
A SIMULATION TESTBED FOR COMPARING THE
PERFORMANCE OF ALTERNATIVE CONTROL ARCHITECTURES

Paul Rogers
Robert W. Brennan

Division of Manufacturing Engineering
Department of Mechanical Engineering

University of Calgary
2500 University Drive NW

Calgary, Alberta T2N 1N4, CANADA
re.
ABSTRACT

This paper addresses the issue of appropriate control
architectures for automated manufacturing systems. An
experimental testbed for the evaluation of alternative
control architectures is described that integrates discrete-
event simulation (implemented with Arena) and a
modular object-oriented state/control development
environment (implemented in C++). As well, manufac-
turing system performance results for three test control
architectures are presented.

1 INTRODUCTION

The appropriate choice of a control architecture or,
decision-making structure, is a central issue in manufac-
turing systems control research. Various types of distrib-
uted control systems have been proposed ranging from
hierarchical control architectures to non-hierarchical or
heterarchical control architectures. Although a consider-
able amount of research has been done in this area, very
littl e work has been done on quantitative comparisons
between different control architectures. In particular,
there is a lack of research that compares the performance
of alternative control architectures designed to control
the same manufacturing system.

In this paper, we wil l present an experimental
testbed that is being used to investigate the performance
of alternative control architectures for a given manufac-
turing system. A generic structure will be presented that
allows any type of manufacturing system, simulated
using the Arena discrete-event simulation software, to be
controlled by various decision-making structures devel-
oped in an object-oriented programming environment.

The next section wil l provide some background on
the manufacturing control problem by first providing a
brief review of the research that has been done in this
area, then by discussing several unresolved issues that
follow from the literature. In §3, the details of the
experimental testbed will be discussed. In order to allow
various types of manufacturing systems and control
architectures to be investigated, a modular approach has
been used.

An example of a series of experiments performed
using the testbed is provided in §4. Three basic control
architecture types are investigated in this section that are
intended to be representative of the range of control
architectures that have been investigated in the literatu

Finally, we conclude with a discussion of the current
work that is being performed with the manufacturing
control architecture experimental testbed that is intended
to bridge the gap between the work on theoretical control
architectures and the actual application of these control
architectures to real manufacturing control problems.

2 BACKGROUND

2.1 Manufacturing Control Architectures

Recently, there has been a considerable amount of work
done in the area of manufacturing systems control. This
work has focused on getting away from centralized forms
of control (i.e., a single control computer) and has moved
towards more decentralized forms of control (i.e., involv-
ing multiple decision-makers which can be arranged in
various architectural forms).

A primary issue that relates to the decentralized
approach to control is the issue of appropriate control
architectures for these systems: what decision-making
structures result in a modifiable, reliable, and fault-
tolerant system? Experience has shown that traditional,
centralized architectures can be quite inflexible to change
and provide littl e fault tolerance. This has led industrial
and academic researchers to the development of a
spectrum of decentralized control architectures.

e

A Simulation Testbed for Comparing Alternative Control Architectures 881
At one end of the spectrum lie the hierarchical
control architectures with theoretical foundations in
organizational theory and large-scale system control
theory (Mesarovi� et al. 1970; Singh 1980). At the other
end lie non-hierarchical, or "heterarchical", structures
arising from more recent developments in distributed
data processing systems (DDPS) (Enslow 1978) as well
as advances in artificial intelligence (AI), and object-
oriented programming (O-OP). Falling between these
two extremes are systems similar to those described by
Jones and Saleh (1990) that incorporate the peer-to-peer
relationships of non-hierarchical control and the task
decomposition of hierarchical control.

The review of the literature in this area has shown
that existing industrial and academic research on
manufacturing system control has focused on qualitative
comparisons of alternative structures and, although this
approach has proven the concept of heterarchical control,
it is agreed among researchers that quantitative compari-
sons of the various control architectures are required
(Dilt s et al. 1991; Duff ie and Piper 1986; Duff ie et al.
1988).

