Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradéttir, K. J. Healy, D. H. Withers, and B. L. Nelson

A SIMULATION-BASED BACKWARD PLANNING APPROACH FOR ORDER-RELEASE

Edward F. Watson

Department of Information
Systems and Decision Sciences
Louisiana State University
Baton Rouge, LA 70803, U.SA.

ABSTRACT

The problem of order release planning for a make-to-
order production facility is addressed. Traditionally,
order-release planning in a multi-stage shop is performed
with material requirements planning (MRP) logic. MRP
assumes infinite resource capacity and component lead
times that are estimated using historical data, past
experience, and rules-of-thumb.  These assumptions
often result in infeasible plans that make the task of
scheduling difficult. An approach to order release
planning termed gRP (resource planning based on
gueuing simulation) is discussed. QRP generates order
release plans via a backward bill of material explosion
logic similar to MRP except that a queuing simulation
model of the facility is used. The simulation model
captures the appropriate level of detail to provide a more
realistic picture for planning. Component lead times are
time-based (dependent on the current state of the shop)
and may change from period to period. Automatic
factory and simulation model generators are developed
to compare this dynamic lead time approach with the
static approach offered by MRP. Generalizations are
made for key manufacturing attributes.

1 INTRODUCTION

The traditional manufacturing planning process is
divided into 7 planning modules: production planning
and resource planning, master scheduling and rough-cut
capacity planning (RCCP), materia requirements
planning (MRP) and capacity requirements planning
(CRP), and detailed scheduling. This design, conceived
of in the 60's and 70's, we based on the assumption that
large inventories were necessary to support production
(Orlicky 1975). Today’s planners must manage smaller
inventories, promise shorter lead times, and react quicker
to faster changing market demands. This environment
demands new ways of controlling production and new
ways of planning for production.
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MRP-based planning systems are the most common
procedure for order-release planning in a discrete parts
environment. Despite its popularity, there are significant
limitations inherent in the MRP approach (Maxwell, et
al. 1983, St. John 1984). In particular, the following
points characterize the major drawbacks with current
MRP philosophy: 1) MRP has primitive modeling
capabilities and cannot accurately represent finite
resource capacities and shop constraints;, 2) MRP uses
planned lead times to determine offsets during the
backward planning process. 3) The production planning
framework  which incorporates MRP, capacity
requirements planning (CRP), and shop floor control is
not integrated (Toye 1990). Independent shop floor
control systems are required to execute the plan
generated by the MRP system Production environments
today require a more sensitive and responsive planning
system, one that can generate realistic plans based on
anticipated shop conditions.

Backward  simulation models of  discrete
manufacturing systems have been developed for finite
scheduling purposes (Gelders and Van Steelandt 1980,
Pope et al. 1990, Yunk 1981). If a backward simulation
model of a system is developed and due dates are
provided then the simulation can generate ‘backward’
dispatch lists. How the information is used varies
depending on the application.

Recent advances in computer hardware and software
now allow simulation models to schedule and control the
shop floor. A simulation model may aso be used to
generate order-release plans to accomplish the same
basic functions as MRP. The difference is that the
simulation model represents actual shop floor capacities,
and component lead times are not predetermined but
rather calculated based on the anticipated queuing in the
system. To plan in this way, a backward explosion
through bill-of-material (BOM) from the end-item due
date is required to establish the appropriate order-release
dates. This process may be referred to as simulation
based order release planning to emphasize its main
function, simulation based backward planning to
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emphasize the use of simulation for backward planning,
and simulation based resource planning to emphasize
the analogy with MRP.

In this paper, we present a simulation based resource
planning approach that uses simulated lead times (based
on queuing in the system) instead of predetermined lead
times. In this paper we refer to this approach as gRP to
emphasize its subgtitutive relationship with MRP. We
assume a make-to-order (MTO) production environment
where product is not made to stock but rather tied to a
specific customer’s (perhaps customized) order. gRP is
applied at the macro level to generate order-release plans
that are based on redlistic shop conditions. gRP is
compared with the MRP planning approach in a make-
to-order production environment.  Experiments are
performed to generalize the performance of gRP relative
to traditional MRP logic.

