
AUTOMATING THE METAMODELING PROCESS

Don Caughlin

Space and Flight Systems Laboratory
University of Colorado at Colorado Springs

Colorado Springs, Colorado 80933-7150, U.S.A.
ABSTRACT

Model abstraction using metamodeling has demon-
strated the capability to facilitate software reuse,
large scale model integration, verification, and val-
idation. Once restricted to static representations
that represented the input-output behavior of mod-
els, research has developed the capability to build
dynamic metamodels. This capability results from a
new approach supported by a taxonomy of metamod-
eling problems, solution structures, and metamodel-
ing methods. The development of the metamodel,
however, still requires a thorough understanding of
model abstraction, reduced order modeling, and sys-
tem identification. In addition, even with the most
robust procedures it is possible that the desired data
generated by a simulation model will not meet the
assumptions or numerical requirements of the proce-
dure. Consequently, there is a requirement for a ro-
bust metamodeling support system that will support
the subject matter expert. Automation of the meta-
modeling process will assist the analyst who is not
familiar with model abstraction techniques but needs
to reuse a piece of code, integrate different models, or
verify a new version of a simulation. This paper de-
scribes the design of a Metamodeling Support System
that provides this automation.

1 INTRODUCTION

A metamodel is a mathematical approximation of the
system relationships defined by a more detailed model
(Caughlin et al. 1997a). Caughlin (1995) introduced
a structured approach to metamodeling that sepa-
rated the procedure into two steps: problem defini-
tion and an iterative metamodeling process. While
we can generate a metamodel from data generated
by any model structure, the discussion in this paper
is limited to metamodels of simulations.

We defined a metamodeling problem as the direct
sum of the metamodel requirements and the model
(simulation) to be approximated. To support this def-
inition, the problem definition step first determines
the purpose of the metamodel. In the definition of
this purpose we identify the input and response that
we are interested in and determine the important
characteristics of these data. Also for this purpose,
we define the region of interest, validity measures and
specify the required validity. In addition to meta-
model requirements, problem definition addresses the
second part of the direct sum and characterizes the
simulation that is the subject of the metamodel. This
characterization provides data that can be used to
match the simulation’s characteristics to the meta-
model structure and identification method.

The second portion of the structured approach was
an iterative metamodeling process which consists of
the following steps (Caughlin 1997c):

1. Select an Experimental Design

2. Run the Simulation

3. Collect Data

4. Select a Metamodel Set

5. Select Identification Methodology

6. Generate the Metamodel

This approach supported development of dynamic
metamodels that exhibit memory and can model phe-
nomena where the past influences the future. In ad-
dition, a more robust identification procedure was de-
veloped that could be applied to a broader range of
problems than existing techniques.

The revised process outlined above provides a di-
rect method of sorting through the myriad of de-
cisions necessary to develop a dynamic metamodel
and reduces the number of independent decisions re-
quired to develop the metamodel. This process is
supported by a new taxonomy of problems, struc-
tures, and methods and set of computer aided rou-
tines that match the problem definition with the sim-
ulation characteristics.



Automating the Metamodeling Process 979
Even with a new approach supported by a taxon-
omy of metamodeling problems, solution structures,
and metamodeling methods, the development of the
metamodel still required a thorough understanding
of model abstraction, reduced order modeling, and
system identification.

In addition, even with the most robust procedures
it is possible that the desired data generated by a
simulation will not meet the assumptions or numeri-
cal requirements of the identification procedure.

Consequently, the widespread use of metamodeling
as a method of model abstraction requires an auto-
mated support system to assist the analyst. This pa-
per describes research into the design of a prototype
Metamodeling Support System (MSS) to automate
model abstraction. The prototype system will assist
the analyst who is not familiar with model abstrac-
tion techniques but needs to reuse a piece of code,
integrate different models, or verify a new version of
a simulation.

2 DEVELOPMENT AND SYSTEM
OVERVIEW

The MSS program provides a semi-automated sup-
port system to assist an analyst/modeler in develop-
ing a metamodeling abstraction of a more detailed
model. This system supports the metamodeling ap-
proach outlined above and covered in the references.

2.1 Technical Program

The MSS development program is divided into two
development phases:

1. Build 1

2. Prototype Metamodeling Support System

The MSS Build 1 establishes the baseline and pro-
vides the following capabilities:

1. A metamodeling system based on an object-
oriented architecture that is capable of future
expansion.

2. The capability to analyze the source code, gen-
erate and run the simulation, and gather data.

3. Data storage and analysis routines.

4. Metamodeling routines and procedures to gener-
ate and verify the metamodel.

In Build 1, the MSS provides an executive and au-
tomated routines to analyze and run the simulations
to gather the data for the metamodel. Existing iden-
tification algorithms will be incorporated into this
system to provide the basic capability to generate
metamodels.