2.2 Unresolved Issues

A number of questions follow from the research that has
been conducted in the area of manufacturing control
architectures. Of primary importance is the fundamental
question concerning the choice of control architecture:
i.e., is it possible to determine whether a specific control
architecture is appropriate for solving a given manufac-
turing system control problem? In other words, can
methods be generated to determine the "best" control
architecture for a given problem?

In order to gain insights into this question, it is
important that quantitative and objective comparisons
between alternative control architectures are made. With
this in mind, this paper is concerned with providing a
description of the important first step that was taken to
achieve the objective of providing an objective and
quantitative comparison of alternative control architec-
tures: i.e., the development of an experimental testbed
that can be used to investigate the relative performance
of any variety of manufacturing control architectures
with any type of manufacturing system.

In the sections that follow, a description of this
experimental testbed wil l be given as well as an example
of experiments with a single manufacturing system using
this approach.

3 DEVELOPING AN EXPERIMENTAL
TESTBED

A modular experimental testbed has been developed to
conduct the experiments as is shown in Figure 1.
Figure 1: The Experimental Testbed

This testbed consists of two main modules:

i) a discrete-event simulation model and communica-
tion shell, intended to emulate the operation of the
real manufacturing system, and

ii) a state/control module, used to implement alternativ
decision-making schemes.

The simulation model is written in the Arena
programming language (Pegden et al. 1995), and can be
modified relatively easil y to represent alternative
manufacturing system configurations. The Arena statis-
tics collection faciliti es make it easy to collect and
analyze a wide range of performance information on the
emulated system while the animation capabilit y is useful
for visualization of system behavior.

The Arena software package allows application
solution templates to be developed which can be thought
of as software "containers" that encapsulate program
logic that may be re-used in various simulations. For this
application, the simulation logic that is associated with
inter-process communications is implemented using an
Arena application solution template. Custom message
interface modules were developed that make it easier to:
(i) communicate with the communication shell, and (ii)
collect and display statistics on communications. The
Arena application solution template was developed to
encapsulate communications logic in order to increase
the modularity of the experimental testbed. As a result,
this logic is relatively easy to implement in a simulation
and the logic is portable to other manufacturing system
simulations in Arena.

The Arena model is augmented with additional
ANSI C routines which allow it to communicate with the
separate control module through input/output streams
(implemented using UNIX or INET sockets). This
allows any important state changes in the emulated
system to be reported to the control module and reactive
control decisions to be communicated back to the
system.

The state/control module, which is used to imple-
ment the test control architectures, is implemented in the
C++ programming language (Stroustrup 1993). The
modular nature of this experimental testbed has resulted

Discrete-Event Simulation
 ARENA

Communication
Model

Control
Model

UNIX
Socket

Communication
Shell (ANSI C)

State/Control
Module

882 Rogers and Brennan
in a system that has the abilit y to deal with any type of
manufacturing system (e.g., by changing the Arena
model) and any type of control architecture (e.g., by
changing the control model). Figure 1 illustrates the
basic structure of the testbed. In the following sections,
the elements of the experimental testbed will be
described in more detail and examples of the testbed
operation will be given.

3.1 The Simulation Model

Since the majority of the control architecture work
described in the literature is concerned with part schedul-
ing in flexible manufacturing systems (FMS) (Kimemia
and Gershwin 1983; Gershwin 1989) and cellular
manufacturing systems (Jones and Saleh 1990; Davis et
al. 1991; Duff ie and Prabhu 1994), the system that is
investigated for this research is concerned with the
scheduling of parts through a simple manufacturing cell.
The simulated manufacturing cell i s similar in structure
to the manufacturing cell that is investigated by Duff ie et
al. (1988).

The system that is investigated here consists of a
number of automatic machines connected by a material
handling robot as illustrated in Figure 2. Each of the
machines in the system is capable of performing various
operations depending upon its tool setup, which is
limited by the number of tools that can be held at the
machine's local tool storage area. As well , each machine
in the investigated system is prone to failure. The parts
that are introduced to the manufacturing cell require that
all of their processing should be performed within the
manufacturing cell. Since each machine is capable of
performing a number of operations, there is a degree of
routing flexibilit y that is available to the part. Addition-
ally, since machines may fail, and their local tool setup
may change, this routing flexibilit y is dependent upon the
machine status and setup of the manufacturing cell.