2 gRP PLANNING APPROACH

The gRP planning approach is considered to be a
replacement for the MRP/CRP modules in the traditional
planning hierarchy (see Figure 1). In fact, many
commercia enterprise business software systems are
making an effort to incorporate a more redlistic
representation of system constraints for planning
purposes. But to our knowledge there are no commercial
attempts, and there is little literature, to support the
inclusion of discrete-event queue simulation into the
planning process at this stage.

The qRP approach consists of two stages: a backward
planning pass determines requirements for future
planned orders (firm and forecast), and a forward
planning pass incorporates open orders into the plan.
The gRP process requires a master schedule of demand
for al end items, a (backward and forward) simulation
model of the production facility, and basic process
information such as part routings, bill-of-materials, and
work-in-process. In this paper, we use two independent
simulation models to run the backward pass and the
forward pass. Below we give a brief overview of the
purpose of each planning pass but we refer the reader to
other sources for a more detailed explanation (Watson, et
al. 1995; (Watson 1993).

2.1 Backward Pass

The backward pass simulation model essentialy starts
each end-item at the master scheduled due date and
passes them through the shop based on the reverse
sequence of their part routing. Parts queue for the
required resources and process based on deterministic
time standards. After each part completes its last
operation, it will either be disassembled or sent to raw

material storage. Various forms of dack can be used
when planning. Slack can be applied to every operation,
to select operations, or based on time. In this paper, the
dack assumed by gRP is equivalent to that used by the
MRP system setup for comparison purposes.
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Figure 1: gRP Embedded in the Planning Hierarchy

The backward simulation planning pass consists of
determining order-release dates from order due dates
based on finite capacities and on simulated component
and assembly lead times. Lead time may be influenced
by a number of factors: shop load, shop capacity, order
priority, resource schedules, part routings, end-item
BOM, order lot size; as well as any shop rules or
constraints built into the models. The backward
planning pass performs a backward bill-of-material
explosion similar to MRP. The release time for all
primary components is established during the backward
pass and is then provided as input into the forward
planning model. Since open orders are not considered
during the backward planning pass, a forward simulation
pass is next made to construct a feasible plan.

2.2 Forward Pass

The forward pass simulation model integrates the open
orders with the planned orders, constructed by the
backward pass, to ensure that the component release plan
is feasible. The integration of current work-in-process
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(WIP) is important since WIP may place a high priority
demand on the constrained resources. The backward
planned release dates generated from the backward
planning pass can be considered priorities for this
forward pass.

The forward pass uses a component release strategy to
determine the actual scheduled release time for every
primary component. The component release strategy
utilizes the detailed sequencing logic that takes place
during the execution of the forward simulation pass. The
actua scheduled release time of the primary component
is based on when the component is planned for release
and, if the release is executed, when the component
actually begins processing at its first workstation. In this
manner, a component release may be delayed if
excessive congestion is anticipated.

Outside of resource utilization, there may be no desire
to collect statistics or generate reports during the
backward or forward planning passes. Dispatch lists are
created from a finite scheduling module (e.g., a
simulation based scheduler). In this paper, we use a
stochastic simulation model to evaluate the plans.

2.3 gRP Mechanics and Assumptions

Although the simulation based backwards planning
approach is intuitively appealing, a discussion of the
mechanics of the implementation have left some people
confused. Here we provide a brief overview of the
mechanics, but we refer the reader to other sources for a
more detailed explanation (Watson, et al. 1995; Watson
1993).