The automated system support discussed above
will be provided by an expert system. An expert
system is the union of declarative knowledge and in-
ference. The knowledge base contains the declarative
knowledge. The inference engine controls the appli-
cation of that knowledge. It is an algorithm that
dynamically directs or controls the system when it
searches the knowledge base.

The Prototype Metamodeling Support System is a
near-term upgrade of the basic Build 1 and adds the
following capabilities:

1. An expert system.

2. Supporting Knowledge Base to support decisions
required to develop metamodels.

Documentation for the program is provided
in a System/Subsystem Specification (SSS), Sys-
tem/Subsystem Design description (S/SDD), System
Software Design Description (SDD).

2.2 System Capabilities

The system must provide the general housekeeping,
expert system, and knowledge base to support the
objectives and decisions outlined in the metamodeling
approach shown in Table 1.

There are four general capabilities that must be
provided by this system. These areas are the analysis
of the simulation, the correlation of the simulation
and data with a metamodel structure and identifi-
cation method, generation of the metamodel, and fi-
nally, the analysis of the metamodel.

First, the system needs to handle the general house-
keeping associated with any experimental setup such
as: user preferences; cataloging the input and output
data; associating the data with parameter selections;
and tracking the status of the metamodeling session.

Secondly, the system needs to support problem def-
inition. This includes definition of the metamodel
purpose and the analysis of the simulation.

Once the metamodeling problem has been defined,
the system must support selection of a metamodel
representation (structure) and method of identifica-
tion. Given a structure and method, the system must
now parameterize the metamodel. Lastly, the system
should support the analysis of the metamodel. These
capabilities are covered under the metamodeling pro-
cess.

Specific, more detailed, requirements to support
these capabilities were provided in a Statement of
Work, previous research, and an analysis of current
trends in model abstraction.



Table 1: Metamodeling Approach

980 Caughlin
MAJOR AREA OBJECTIVE DECISION/ACTION

Metamodel Purpose Scope
Use

Problem Definition Simulation Characteristics External Characteristics
Internal Characteristics

System Representation System description
Identification Methodology System class

Metamodel Structure
Metamodeling Identification Methodology
Process Generate Experimental Design

and verify metamodel Run the Simulation
Collect Data
Generate the Metamodel
Verify the Metamodel
3 DESIGN PROCESS

The fact that the MSS must interact with a variety of
different legacy simulations with unknown structure
dictates a robust, modular, scaleable, and extensible
design. A point design would not be able to adapt
to different model or simulation structures or handle
the different types of analysis to be performed. This
dictate, and the fact that this was a software develop-
ment, seemed to demand an Object-Oriented design
approach.

System capabilities, however, stem from the re-
quirement to support a structured sequential process.
The functionality is process related and does not re-
side in or be derived from any of the objects that exist
in the environment. Also, the MSS is not a compo-
nent of another system but a system of systems under
the supervisory control of the MSS executive. This
analysis supports a structured Systems Engineering
design approach.

While Systems Engineering provides a high-level
functional architecture, Object-Oriented (OO) Mod-
eling and Design generates a set of lower level func-
tions that should (more properly) be called methods
or operations. Unfortunately, it is usually not possi-
ble to distribute the methods of the OO classes among
the different functional elements that result from Sys-
tems Engineering. Consequently, at this point there
are two incompatible structures. This issue was ad-
dressed in Caughlin (1997b). The design of the MSS
followed the method proposed in that paper. A sum-
mary of the method follows:
1. Follow the standard Systems Engineering pro-
cess generating the system capabilities with a
functional decomposition and allocation of re-
quirements.

2. Initiate the Object-Oriented Modeling and De-
sign process identifying the underlying objects
that are basic to the problem at hand. Iden-
tify object attributes, operations (methods), re-
lationships and associations. Develop a class
structure, prototype code, and data dictionary.

3. Beginning with system capabilities (require-
ments), define operating “States and Modes” of
the system that are consistent with the func-
tional architecture. Display these states and
modes in a flow chart.

4. Using the functional capabilities (architecture)
and the States and Modes Flow Chart, connect
the functionality that comes from the Systems
Engineering process to the objects that result
from Object Modeling Techniques by the def-
inition of abstract “manager” and “controller”
objects that connected the “top down” function-
ality with the “bottom up” objects.