Enter

Exit

Figure 2: The Simulated Manufacturing System

In Figure 2, the two machines shown on the left
represent automatic milli ng stations, and the two
machines on the right represent automatic boring
stations. A material handling robot is shown at the
center of the figure.

Raw parts arrive at the input area of the manufactur-
ing cell (i.e., the area labeled "Enter" in Figure 2) and
wait to be moved by the material handling robot to a
machine for processing. For the simulation logic, parts
are moved to a material handling robot queue to model
this process. Part processing is then simulated for the
cell as follows: (i) The part is moved to the input queue
of a machine by the material handling robot where a
first-in-first-out queuing discipline is followed. (ii) Once
the part reaches the machine, the machine starts process-
ing each of the part's operations that are scheduled for
this visit. (iii) Once the machine has finished processing
the operations, the part is moved to the material handling
robot queue to wait to be moved to the next machine. (iv)
If the part's process plan has been completed, the robot
moves the part to the output area, labeled "Exit" in
Figure 2; if more operations are required, the part is
moved to another machine for processing (i.e., we return
to step i)).

Figure 2 provides an overview of the basic compo-
nents of the simulated system, but does not give any
details concerning the logic of the simulation. In order to
understand the manufacturing cell's simulation logic, the
logic can be can be thought of in terms of a number of
software segments shown in Figure 3.

Figure 3: Manufacturing Cell Simulation Logic

New part arrivals are handled in the "arrive"
segment. This segment contains the software that is used
to model the part arrival process as well as the software
used to initialize the attributes of the part.

Since the simulation program next requires informa-
tion on the part's routing, the external control program is
consulted at this point. Whenever simulation status infor-
mation is reported to the control program or control
commands are passed to the simulation program the
communications application template is used. This

Arrive

Check Capacity

Material Handling

Process

Operations Completed

Processing Completed

More Operations

Message Interface
 Module

Execute Command

.

.

A Simulation Testbed for Comparing Alternative Control Architectures 883
software module allows a message to be passed to the
control software that indicates the simulation's state and a
message to be received from the control software that
contains a control command. These messages are passed
between the two software modules shown in Figure 1
using a UNIX or INET socket as was described at the
beginning of this section.

The "execute command" software segment of the
simulation program is integral to the inter-process
communication process since it represents the segment of
the simulation software where the control command
received from the control architecture is interpreted.
Whenever the message interface module is executed in
the simulation model, the next logic is the "execute
command" segment as is illustrated in Figure 3. For our
part processing example, this logic would indicate that
the new part should be sent to the "check capacity"
segment which is used to handle the situation that occurs
when the number of parts in process exceeds the number
of parts that the control program can control.

The next two steps involve the simulation of the
material handling and part processing. At this point, the
part attributes that indicate where the part’s next process-
ing will occur are checked, and the part is transported to
the appropriate workstation for processing. Once the
processing at the workstation has been completed, the
part enters the "operations completed" segment. This
segment is used to make the decision concerning where
the part is next routed. To accomplish this, the control
program is consulted as indicated in Figure 3. If all of
the part's operations have been completed, the part exits
the system in the "processing completed" segment where
final statistics concerning the part are collected. Other-
wise, the part continues to its next operation by first
entering the "more operations" segment where a decision
is made concerning where the part should have its next
operations completed. Once again, the "more opera-
tions" segment relies on the communications template
and the "execute command" segment for this routing
decision before the part is sent to the "material handling"
segment.

 3.2 The State/Control Model

As was noted previously, the test control architectures
are implemented in the state/control module in a manner
that makes the control software transparent to the other
elements of the experimental testbed described in Figure
1. To accomplish this, the state/control module provides
the same interface and follows the same general proce-
dures for each of the test control architectures.

