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ABSTRACT

This paper addresses the issues related to the decision
processes of manufacturing system simulation. The
manufacturing system is perceived in terms of intelligent
entities capable of making non-programmed decisions
and data driven entities capable of making programmed
decisions.  The system entities are classified according
to the levels of the previously defined modeling
formalism. The objective of the study is to investigate
the effects of employing multiple layers of non-
programmed control.  An example make-to-order type of
manufacturing system is simulated using the developed
tool to observe the impacts of different layers on overall
performance.

1     INTRODUCTION

The manufacturing systems are purposeful systems that
contain several intelligent entities that make state
dependent decisions.  In traditional simulation modeling,
the non-programmed decision making processes are
implicitly represented in the model if they are
represented at all.  Therefore, there is a strong need for a
tool that can simulate the underlying decision processes
of manufacturing systems along with traditional
simulation of the physical system. The simulation
modeling formalism developed (Karacal and Mize,
1996) uses five levels, namely, source, data,
information, knowledge, and intelligence anyone of
which can contain entities. Each level is formalized
through a generic construct that contains several sets and
functions to explain relations/interactions among system
entities. The information and intelligence levels are the
main tools used to represent simulation dynamics and
they correspond to Data-Driven- Physical and Decision-
Making entity types of the formalism.  These two entity
types are used to encapsulate programmed and non-
programmed control in a manufacturing system. The
programmed control corresponds to a predefined
sequence of actions based on condition checks and are
carried out in a sequential fashion.  The non-
programmed control (decision making process) uses the
knowledge of the current state of the system and selects
an action by searching through the knowledge base to
satisfy a given goal.  These processes do not have a
preset sequence of activities and actions are selected
based on state depended decision rules encoded in their
knowledge bases. The goals for each intelligent entity
are defined as the production orders received from
superior entities that contain quantity and timing
information on a particular part or component.

The formalism is implemented using the Smalltalk
object-oriented programming language (Karacal and
Mize, 1997).  It utilizes a grammar, based on concepts
from formal language theory, to translate customer
orders into component orders and then component orders
to batch orders (Karacal, 1997a).  The orders are broken
into detailed shop, work-center, and batch orders in a
hierarchical fashion as they are released by non-
programmed (decision making) control entities to
subordinate entities.   The comparison of the developed
system against a traditional simulation methodology
using the Analytic Hierarchy Process yielded favorable
results (Karacal, et. al., 1996).

2     EXAMPLE SYSTEM

A simple make-to-order manufacturing system is defined
to illustrate the modeling methodology developed.  The
example model demonstrates the versatility of the
information and insight that can be gained from
simulation.  In the developed framework, modeling
begins by describing the physical configuration of the
manufacturing system.  This is the backbone of the
simulation model and is the process of defining
machines contained in each work-center, work-centers
contained in each shop, and shops that form the total
manufacturing system.  The physical configuration of
the system is represented with a tree structure to take full
advantage of Smalltalk’s inheritance property.
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2.1     Physical System Configuration

During model development, as the physical entities are
created, their corresponding default material ports,
control objects, and communication channels are
automatically created and linked to the physical entities.
The model developer is given the opportunity to
overwrite and customize these default structures as they
are created.   The physical configuration of the simple
example system is illustrated with the hierarchical tree
given in figure 1.

               Total System

     Shop1                       Shop2

Work-Cent1   Work-Cent2      Work-Cent3

    Mach1            Mach2       Mach3      Mach4

Figure 1:  Physical Configuration of the Example
                Manufacturing System

The next step is the definition of some products, in
terms of their product structures (illustrated in figures 2
and 3) and product data bases,  that are manufactured in
the example system. These product structure trees have
small data dictionaries attached to each node that contain
information on:

i)    Name and location for the machine that
           produces this part, component, or product
    ii)   Mean operation time distribution
    iii)  Mean lead time distribution for the part,
          component, or product
    iv)  A factor that indicates how many of
          this item is required for each unit of its
          parent in the product structure tree.

After the product structure trees are defined they are
linked to an object class that represents the total product
data base for the manufacturing system.