4 SYSTEM DESIGN

Presentation of the design of the MSS is organized
under Requirements Analysis, Functional Design,



Automating the Metamodeling Process 981
Object-Oriented Design, and KnowledgBase Design.
This section concludes with the resulting System Ar-
chitecture. Requirements Analysis and Functional
Design followed the standard Systems Engineering
Process (EIA/IS-632 1994).

4.1 Requirements Analysis

An analysis of the required functionality and the pro-
cess that the MSS is to support led to 511 require-
ments. Requirements Traceability and Management
was accomplished with a CASE tool – Requisite Ver-
sion 2.0.18.

System Capabilities were organized as follows:

1. Interface Capabilities

(a) User Login

(b) Session Establish/Restore

(c) Session Configure

(d) Select Operation

2. Problem Definition Capabilities

(a) Metamodel Purpose

(b) Simulation Characteristics

3. Metamodel Capabilities

(a) Select Metamodel Set

(b) Select Identification Method

(c) Select Experimental Design

(d) Run Model

(e) Fit Metamodel

(f) Verify Metamodel

Additional (nonfunctional) capabilities and con-
straints were also identified. Internal and external
interfaces were defined.

4.2 Functional Design

System capabilities were decomposed and allocated to
functions based on the following required States and
Modes: Login (Standby); Configure (Define) Session;
Problem Definition; Metamodel; and Maintenance
States. The operating modes are “Manual,” “As-
sisted,” and “Automatic” and apply primarily to the
Problem Definition and Metamodeling States. These
modes determine the level of support provided by the
Expert System.
4.2.1 States and Modes

Login (Standby) State. This is the initial state of
the system prior to login to the MSS. In this mode,
the system will determine who the analyst is, which
process is to be modeled, and the status of the process
at login. This state allows the analyst to suspend a
session and come back to it at a later time. This state
operates only in the manual mode although defaults
are provided.

Maintenance State. This state allows the various
maintenance functions. This state supports file and
knowledgebase maintenance. In addition, user pro-
files and preferences are established in the mainte-
nance state. Again, this state operates only in the
manual mode.

Configure Session State. In this state, the analyst
defines the objectives of the session. Here we identify
the simulation that will be modeled and provide the
data that will support the Problem Definition State.
This state can operate in both the manual and as-
sisted mode and cannot be exited until all of the data
is provided.

Problem Definition State. The Problem Definition
State can function in both the manual and assisted
modes. This state provides all of the data defined as
a priori information. There are two major areas that
are addressed. The first area is the purpose of the
metamodel. The second area is the characteristics of
the simulation that is to be metamodeled.

Metamodel State. The Metamodel State provides
the ability to complete the metamodeling procedure.
These steps include selection of the metamodel set
and identification method, selection of the experimen-
tal design, running of the model, fitting the meta-
model, and finally, verification of the metamodel.
This state operates in all modes.

4.2.2 Functions

Analyzing the Required Capabilities with respect to
the States and Modes resulted in the following func-
tions for the requirements allocation.

User Interface (UI). The UI component provides
the multimedia control and display interface to the
user. It interprets and error checks user inputs and it
provides graphical, text and video displays, and au-
dible alarms. It displays out-of-tolerance conditions
visually and, if it is a critical parameter, audibly.

Data Manager (DM). The DM provides all of the
functionality associated with the management of MSS
data. As such, the DM supports data requests from
all other functions. Data archiving is accomplished on
a Load/Save basis as opposed to a data entry basis.



982 Caughlin
Scenario Manager (SM). The purpose of the SM is
to structure and manage the data used to generate the
metamodel. The SM provides three different types of
support to the MSS.

First, the Scenario Manager supports data gather-
ing for the problem definition steps of the process.
At this stage, the Scenario Manager determines prior
information for construction of the metamodel.

Next, the Scenario Manager uses the data from
problem definition to generate input data for the sim-
ulation. The combination of simulation input and
output becomes the input for the identification rou-
tines that generate the metamodel. The SM manages
the input and output data (through the Data Man-
ager) that will be used to generate a metamodel.

Lastly, the Scenario Manager provides the ability
to link the various functions to complete the meta-
modeling process. Development of the metamodel is
a multi-stage process. In the first stage we deter-
mine the purpose and characteristics of the simula-
tion. Complete determination of the simulation char-
acteristics, however, requires the output data from
the simulation which is provided by the Metamodel
Manager. Consequently, the process moves from the
Scenario Manager to the Metamodel Manager and
back to the Scenario Manager. The last type of sup-
port provides by the SM is in tracking this interac-
tion.