This is accomplished in the state/control module
with two separate models: the communication model and
the control model. The communication model handles
message parsing and the interface to the discrete-event
simulation software; the control model is responsible for
initializing the control software and for control program
execution. Before describing these two models and the
state/control module's interface to the other elements of
the experimental testbed, the general procedure that is
used by the state/control module will be described.

Each of the test control architectures follow the
same general procedure to achieve control: (i) instantiate
control system decision-makers, and (ii) make control
decisions dynamically, as and when requested by the
system being controlled.

The first step occurs when the control software is
started, and involves preparing the decision-makers that
comprise a given architecture for the process of control-
ling a specific manufacturing system. Once the control
system is initialized, the control program starts the
process of monitoring the controlled system and execut-
ing the control commands required to control the
manufacturing system.

In order to instantiate the control system decision-
makers, an expert system has been developed that
utilizes a forward reasoning process (Brennan and
Rogers 1997). The expert system relies on a set of rule
bases that describe the capabiliti es of the workcenters in
the manufacturing cell and the detailed processing
requirements for the parts that are to be introduced to the
system. When the appropriate rule bases are read by the
state/control module, forward reasoning is used to gener-
ate information that can be used by the control program

Once the decision-making instances are instantiated,
the state/control module is ready to execute the control
process. This is accomplished by each of the test control
architectures through the same basic control functions.
These common control functions, which are implemented
in the control model, provide a consistent interface
between the control software and the controlled system

Although this basic structure is consistent between
each of the test control architectures, the details of how
these control functions are performed is dependent upon
the choice of control architecture. The differences
between each test control architecture can be seen in the
differences between the control models.

As is shown in Figure 1, the communication model
interfaces with the control model, where the methods for
the specific test control architecture reside. For example,
when a control function is requested by the discrete-
event simulation software, the control model handles the
implementation of the control function. Similarly, when
the control model is ready to issue a control command, it
uses the communication model to pass its control
command to the discrete-event simulation software.

Within the state/control module, the communication
model acts as an interface between the control model and
the controlled system (i.e., the emulated manufacturing
system). Through this interface, requests for decisions by

m,

884 Rogers and Brennan
the control architecture can be made, and the control
architecture can obtain status updates.

3.3 Inter-Process Communications

In the previous sections, some of the details of the inter-
process communications that are used in the experimen-
tal testbed have been introduced. This section will be
concerned with all of the elements of the experimental
testbed shown in Figure 1 that allow messages to be
passed between the state/control module and the simula-
tion module.

Inter-process communications are handled in the
experimental testbed in three locations:

i) the state/control module's communication model,
ii) the simulation module's communication shell, and
iii) the discrete-event simulation's message interface

module.

All of these elements of the experimental testbed
work together to allow control decisions to be imple-
mented in the emulated manufacturing system. In order
to act as an interface between the control model and the
controlled system, the state/control module's communica-
tion model must setup the state/control module's UNIX
socket (i.e., communications on a single computer) or
INET socket (i.e., communications between remote
computers over the internet).

During the control program initialization process
described in §3.2, the communication socket is
constructed. In terms of the control program's world
view, this is equivalent to setting up a file to which
messages can be written and from which messages can be
read. When the control program begins executing, a five
step process is continuously performed by the communi-
cation model:

i) wait for a connection with the simulation module,
ii) read the simulation module's message from the

socket's input stream,
iii) parse the message into a format that can be used by

the control program,
iv) parse the control model's response into a control

message, and
v) write the control message to the output stream.

The communication shell serves the same purpose
for the discrete-event simulation as does the communica-
tion model for the control model. In order to allow
messages to be passed to and from the simulation
module, the communication shell accomplishes the
following tasks: message parsing, communication socket
management, and simulation event management.
When the Arena simulation software is run, the
communication shell immediately constructs a socket
with the same network addresses as the socket
constructed by the communication model. Just as in the
case of the communication model, the communication
shell performs a five step process while the discrete-
event simulation is executing:

i) connect with the state/control module when required
by the emulated manufacturing cell,

ii) parse the simulation state information into a state
message,

iii) write the state message to the socket's output strea
iv) read the control command from the socket's input

stream, and
v) parse the control command into a format that can be

used by the discrete-event simulation.

