss Process for H = 0.85 at 80%
Utilization but Similar Results Are Otained Irrespec-
tive of H (in the range 0.5 < H < 1) and Utilization.

Overflow processes in traditional telephony are
described using mean and peakedeness parameters.
However, overflow processes resulting from self-
similar traffic flows have not been studied before and
analytical results are not available at this time. Our
empirical results provide some intuition on the na-
ture of the cell loss process. One description of the
loss process is possible in terms of the well-known
packet train process. To distinguish between inter
cell loss times within a burst, and interval between
bursts, we define nonoverlapping intervals of size T ,
and declare an interval to be lossless if there are no
losses within that interval. A lossy period is defined
as a complement of a loss-less period. For a fixed
T (within a reasonable range, the particular value
does not matter) we count the number of consecu-
tive lossless intervals between loss intervals. Based
upon these counts we generate a cumulative distribu-
tion function which characterizes the inter-loss time.
The simulations indicate that the inter-loss time pro-
cess is indeed heavy-tailed (in the weak sense that
they are heavier than the exponential), as shown by
the empirically determined distribution functions in
Figure 3. For the empirical data set, the Weibullian
distribution (lines) shows a good fit

P (L > x) = αe−γ∗x
β

(11)

to the two plots (points) with the parameter β < 1.
We remark that these are typical results for vari-
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Figure 3: The CDF for the Inter-Loss Intervals; i.e.,
the Probability of the Number of Lossless Intervals
Between Losses > X. Note the Semi-Log Scale.
Shown Are the CDFs for Two Cases (points): (a)
With 500 Buffers and T=10 and 60% Utilization
(top), and (b) With 100 Buffers and T=1 and 70%
Utilization (bottom). Also Shown Are Weibullian
Fits to the Two Curves (lines).

ous parameter values and possess a Weibullian den-
sity. However, given the difficulties of distinguishing
between Weibullian densities and heavier power law
densities over a limited range of data samples, more
extensive analysis is required to establish the nature
of the heavy-tailed distribution. However, the heavy-
tailed nature of loss events clearly shows the need for
evaluating current metrics (such as means and vari-
ances) for QoS and flow control and question their ap-
plicability in quantifying actual losses and their use-
fulness as measures of performance.

4.3 The Effects of Traffic Shaping

It is expected that sessions seeking guaranteed levels
of performance from ATM networks will be required
to offer traffic conforming to a traffic contract, which
is enforced using policing mechanisms. Shaping is re-
quired to ensure that the offered traffic is indeed con-
forming. An issue in ATM performance evaluation
is therefore the impacts of shaping and policing on
traffic characteristics, and on user perceived perfor-
mance. Physically-based generation models provide
direct insights on these issues. Consider a situation
in which each VC can be represented by an individ-
ual heavy-tailed ON/OFF source, and the impacts of
peak rate shaping on such a source. The net effect
of peak rate shaping is to lower the rate at which
traffic is generated in the ON state while prolonging
the duration of the ON state. Applying the results
outlined in Section 2, it is seen that the exponent of
the sojourn times, and hence the Hurst parameter,
is unchanged, whereas the magnitude of fluctuations
(indicated by σlim) is reduced. Note that application
level throughputs are proportionately decreased, and
the net effect of shaping can be to move the through-
put bottleneck from network resources to the shaper
itself. Such an analysis can also be used to evaluate
the impacts of shaping when VC traffic resembles an
aggregate of ON/OFF sources, and for sustained cell
rate shaping etc.

5 CONCLUSIONS

The ubiquity of fractal traffic features spanning many
timescales in network traffic traces, as well as their
relevance in determining network performance, moti-
vates the search for fast synthetic generation meth-
ods. A particularly attractive class of methods for
network performance evaluation is based on the phys-
ical basis of the observed self-similarity in traffic,
which arises from aggregating a large number of
sources with infinite variance busy and idle periods.
This class of generation methods has numerous ad-
vantages in network performance simulations, includ-
ing linear time in speed, suitability for parallel sim-
ulations, non-negative sample values, and versatility.
The methods have been applied in ATM performance
evaluation to evaluate cell loss rates, where scaling
relationships can be used to reduce simulation effort.
Finally, we used simulations to examine the nature
of cell losses, and in particular illustrated the bursty
nature of cell losses which cannot adequately be de-
scribed by long-term average rates. Future work in
this area could include optimized methods for real-
time generation at OC-12 rates and above (for use
in load boxes), techniques to exploit self-similarity in
performance simulations further (for example, using
“coarse graining” to reduce simulation time), paral-
lel simulation methods, and engineering applications
(e.g., evaluating routing vs switching trade-offs).
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