If we assume a production facility with three
processes, a simple forward simulation model might
include the following constructs: CREATE NEW ORDER
ENTITY : QUEUE AT PROCESS ONE : EXECUTE
PROCESS ONE :: QUEUE AT PROCESS TWO :: EXECUTE
PROCESS TWO : QUEUE AT PROCESS THREE :
EXECUTE PROCESS THREE TERMINATE
COMPLETED ORDER ENTITY. Each order entity has a
process routing associated with it. For instance, xyz
orders follow the following routing: PROCESS ONE =>
PROCESS THREE => PROCESS TWO. In a backward
planning mode, order xyz would assume the reverse
sequence of the routing: PROCESS TWO => PROCESS
THREE => PROCESS ONE. Furthermore, the backward
pass simulation model would include the following
constructs: CREATE COMPLETED ORDER ENTITY ::
QUEUE AT PROCESS ONE :: EXECUTE PROCESS ONE ::
QUEUE AT PROCESS TWO :: EXECUTE PROCESS TWO
: QUEUE AT PROCESS THREE :: EXECUTE PROCESS
THREE :: TERMINATE NEW ORDER ENTITY. In this
simple model, identical model components exist for both

models, but the introduction and termination of order
entities differ.  One can view the backward pass and
forward pass models as being very similar, yet
digtinctively different. As the model needed for planning
becomes increasingly complex (e.g., multiple resource
types, complex control logic, complex process rules),
one would expect these differences to become more
significant.

As inferred from Figure 1, planning at the tactical
level assumes a more aggregate perspective than
planning at the operational level. It would be apparent
that one should assume that the simulation models used
for the backward and forward pass of gRP would be
more aggregate than a simulation model used for detailed
scheduling. Various assumptions are made in this paper
to keep the focus on the feasibility of a dynamic lead
time approach to planning, as opposed to addressing
model aggregation and backward model representation
issues.

The impact that queuing will have at the planning
(macro) level is not necessarily intuitive. The issue is
whether gRP can accurately capture the finite capacity
and shop constraints on the shop floor and be effective
for planning purposes.

3 BASIS FOR COMPARISON

Since the gRP approach is of practical importance, it
compared to an approach that is widely accepted in
practice. It is the goa of this paper to convince the
reader that, for the manufacturing systems assumed in the
experiments, the qRP approach is clearly superior to the
traditional MRP approach. The MRP approach is by far
the most popular approach to order-release planning.
Thus, the traditional MRP approach that assumes infinite
capacity and planned lead times during the planning
process is used as a base case for comparison. We refer
to our implementation of MRP as pMRP (pseudo-MRP)
since we do not use a commercia implementation of the
software. Our objective is to have an experimental
framework with great breadth (in representing different
types of systems) and reasonable depth (to capture the
appropriate level of detail for planning). We generalize
the results so that a production planner can understand
when this approach may be appropriate in practice.

To make the comparison fair, we use a forward
simulation model to determine fixed component lead
times for pMRP. The intent of using this method of
MRP lead time determination is to give pMRP an
advantage which ultimately minimizes the chances of an
unfair bias during the experimentation effort. Every
effort is made to make this comparison fair and
reasonable.  Additional details on the experimental
assumptions is available el sawhere (Watson, 1993).
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3.1 Comparative Procedure

The procedure to compare the qRP approach with the
MRP approach is automated. We discuss the simulation
models used for the comparison here. In the next section
we discuss how these models are created. All of the
models are implemented in the SIMAN V (Pegden, et al.
1990) discrete simulation language. The models created
to support the experimental comparison are illustrated in

Figure 2 and discussed below.
_ pMRP
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Figure 2: Models Used for Experiments

The MPS represents a string of end-item customer
demand. The gRP approach consists of two models.
BRUN is a deterministic backward pass simulation
model that converts the end-item demand into the
planned backward pass release dates. The release
priorities from BRUN are provided as input to DFRUN.
DFRUN is the deterministic forward pass simulation
model that converts the backward pass rel ease dates into
the actual scheduled release dates that are equivalent to
an MRP component release plan.