These stages are iterative and the sequence of the
operation can vary depending on the data and the
outcome. Based on data from the Problem Status
File generated by the Session Manager (discussed be-
low), the Scenario Manager first determines the sta-
tus of the solution and what data is required to pro-
ceed to the next step of the metamodeling process.
From this analysis, the proper SM response is se-
lected.

Metamodel Manager (MM). The MM provides the
capability to generate the metamodel.

The first step is to postulate a metamodel. The
MM assists with the initial definition of the meta-
model structure and guides the selection of the meta-
model set. The MM should provide a recommended
metamodel set based on the problem and the simula-
tion that is to be metamodeled.

Given the metamodel set, the next decision is the
selection of the ID methodology. When we have es-
tablished the metamodel set we should compare the
metamodel set to the metamodeling problem to in-
sure consistency of the metamodel problem. With
the metamodel set and ID methodology determined,
we use this information to define requirements for the
Experimental Design. These selections constrain the
Experimental Design and define the Input-Output
Data requirements.
The MM subsystem should provide a recommended

experimental design based on the problem definition,
metamodel set, and ID methodology.

Once the experimental design is defined it should
also be compared to the metamodel problem to insure
that the design and problem are consistent. Based on
the metamodel set, ID methodology, and Experimen-
tal Design, we can identify appropriate analysis tools.
This step also identifies preprocessing data analysis
required to verify the results of the design.

Once the metamodel set, ID methodology, Experi-
mental Design, and analysis tools are defined the sim-
ulation controller can configure data capture files and
then run the simulation to generate the output data.
The I/O must be configured for each simulation along
with the simulation run times and message passing.
At this time we load simulation and configuration files
and execute the simulations as defined.

This data must be analyzed (before the generation
of the metamodel) to insure that it meets the restric-
tions of the method (Belsley 1980, Ljung 1987). In
general, we:

1. Assess for collinearity

2. Remove trends and Outliers

3. Select useful portions

4. Filter to enhance important frequency ranges

The MM now gets metamodel data files and meta-
model parameters using the data manager. With the
data from the simulation, the metamodel set and the
ID methodology, the MM now fits the metamodel to
the data. After generation of the metamodel the MM
then must verify that the metamodel meets the re-
quirements of the problem definition.

Session Manager (SEM). The SEM manages the
status of the current session. First the SEM must
identify the user and their status as Expert / Ad-
vanced / Novice. The SEM then gets a general idea
of what the objective of the session. From these ob-
jectives the SEM determines if special resources are
required.

The SEM also provides the ability to suspend ses-
sions, recover from, and continue with a previous ses-
sion if requested.

The SEM then configures and manages the session
and the session state via the Login and Session State
Files.

We have discussed capabilities (requirements) and
a functional decomposition and allocation that meets
these requirements. Rather than proceeding with the



Automating the Metamodeling Process 983
design process, our methodology dictates an Object-
Oriented approach to the problem. We discuss this
analysis next.

4.3 Object-Oriented Design

Beginning with the same problem statement, applica-
tion of Object-Oriented Modeling and Design to the
requirements results in the following primary objects:

1. Analyst

2. Project

3. Problem

4. Simulation

5. Metamodel

6. Metamodel Set

7. Metamodel Parameters

8. Data

This analysis continued with identification of ob-
ject attributes, operations (methods), relationships
and associations. A class structure, prototype code,
and data dictionary was developed. Object-Oriented
Modeling and Design was supported by OMTool that
was developed by General Electric Advanced Con-
cepts Center and implements Object-Oriented Model-
ing and Design as defined by Rumbaugh (Rumbaugh
1991).

In a typical OO methodology, the next Analysis
step is to develop the dynamic model by preparing
scenarios of typical interaction sequences, identifying
events that occur between objects, preparing an event
trace for each scenario and an event flow diagram for
the system. A functional model is used to describe
the transformation from input to output by deter-
mining input and output values and developing data
flow diagrams to show functional dependencies and
identify constraints.

In the design methodology that we follow, however,
this data is provided by the Systems Engineering pro-
cess. We do not continue with the OO design but use
these object classes to populate the “player” or lower
level of the architecture.