This process is continued until the simulation run
ends. At this point a final state message is sent to the
state/control module announcing the end of the simula-
tion run.

The last software component that allows inter-
process communications to occur has already been intro-
duced in §3.1: the Arena custom application template for
communications. The primary purpose of this portion of
the discrete-event simulation software is to allow
communications between the simulated system and the
control program to be initiated by conditions that occur
in the simulated system. As was discussed in §3.1,
whenever a control decision is required, the message
interface module is activated to allow state information
to be communicated to the control software.

4 EXPERIMENTS WITH A SIMULATED TEST
MANUFACTURING CELL

The results reported in this section are intended to
provide an indication of how the experimental testbed
can be used to evaluate the performance of alternative
control architectures. Three different test control archi-
tectures are evaluated that are intended to be representa-
tive of the full spectrum of control architectures
discussed in §2 from hierarchical to non-hierarchical
control:

i) Constrained hierarchical (CH),

ii) Unconstrained hierarchical (UH) ,

iii) Non-hierarchical (NH).

As the name implies, the constrained hierarchical
(CH) control architecture is intended to represent control
architectures firmly at the hierarchical end of the control
architecture spectrum. The reason for using the word

A Simulation Testbed for Comparing Alternative Control Architectures 885
"constrained" to describe this test control architecture is
related to both the communication paths and the type of
coordination that is used by this control architecture.
Only communications between infimal and supremal
decision-makers are possible in this control architecture.
As a result, if a failure occurs with one of the decision-
makers, this could result in other decision-makers being
isolated from the rest of the control systems.

The design of the unconstrained hierarchical (UH)
control architecture is intended to remove some of the
constraints placed on the CH control architecture. In
particular, two main constraints are removed: (a) fixed
communication paths, and (b) rigid machine agent
coordination.

The non-hierarchical (NH) control architecture is
designed in a similar manner to the non-hierarchical, or
heterarchical, control architectures discussed in §2. The
main characteristic of this type of architecture is that
problem solving is distributed among a number of
cooperatively autonomous agents. For the test control
system that are used in the experiments, distributed
problem solving will be in the form of part-oriented
scheduling which is the method that has been used by a
number of researchers who have investigated
non-hierarchical control (Lin and Solberg 1992; Duff ie
and Prabhu 1994).

4.1 A Description of the Experiments

As was discussed in §3, the experimental testbed is
designed to allow various changes to be made to the
emulated manufacturing system and the control software
in order to allow each of the test control architectures to
be evaluated under various operating conditions. In this
section the different operating scenarios that are used for
the simulation experiments will be presented. Each of
the control architectures is tested under the same set of
operating conditions in order to provide an objective
comparison of the resulting manufacturing system
performance as well as the relative control architecture
performance. Figure 4 provides a detailed summary of
the basic operating conditions that were used to evaluate
each of the test control architectures.

The manufacturing system under these circum-
stances operates in a near-deterministic fashion that,
although unrealistic, should provide a basis for compari-
son with the other test scenarios. This base test scenario
is intended to be used to provide a basis of comparison
between a deterministic, or near-deterministic test
scenario and two test scenarios that introduce uncertainty
to the manufacturing environment. Since one of the
primary design goals for manufacturing control systems
is achieving a system that is capable of coping with
changes that occur on the shopfloor, introducing uncer-
tainty to this environment should allow the relative
effectiveness of each control architecture at achieving
this goal to be determined.

Exponential (mean = 0.5
minutes)

Material handling time

noneMachine failures

Both milling stations and
both boring stations have
the same tool setup

Tool availability

8No. of operations

4.0 minutesTime between arrivals

Deterministic: based on
the proc. time estimate

Service Time

DescriptionParameter

Figure 4: Base Scenario

Three different test scenarios are being investigated
that allow a determinstic base case to be compared with
two stochastic scenarios: (i) Scenario #1: the base set of
experiments, (ii) Scenario #2: stochastic (i.e., this
scenario introduces exponential demand and unreliable
workstations), (iii) Scenario #3: stochastic with tooling
constraints (i.e., this scenario builds on scenario #2).