In order to evaluate how good the plan is, a stochastic
(forward) simulation model (SFRUN) representing a
real-world implementation is used. In this experiment,
SFRUN is very similar to DFRUN with the key
difference being its inclusion of uncertainty in process
time, machine failures and repairs, and material
handling.

Fixed lead times for pMRP are determined during a
forward simulation run (FRUN). The pMRP modéel
simply contains BOM information for each end-item and
generates a component release plan. Similar to the
evaluation procedure for qRP, SFRUN is used to execute
the plan. After executing both plans with SFRUN, and
generating the appropriate output, a direct comparison
between the two planning approaches is made. For
instance, if ‘measure’ represents the performance
measure of interest, then the data point used for analysis
isthe mathematical difference (delta) asfollows,

easure = meas.lrepM R measureqRP

3.2 System Generator

The evaluation, or comparison, of two different planning
approaches requires an experimental design that leads to
the generalization of results. In order to generate
numerous manufacturing systems for experimentation, an
automated system/model generator is developed. For
each system definition, multiple random instances of the
system can be generated. Each instance serves as an
independent ‘observation’ for experimental purposes.
This generator functions in two steps as shown in Figure
3.

In the first step, a manufacturing system environment
is defined by assigning values to a set of manufacturing
variables:  shop, job, environment, planning, and
experiment. Because of the randomness built into the
system generator, an unlimited number of instances (each
inheriting the environment characteristics) for each
manufacturing environment can be randomly generated.

The second step in this process is the SIMAN V
model generator. Each manufacturing system that is
generated is defined by a set of components: facility
layout, end-items, BOMs, component routings, MPS, etc.
These components are converted into the planning and
scheduling models used by the experimentation
procedure and shown in Figure 2. This generator is
based on concepts developed by Harmonosky and
Sadowski (1990). Details concerning the automated
system generation procedure can be found elsewhere
(Watson 1993).

The experimental production facility consists of 15
work centers: 12 basic processing work centers, 2 sub-
assembly work centers, and 1 final assembly work
center. A shop of this size is easily managed and is
conducive to automated experimentation. This study
emphasizes the multi-level assembly environment that is
most often encountered in practice. Four different types
of product structures can be created: string, single-level,
multiple-level with many levels but only few components
per assembly (tall), and multiple-level with many levels
and many components per assembly (hybrid).

The operations routing for each part consists of a
sequence of work center visitations that may be ordered
either unidirectional or non-unidirectional. A primary
component (i.e., one that is not assembled) will visit, on
the average, fifteen percent (15%) of the basic process
work centers.  An assembled component (i.e., sub-
assembly or final assembly) will visit, on the average, ten
percent (10%) of the basic process work centers. These
parameters are chosen arbitrarily.
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Figure 3 System and Model Generator

4 COMPARISON OF gRP AND MRP

Two distinct experiments are discussed below. In the
first experiment we focus on 8 manufacturing
environment factors to determine how gRP performs
relativeto pMRP. A detailed report of this experiment is
provided by Watson, et al. (1995); here we only discuss
key issues that have lead to the second experiment. The
second experiment has not been reported elsewhere and
is discussed below.

4.1 Preliminary Experimentation and Analysis

In the first experiment (Watson, et al. 1995) eight factors
are used in a full factorial with replications experimental
design: product structure (flat, tall, complex), shop flow
(job shop, flow shop), master schedule demand pattern
(stable, unstable), shop load (light, heavy), system
variability (low, high), shop balance (single bottleneck,
multiple bottlenecks), due date assignment (constant,
based on work rule), and initial shop load (light, heavy).
Performance measures are used to capture customer
satisfaction levels and inventory investment levels: mean
tardiness of orders, percent tardy of orders, mean
earliness of orders, mean work-in-process, mean stacked
lead time (sum of component and assembly flow times),

and mean order lead time. Following the first two-level
factorial experiments, focus is placed on product
structure and master schedule demand pattern and a three
level factoria experiment is conducted.