Manager objects are defined that implement the
functionality defined by the system states and modes.
The player level identifies the objects that must be
addressed, Intermediate level “controller” objects are
designed to make the connections between the man-
ager and player levels.
4.4 KnowledgBase Design

Expert System support is provided for two purposes.
The first purpose is to assist in execution of the Meta-
modeling process as we have defined it. The process
can be executed using many different sequences. The
Expert System constrains this sequence to insure that
required information is available at each step and that
results conform to assumptions.

The second area of support is assistance in deci-
sions required by the process. Here, we help with
selection of the metamodel structure, identification
method, analysis tools, etc. This is the Decision As-
sistance Knowledgebase.

The Metamodeling Process Knowledgebase is part
of the original specification since it’s contents are well
known. The MSS contains the ability to record and
incorporate the metamodeling results. The Decision
Assistance Knowledgebase will be developed as the
MSS is used to generate metamodels by recording de-
cisions and the effectiveness of these decisions.

4.5 System Architecture

The software architecture is a framework for the in-
terconnection of subsystems within some major sys-
tem - in this case the MSS. Each of these component
systems are defined by their capabilities and are com-
posed of functions (subsystems) which in turn are a
collection of objects (modules).

The MMS is composed of six levels: the top level,
the manager level, the component level, the player
level, the data level, and the library level (only 4 are
shown in Figure 1). The top level encapsulates the
abstraction of the MMS and supports the four se-
quential processing steps: system login, configure the
session, define the metamodeling problem, generate
and verify the metamodel. The ability to maintain
the system is also provided. This level is described
by the ”states and modes” of operation.

This functionality is implemented by subsystems
derived from the functional allocation by objects of
the “manager class.” This class is expected to com-
pletely support MMS capability requirements in these
five processing steps. This class of components are in-
stantiated as the different objects required to provide
this functionality. These objects are the User Inter-
face (UI), Data Manager (DM), Scenario Manager
(SM), Metamodel Manager (MM), and the Session
Manager (SEM).

The lower “player” level consists of the objects that
are generated by the Object-Oriented Design. The
player level encapsulates the entity object classes that
are the inputs and products of the MSS such as the



984 Caughlin
simulations, metamodeling problems, and metamod-
els. These are the entities that will be generated
and/or manipulated in the course of the generation
of the metamodel.

The connection between the manager and player
levels is accomplished by the definition of an interme-
diate level. This intermediate level is the collection of
subsystems that perform the various operations of the
MSS. In the description of the system, they are called
“controllers.” The component level “controllers” pro-
vide the connection between the managers and player
objects.

Table 2 below shows the “Manager” class, the Sys-
tems Engineering functions performed by the class
and the objects of the OO design from OMT that are
affected.

A data level consists of the data objects required
to manage the processes and control the products.
Lower level library objects also exist that are used to
implement standard functions that are not explicitly
named.

5 IMPLEMENTATION

Many of the components required to meet the func-
tional requirements of the MMS already exist.

An existing code analyzer can be used to analyze
the simulation characteristics. Data can be efficiently
stored in any number of relational databases (e.g. ex-
ternal simulation characteristics are already provided
in a SIMTAX database (Anderson, et al. 1989).
. .

Login
Configure
Session

Problem
Definition

MetamodelMaintenance

MMS

User
Interface

Data
Manager

Scenario
Manager

Metamodel
Manager

Session
Manager

States
and

Modes

Managers

Display Interface
Expert
System

Session
Manager

Controllers

Simulations Metamodel Problems Metamodels Players

Figure 1: MMS Architecture

In addition, there are a number of expert systems
that could be used to provide automation support.
Identification and analysis routines are available as
well as a number of numerical engines.

Rather than develop all of the components of the
MSS, the decision was made to develop a shell or
mainframe that would integrate and manage both
new and existing components.

This shell was developed with Microsoft Develop-
ment Studio and C++ language using the Microsoft
Component Object Model, the Microsoft Foundation
Class Library, and the DAO database interface. MSS
targets the Windows NT operating system.

The OO design was accomplished in OMTool.
These files will be integrated into the Microsoft De-
velopment Studio.
Table 2: Connection Between Objects and Functions

MMS MANAGER FUNCTIONALITY (SE) PLAYER (OMT)

User Interface Interface Analyst
Data Manager Interface Data
Scenario Manager Problem Definition Problem

Simulation
Metamodel Manager Metamodel Metamodel

Metamodel Set
Metamodel Parameters

Session Manager Interface Project



Automating the Metamodeling Process 985
The Expert system is provided by the C Lan-
guage Integrated Production System (CLIPS) de-
veloped by the Software Technology Branch (STB),
NASA/Lyndon B. Johnson Space Center. CLIPS is
designed to facilitate the development of software to
model human knowledge or expertise. Rules and
objects form an integrated system since rules can
pattern-match on facts and objects. In addition to
being used as a stand-alone tool, CLIPS can be called
from a procedural language, perform its function, and
then return control back to the calling program.