                                     Product1

                  Component1               Component2

   Component3        PartA                PartB

   PartC       PartD    RawMatl3        RawMatl4

RawMatl1   RawMatl2

Figure 2:  Product Structure for Product 1
     Product2

       Component4                  Component5

       Component6  Component7   PartE   PartF

      PartG     PartH     PartI   RawMatl4 Rawmatl1

RawMatl2  RawMatl1 RawMatl3

Figure 3:   Product Structure for Product 2

2.2     Knowledge Bases

The next step in the modeling process is the definition of
the knowledge bases for each control level defined in the
hierarchy.  Three generic object oriented knowledge
bases and their inference rules are defined for system,
shop, and work-center levels and called systemPlanning,
shopPlanning, and WorkCenterPlanning, respectively.
During the definition of these knowledge bases and
inference rules, the simulation model developer can
express the operational policies and system expertise for
each specific non-programmed control entity.  The
knowledge bases and the rules defined for the example
system modeled are rather simple ones and reflect
typical behavior of hierarchical control levels of a make-
to-order type of manufacturing.

System level non-programmed control has two
knowledge base entities named systemPlanner and shops
with several parameters are associated with each.  Upon
receiving the request from system level controller,
systemPlanning knowledge base first checks the timing
of the product order through a series of rules.  If timing
is critically close to due-date, it immediately releases the
order.  Otherwise, it evaluates a set of rules using order
size, product type and customer identification to derive
the importance level of the order.  The next step is the
determination of  the  timing priority for the order using
order importance, lead time and slack time information.
Then, the systemPlanning object acquires the present
shop load and capacity knowledge from the model in
real time while the simulation is running.  The
quantitative information on shop loads and capacities are
retrieved by the system control object from the involved
shop control objects, converted into symbolic form, and
used in non-programmed decision making to find an
action for the order on hand.

The conversion of quantitative information to
symbolic knowledge takes place as follow:

1)  The system controller object looks at the shop load
in terms of a moving monthly time window.  As product
orders are released, the windows of the shops involved
are loaded using the lead time and order quantity
information.  As orders completed and breakdowns or
other problems are encountered, the time windows are
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updated to reflect the changes during the simulation.
When shop load status is requested for a particular shop,
an expression that relates present load, unused shop
time, and a flexibility factor is evaluated to find a
numeric value at that instant of time.  Depending on
which predefined range this value falls into, one of the
possible symbolic values such as high, low, etc. is
returned to the knowledge base.

2)  A symbolic value for shop capacity status is
determined using another expression that relates the
number of operational machines, the type of orders
being processed at that instant of time, shop reliability,
and total number of available machines in the shop.
Again, depending on which range this numerical value
falls into, a symbolic value such as full-capacity, low-
capacity, etc. is returned to the knowledge base.

The systemPlanning knowledge base uses a set of
rules to ascertain the possible values for the parameter
action according to various combinations of order
timing, shop load and capacity status situations along
with the system level plan already on hand.  In each
case, the value assigned to action (either release or put
the order at a specific place in the system plan) has an
uncertainty value associated with it which is later
utilized to revise the plan. The action is passed back to a
system controller object that implements the action by
updating the internal and external states.  The action
inference rules try to evenly spread the work load in
terms of shop loads and order timing.  The inference
mechanism uses a simple non-monotonic reasoning
mechanism based on goal regression that is explained in
detail in (Karacal, 1997b).

The next layer of knowledge bases, an instance of
shopPlanning knowledge base for each shop, are defined
for non-programmed shop decisions.  They are
customized from their default structure by the model
developer through definition of new parameters and
rules.  The two knowledge base entities defined for each
are shopPlaner and workCenters, each with a set of
parameters.  These knowledge bases deal with
component orders and their main design principles are
similar to those in systemPlanning.

When they are interrogated, these knowledge bases
asses a symbolic value for component order timing using
due-date and lead time information from the
interrogating shop control object.  A set of rules classify
the component on hand according to its position in the
product structure tree.  The symbolic knowledge
regarding the load and capacity status of the work-
centers involved in processing of the present component
order are obtained in real simulation time.  The methods
used in deriving these symbolic values are very similar
to the ones used in systemPlaning knowledge base, with
the main difference being  the weekly time window
used.  These knowledge bases search through a set of
rules representing various combinations of work-center
load and capacity status values, order timing, and the
present shop plan to find a value for parameter action.
This value is passed back to shop controller which in
turn implements the action.

The last non-programmed decision level in the
hierarchy is handled by a set of workCenterPlaning
knowledge bases that deal with batch orders released to
machine controllers.  These are relatively simple
structures that consist of two entities workCenterPlaner
and machines, each with a set of parameters.  They
decide on what to do with each individual batch order
using the real time symbolic values derived for order
timing, machine status, machine reliability, and present
work-center plan.  The work-center control object in turn
implements the action returned by its
workCenterPlaning knowledge base.