4.2 Manufacturing System Performance

The relative performance of each of the three test control
architectures for the first three test scenarios is shown in
Figure 5(a-b). This figure shows the test control archit-
ectures’ flow time and tardiness performance
respectively.

Based on point estimates from the simulation runs,
the average WIP for scenario #1 is 7.5 for the CH control
architecture, 3.7 for the UH control architecture, and 5.6
for the NH control architecture.

For the three test scenarios, tardiness is evaluated by
assigning an arbitrary flow time allowance to the parts.
A time of 20 minutes has been assigned for these experi-
ments in order to create a situation where all of the
control architectures would have some tardy jobs. By
using mean tardiness as a measure we are assuming that
early jobs bring no rewards and that there are penalties
for late jobs (French 1982).

As can be seen in Figure 5, the UH control architec-
ture appears to provide the best flow time and tardiness
performance of all three test architectures for each of the
test scenarios. The CH control architecture results in the
highest flow times and tardiness values.

886 Rogers and Brennan
Fl
ow

tim
e

95
%

 C
.I

. (
M

in
ut

es
)

Scenario

CH Architecture
UH Architecture
NH Architecture

(a) Flowtime

T
ar

di
ne

ss
 9

5%
 C

.I.
 (

M
in

ut
es

)

Scenario

CH Architecture
UH Architecture
NH Architecture

(b) Tardiness

Figure 5: Test Control Architecture Performance

When we consider machine failures and an exponen-
tially distributed time between arrivals in the second test
scenario, the CH and NH control architectures' flow
times are 112% and 53% higher respectively than the
flow time for UH control architecture.

The NH control architecture's flow time perform-
ance does not appear to worsen with respect to the UH
control architecture, but the CH control architecture
shows a relative increase of 19% in its flowtime relative
to the UH control architecture. This result seems to
indicate that the two distributed control architectures
(i.e., the UH and NH control architectures) are more
capable of handling disruptions such as machine failures
and variation in the part arrivals than the CH control
architecture.

When tooling constraints are placed on the machines
(i.e., scenario #3) the disparity between the CH and NH
control architecture flow times and the UH control archi-
tecture flow time increases even more.
5 CONCLUSIONS

An interesting result follows from the experimental
analysis of the three test control architectures described
in the previous section: it appears that control architec-
tures that contain properties of both hierarchical and
non-hierarchical control architectures show better flow
time and tardiness performance than architectures that sit
on either extreme of the control architecture spectrum.
In order to determine why this is the case for the scenar-
ios described in §4, it is important to ask the following
questions: (i) What factors characterize a control archi-
tecture?, and (ii) How do various control architectures
perform for various constraints?

Work is currently being conducted by the authors
that is focused on identifying key parameters of the
manufacturing system control problem that can be used
to characterize alternative control architectures. Larger
control systems than the test systems studied here wil l
most likely be hybrids of these smaller architectures,
composed of clusters of hierarchies and heterarchies that
are dynamically reconfigurable (i.e., both the control
architecture's organizational structure and coordination
modes should be reconfigurable). If these types of
systems are to be realized, it is important that that the
underlying properties of alternative control architectures
are first identified in order to allow decisions to be made
concerning the most appropriate type of control architec-
ture for a given manufacturing control problem. The
experimental testbed reported in this paper will play a
central role in this type of investigation by allowing
insights into the second question posed above to be
obtained.

ACKNOWLEDGMENTS

The authors wish to thank the Natural Sciences and
Engineering Research Council of Canada for their gener-
ous support of this research under grants OGP-012-1522
and OGP-019-7339.

REFERENCES

Brennan, R.W. and P. Rogers. 1997. Applying a knowl-
edge-based system to a control architecture experi-
mental testbed. In IASTED International Confer-
ence on Artificial Intelligence and Soft Computing
Proceedings.

Davis, W., A. Jones, and A. Saleh. 1991. A generic
architecture for intelligent control systems. National
Institute of Standards and Technology Report
NISTIR 4521.