The conclusions that can be drawn from this
experiments are: 1) In a make-to-order environment the
gRP approach will consistently result in better overall
system performance levels relative to a traditional MRP
implementation; 2) In general, as the product structure
grows increasingly complex (i.e., more components per
assembly, and more levels in the bill of material), the
advantage of qRP over pMRP increases; 3) In general, as
the master production schedule grows increasingly
unstable, the advantage of gRP over pMRP increases; 4)
Explicit representation of queues during the backward
and forward qRP passes appears to be an effective tool
for order release plan construction (at least at the macro
level).

Following this experiment, various questions surfaced
regarding, for instance, what happens in a volatile shop
where order cancellations and emergency orders are the
norm, and what happens if we assume a queue
dispatching rule other than first in first out (as assumed
above). The next experiment attempts to address this
guestions.
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4.2 Additional Experimentation and Analysis

Four factors are defined in the second experiment as
follows: Factor A denotes shop type (dynamic or static),
Factor B denotes Product Structure, Factor C denotes
gueue rank rule, and Factor D denotes shop load. The
shop type factor indicates whether order cancellations
and new order introductions are allowed during the plan
evaluation run mode (SFRUN). At the low level, actua
demand is identical to planned demand. At the high
level, twenty percent of the planned demand is canceled.
As wedll, twenty percent of the actual demand is doubled
to represent new orders. The total actual demand over
the planning horizon is the same as the tota planned
demand, but the actual demand from period to period
could vary sdignificantly from the plan. In this
experiment we assume that same performance measures
as above with the exception of the stacked lead time
measures since it was found to be highly correlated with
the total component work-in-process measure.

A full factorial (2*) experiment is conducted to
determine the significance of the four factors and their
two-way interactions on the mean difference between
gRP and pMRP (dmmre). The MANOVA procedure is
first used to determine the significance of the factors
with respect to al five performance measures.
MANOVA dlows one to take advantage of the
correlation between the measures to provide a
significance test that has more power thus resulting in a
more sensitive test. As illustrated in Table 1, we find
that each of the four factors evaluated are significant. As
well, al but two of the two way interactions are
significant. Univariate ANOVA is then conducted to
focus on specific performance measures.

Table 1: Results from MANOVA

MANOVA
Effect Crit. | Stat. F DF P
A-DynShop | Wilk's |0.368| 41.27| (6,144)| 0.00
B-ProdStrc | Wilk's |0.370| 40.92| (6,144)| 0.00
C-QrankRul | Wilk's |0.256| 69.72( (6,144) 0.00

D-Load Wilk's |0.145[141.27[ (6,144)| 0.00
AB Wilk's [0.947| 1.33[ (6,144)| 0.25
A*C Wilk's [0.892| 2.91| (6,144)] 0.01
A*D Wilk's [0.910] 2.37[ (6,144)| 0.03
B*C Wilk's [0.779] 6.80] (6,144)| 0.00
B*D Wilk's |0.504] 23.62[ (6,144)] 0.00
c*D Wilk's |0.398| 36.28[ (6,144)] 0.00

ANOVA is conducted for each performance measure.
With some exception, the results are very similar across
performance measures. The results for Mean Tardy are

shown in Table 2. It is apparent that Factors B, C, and D
are significant at the 5% level. For the most part, two-
way interactions involving Factor A (Dynamic Shop) are
not significant, with one exception being Percent Tardy
shown in Table 4. This observation suggests that when a
shop is truly chaotic, subject to substantia order
cancellations and emergency orders, the gRP approach
offers no clear advantage over the traditional MRP
approach.