When physical machines receive batch orders from
work-center control objects, they translate them into a
set of activity orders that are carried out sequentially
based on a programmed control that may perform
condition checks such as physical material being
available at that particular location, etc.  This is where
non-programmed control links to programmed control
and decision processes are connected to physical
activities.

The other model relevant data are all specified by the
model developer during model definition using the
standard probability distributions provided in the system.
The order inter arrival pattern is an exponential
distribution.  The customer types, order sizes, requested
due-dates, are all generated from  dicrete sample spaces
defined for this manufacturing system. The processing
times are assumed to be normally distributed and the
means and standard deviations for each operation are
obtained from the data base when a processing time
random variable is needed.  The MTTB and MTTR are
assumed to have exponential distributions with a specific
mean time for each machine type.

2.3     Experimentation

The described example with its system, shop, and work-
center planing entities is simulated for three months
period (43,200 min. with 480 min./day).  A one factor
four levels experiment is designed to compare the
performance of the system with or without different
levels of knowledge based control.  Considering the
make-to-order nature of the manufacturing system, the
following three statistics are analyzed.
1)  Throughput time:  Time between the release of a
product order by system controller and the completion of
that order.
2) Order lateness:  Time difference between the
completion of an order and its due-date.
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3)   Customer response time:  Time between the arrival
of a customer to the system and the completion time for
all the products requested by the customer in that order.

In addition, traditional simulation statistics such as
machine utilizations and queue statistics are collected.
Throughput time is selected as the main statistics of
interest.  The four experimental levels are defined as
follow:

I)  Manufacturing system without non-programmed
control.  The orders at all levels are translated into
suborders and immediately released to the next level.
The orders mostly accumulate at the machine control
level where they are processed according to FIFO.

II)  Only system level non-programmed control is
employed using systemPlaning knowledge base.  The
lower level controls are programmed decisions and
orders are processed using FIFO.

III)  The system and shop control object both use their
knowledge bases simultaneously.

IV)  The system, shop, and work-center control
objects all use their knowledge bases simultaneously.

The main idea behind this experimental design is to
perform a tighter timing and status control around
product, component, and batch orders as they move
downward in the control hierarchy.  The frequency of
consultations with the relevant knowledge bases during
the simulation is different for each control level.  The
work-center knowledge bases are the most frequently
queried ones, shop knowledge bases next, and the
system knowledge base is the least.  Table I shows the
average of five replications made for each level.

Table I: Average Throughput Times (TpT-in
minutes) of  Five Replications

Levels   1
No
Know
Base
(KB)

   2
System
KB

   3
System
& Shop
KB

     4
System &
Shop &
Work-
Cent. KB

Run#
TpT

1
9825

2
9335

3
8488

4
7024

Run#
TpT

5
12017

6
11645

7
11788

8
9712

Run#
TpT

9
13377

10
12747

11
12415

12
6212

Run#
TpT

13
12861

14
12259

15
12743

16
5509

Run#
TpT

17
9425

18
9182

19
8965

20
7623

Common random number seeds are used to reduce
variance during pairwise comparison of the difference
between throughput times (in minutes) of levels.  The
random number seeds are changed between replications
but kept the same across the levels.  Furthermore, to
better observe  the effect of non-programmed control,
the manufacturing system is slightly overloaded.

The simulation data is analyzed as follow: First, level
1 is compared with level 2 by taking the difference
between mean throughput times of runs 1-2, 5-6, 9-10,
13-14, and 17-18.  Then, a 95% confidence interval is
constructed for the true mean difference.  The same
procedure is applied for pairwise comparison of other
levels.  The conclusions are drawn based on relative
location of the confidence interval with respect to zero.

2.4     Results

The following conclusions are drawn.
Levels 1 - 2:  The confidence interval for the true

mean difference does not contain zero and completely
lies in the positive region.  Therefore, the difference is
statistically significant and the system yields smaller
mean throughput values when system level non-
programmed control is employed.

Levels 2 - 3:  The confidence interval for the true
mean difference contains zero, implying that there is not
enough statistical evidence to claim that one level is
better than the other.  The length of the interval suggests
that more replications needed to reach a conclusion.
Therefore, we can not claim that the system performs
better when shop and system level non-programmed
control are employed simultaneously.   One thing to bear
in mind is that the performance of  the system heavily
depends on the particular knowledge bases defined.
Since this pair wise comparison did not yield a
preference between the levels, levels 2 and 3 are
pairwise compared to level 4.