Dilts, D.M., N.P. Boyd, and H.H. Whorms. 1991. The
evolution of control architectures for automated

A Simulation Testbed for Comparing Alternative Control Architectures 887
manufacturing systems. Journal of Manufacturing
Systems, 10:79-93.

Duff ie, N.A. and R.S. Piper. 1986. Non-hierarchical
control of a flexible manufacturing cell . Proceed-
ings of the International Conference on Intelligent
Manufacturing Systems, 51-54.

Duff ie, N.A., R. Chitturi, and Jong-I Mou. 1988. Fault-
tolerant heterarchical control of heterogenous
manufacturing system entities. Journal of Manufac-
turing Systems, 7:315-328.

Duff ie, N.A. and V.V. Prabhu. 1994. Real-time distrib-
uted scheduling of heterarchical manufacturing
systems. Journal of Manufacturing Systems,
13:94-107.

Enslow, P.H. Jr. 1978. What is a 'distributed' data
processing system? Computer, 13-21.

French, S. 1982. Sequencing and Scheduling: An Intro-
duction to the Mathematics of the Job-Shop. Ellis
Horwood Limited.

Gershwin, S.B. 1989. Hierarchical flow control: a
framework for scheduling and planning discrete
events in manufacturing systems. Proceedings of
the IEEE, 77:195-209.

Jones, A. and A. Saleh. 1990. A multi-level/multi-layer
architecture for intelligent shopfloor control. Inter-
national Journal of Computer Integrated Manufac-
turing, 3:60-70.

Kimemia, J. and S.B. Gershwin. 1983. An algorithm for
the computer control of a flexible manufacturing
system. IIE Transactions, 15:353-362.

Lin, G.Y. and J.J. Solberg. 1992. Integrated shop floor
control using autonomous agents. IIE Transactions,
24:57-71.

Mesarovi�, M.D., D. Macko, and Y. Takahara. 1970.
Theory of Hierarchical, Multilevel, Systems.
Academic Press.

Pegden,C.D., R.E. Shannon, and R.P. Sadowski. 1995.
Introduction to Simulation Using SIMAN. McGraw
Hill.

Singh, M.G. 1980. Dynamic Hierarchical Control,
Revised Edition. North-Holland.

Stroustrup, B. 1993. The C++ Programming Language,
Second Edition. Addison-Wesley.

AUTHOR BIOGRAPHIES

PAUL ROGERS is an Associate Professor and Head of
the Division of Manufacturing Engineering at the
University of Calgary. His research interests include
discrete-event simulation, production planning and
control systems, object-oriented modeling for intelligent
manufacturing, and models for the analysis of manufac-
turing systems. He is a Professional Engineer and a
member of IIE, INFORMS, SME, and SCS and serves
on the Editorial Board of the International Journal of
Computer Integrated Manufacturing. He holds Ph.D.
and M.Eng. degrees from Cambridge University in
England.

ROBERT W. BRENNAN is an Assistant Professor in
the Division of Manufacturing Engineering at the
University of Calgary. His research interests include
control architectures for manufacturing systems, optimi-
zation of discrete-event simulation, and models for the
analysis of manufacturing systems. He has over seven
years of industrial experience in project management and
control systems and is a Professional Engineer and a
member of IIE, INFORMS, and IASTED. He holds
Ph.D. and B.Sc. degrees from the University of Calgary.

	A SIMULATION TESTBED FOR COMPARING THE PERFORMANCE OF ALTERNATIVE CONTROL ARCHITECTURES
	ABSTRACT
	1 INTRODUCTION
	2 BACKGROUND
	2.1Manufacturing Control Architectures
	2.2Unresolved Issues

	3 DEVELOPING AN EXPERIMENTAL TESTBED
	3.1 The Simulation Model
	3.2 The State/Control Model
	3.3 Inter-Process Communications

	4 EXPERIMENTS WITH A SIMULATED TEST MANUFACTURING CELL
	4.1 A Description of the Experiments
	4.2 Manufacturing System Performance

	5 CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 880
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