CLIPS was embedded into the MSS as a DLL us-
ing a Wrapper Class provided by Mark Tomlinson
(MTOMLINS@us.oracle.com).

The numerical engine is provided by MATLAB.
Identification and analysis tools are incorporated as
MATLAB “M” files.

Documentation for the system is provided in the
form of Windows help files which are assessable on-
line.

6 SUMMARY

This paper has described the design and capabilities
of a prototype Metamodeling Support System that
will assist the analyst who is not familiar with model
abstraction techniques but needs to reuse a piece of
code, integrate different models, or verify a new ver-
sion of a simulation.

We presented an outline of the capabilities required
to support the Metamodeling process and references
where details may be found.

We demonstrated the use of a design process that
integrated Systems Engineering and Object-Oriented
Modeling and Design to provide a system architec-
ture that meets functional requirements and accom-
modates an Object-Oriented framework.

Unfortunately, the scope of the paper does not al-
low a complete description of implementation details.
A summary was provided.

ACKNOWLEDGMENTS

This research was partially supported by Rome Labo-
ratory under Contract No. F30602-96-C-0040/P0001.

REFERENCES

Anderson, L. B., et al. 1989. SIMTAX, A Tax-
onomy for Warfare Simulation, Workshop report
taken from the Catalog of Wargaming and Military
Simulation Models, 11th Edition, Force Structure,
Resource, and Assignment Directorate (J-8), The
Joint Staff, Washington, DC 20318-8000.
Belsley, D, E. Kuh, R. Welsch. 1980. Regression
Diagnostics. New York:John Wiley & Sons.

Caughlin, D. 1995. Final Report, Modeling Tech-
niques and Applications, Volume I. USAF Con-
tract F30602-94-0110, Rome Laboratory/IRAE, 32
Hangar Rd, Griffis AFB, NY 13441-4114.

Caughlin, D.,A. F. Sisti. 1997a. “A Summary of
Model Abstraction Techniques”. In Enabling Tech-
nology for Simulation Science, Alex. F. Sisti Edi-
tor, Proceedings of the SPIE, Vol. 3083:14–21.

Caughlin, D. 1997b. “Integration of Object-Oriented
and Functional Modeling and Design Methods.”
In Enabling Technology for Simulation Science,
Alex. F. Sisti Editor, Proceedings of the SPIE, Vol.
3083:89–99.

Caughlin, D. 1997c. “Model Abstraction Via Solu-
tion of the Inverse Problem to Define a Reduced
Order Model”. Accepted for publication in SCS
Transactions

EIA/IS-632. 1994. EIA Interim Standard, Systems
Engineering. Electronic Industries Association.

Ljung, L. 1987. System Identification: Theory for the
User, New Jersey:Prentice-Hall.

Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen. 1991.
Object-Oriented Modeling And Design. New Jer-
sey: Prentice Hall.

AUTHOR BIOGRAPHY

DON CAUGHLIN is Acting Director of the Space
and Flight Systems Laboratory at The University of
Colorado at Colorado Springs. He received a BS in
Physics from the Air Force Academy, an MBA from
the University of Utah and MS and Ph.D. degrees in
Electrical Engineering from the University of Florida.
His research interests include modeling and simula-
tion, system identification, pattern recognition and
intelligent control. Dr. Caughlin has over 28 years
experience as an experimental test pilot, chief sci-
entist, research scientist, program manager and was
also Associate Dean of the School of Engineering at
the Air Force Institute of Technology. He is a senior
member of IEEE and AIAA and a member of SCS
and the Society of Experimental Test Pilots.


	AUTOMATING THE METAMODELING PROCESS
	ABSTRACT
	1 INTRODUCTION
	2 DEVELOPMENT AND SYSTEMOVERVIEW
	2.1 Technical Program
	2.2 System Capabilities

	3 DESIGN PROCESS
	4 SYSTEM DESIGN
	4.1 Requirements Analysis
	4.2 Functional Design
	4.3 Object-Oriented Design
	4.4 KnowledgBase Design
	4.5 System Architecture

	5 IMPLEMENTATION
	6 SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 978
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