Levels  2 - 4:   Although relatively wide, the
confidence interval for the true mean difference does not
contain zero and lies in the positive values region.
Therefore, with the sample runs on hand we can claim
that the throughput time is shorter when system, shop,
and work-center levels use their knowledge bases
simultaneously.

Levels 3 - 4:   The confidence interval for the true
mean throughput time difference completely lies on the
positive region.   Thus, the system yields shorter
throughput times when all knowledge bases are
employed simultaneously.

3     CONCLUSIONS

From the above statistical analysis, I concluded that
system performs best when non-programmed control is
used at all control level. This conclusion was somewhat
expected and suggests that unless a sound non-
programmed and programmed control scheme is applied
at the shop floor level, the benefits that will be obtained
from upper level non-programmed control will diminish
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and will not significantly impact the overall performance
of the system.  This observation closely coincides with
real life situations (Vollman et. al. 1984).  The other
statistics collected such as customer response time and
order lateness showed a similar trend.  In general,
throughput time can be improved by using shortest
processing time (SPT) rule in programmed control, but
since it does not take due-date information into account,
it may severely deteriorate order lateness statistics.  By
using due-date, lead time, present state of the system
together in the knowledge bases, we can define rules that
make measured compromises among conflicting aspects
of several system performance measures.

Although not statistically analyzed, traditional
measures such as utilization statistics and queue
statistics showed that as layers of non-programmed
hierarchical control are added, queue lengths were
shorter and machine utilizations gave smaller values due
to better batch timing.

The other possible set of experiments such as making
replications with only shop or work-center knowledge
base or other combinations to see combined and/or stand
alone effects of the knowledge bases is left as a future
investigation area.  Also, other programmed control
rules such as LIFO, STP, other control heuristics, and
more refined knowledge bases and inference rules will
be investigated in the future.

Another major advantage of this modeling and control
framework developed is the flexibility it brings into the
simulation and modeling process.  The operations of
both physical and logical aspects of a manufacturing
system modeled not only closely represents reality but
are very easy to change.  This system can easily be used
as a demonstration tool to show that various local
optimization rules and procedures of different control
levels (or even different modules of the same level),
when put together, may deteriorate total system
performance.  It can also be a very useful tool to shown
how conflicting multiple objectives of different control
levels interact and affect global performance.

REFERENCES

Karacal, S. C., and J. Mize. 1996. A Formal Structure
for Discrete Event Simulation, Part I: Modeling
Multiple Level Systems. IIE Transactions, 28, 753-
760

Karacal, S. C., T. Beaumariage, Z. Karacal. 1996.
Comparison of Simulation Environments Analytic
Hierarchy Process.  In Proceedings of 1996 Winter
Simulation Conference, San Diego, CA

Karacal, S. C., and J. Mize. 1997.   A Formal Structure
for Discrete Event Simulation, Part II: Object
Oriented Software Implementation for
Manufacturing Systems. To appear in IIE
Transactions.
Karacal, S. C.  1997a.  A Goal Decomposition Language
for Manufacturing System Simulation.  In
Proceedings of 1997 IE Research Conference,
Miami Beach, FL.

Karacal, S. C. 1997b.  A Formal Structure for Discrete
Event Simulation, Part III: Knowledge Processing
During Simulation, SIUE Industrial Engineering,
Edwardsville, IL working technical paper 97-2.

Vollmann, T. E., W. Berry, D. Whybark. 1984.
Manufacturing Planning and Control Systems.
Richard D. Irwing publishing, Inc. Homewoods, IL.

AUTHOR BIOGRAPHY

S. CEM KARACAL is an assistant professor of
Industrial Engineering at Southern Illinois University at
Edwardsville.  He received his B.S. degree in IE from
Middle East Technical University, Ankara, Turkey, in
1982, and M.S. and Ph.D. degrees in IE from Oklahoma
State University in 1986 and 1991, respectively.  He has
two years of experience in industry and consulting. His
primary areas of interest are object-oriented modeling
methodologies, AI applications in simulation, and
semiconductor manufacturing scheduling.  He is a
member of IIE, SME, Alpha Pi Mu, and Tau Beta Pi.


	EVALUATING EMBEDDED DECISION PROCESSES OF MANUFACTURING SYSTEMS THROUGH SIMULATION
	ABSTRACT
	1 INTRODUCTION
	2 EXAMPLE SYSTEM
	2.1 Physical System Configuration
	2.2 Knowledge Bases
	2.3 Experimentation
	2.4 Results

	3 CONCLUSIONS
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 781
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