Table 22 ANOVA Results for Mean Tardy

ANOVA on Mean Tardy
Source DF SS MS F P
A: Dyn Shop 1 0.09( 0.09 3.53[ 0.06
B: ProdStrc 1 0.17| 0.17 6.59| 0.01
C: QrankRul 1 5.83| 5.83| 231.22| 0.00
D: Load 1 3.11| 3.11] 123.19| 0.00
A*B 1 0.03| 0.03 1.14| 0.29
A*C 1 0.05| 0.05 1.83] 0.18
A*D 1 0.01f 0.01 0.28| 0.60
B*C 1 0.09| 0.09 3.63| 0.06
B*D 1 0.04| 0.04 1.65| 0.20
C*D 1 4.00 4.00| 158.42| 0.00
Error 149 3.76] 0.03
Total 159

Table 3: ANOVA Results for Percent Tardy

ANOVA on Percent Tardy
Source DF SS MS F P
A: Dyn Shop 1 [3520.1{3520.1| 196.72| 0.00
B: ProdStrc 1 | 347.9] 347.9] 19.44] 0.00
C: QRankRul 1 | 820.5|] 820.5| 45.85| 0.00
D: Load 1 | 856.7| 856.7| 47.88] 0.00
A*B 1 109.6| 109.6 6.12 0.01
A*C 1 168.3| 168.3 9.40( 0.00
A*D 1 | 223.6] 223.6] 12.49] 0.00
B*C 1 158.8| 158.8 8.87| 0.00
B*D 1 279 27.9 1.56] 0.21
C*D 1 | 582.9] 582.9] 32.57| 0.00
Error 149 | 2666.2| 17.9
Total 159

The main effects plots for Mean Tardy illustrate three
interesting points. As the planner is faced with an
increasing number of order cancellations and new order
introductions, the advantage of the gRP approach
(relative to MRP) tends to diminish. This is expected,
especially since neither planning system is designed to
respond in real-time to alleviate problems associated
with actual demands that are significantly different than
those planned for.
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Second, when the FIFO queue dispatching strategy is
assumed during the plan evaluation mode (SFRUN), the
gRP approach performs much better than the MRP
approach, but this advantage is amost reversed if we
change the dispatch strategy to Early Due Date, for
instance. This is not so surprising considering that
during the backward and forward passes (BRUN and
DFRUN), the simulation model assumes a FIFO queue
dispatching strategy.

Third, as observed during the preliminary analysis,
increasing the load on the facility leads to an increase in
the qRP advantage. The ANOVA for Mean Tardy
indicates there is a significant interaction between Factor
C (Queue Rank Rule) and D (Load). After investigating
the interactions plot, it is observed that when the load is
low (78%) there is almost no difference in performance
between the two queue dispatching strategies observed
(FIFO and EDD). Only when the load is high (90%) can
we make the above observation that gRP performance is
poor when a queue dispatch strategy other than FIFO is
assumed.

The two-way interaction plots for Percent Tardy in
Figure 4 illustrate that gRP performs better, relative to
MRP, in a shop that does not experience significant
order cancellations and introductions. As well, this
advantage is dightly diminished as the product structure
grows increasingly complex and the queue dispatch
strategy is not FIFO. But gRP does improve, relative to
MRP, when the load on the shop is high. Also, if the
gueue dispatch strategy is not FIFO, the effect of the
product structure is the same regardless of which product
structure is assumed..
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Figure 4: Two-way Interactions for Percent Tardy
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An interesting observation is made when we look at a
histogram of the difference in staging delays for all
assemblies (each observation on the histogram represents
the difference between the ready time for the first
component ready for assembly and the last component
ready for assembly). A comparison of MRP and gRP

staging delay histograms for Experiment 1 where all
Factors are set at their low levels is illustrated in Figure
5. The mean of the staging delays is 28.8% lower for
gRP and the standard deviation is 5.4% lower. This
indicates that gRP is better able to coordinate
components for assembly under the conditions set forth
in Experiment 1.

}Wfﬂw
qRP

HW}WV
MRP
Figure 5: Experiment 1 Staging Delays

Figure 6 illustrates the same comparison for
Experiment 16 where all the Factors are set at their high
levels. The mean of the staging delays is actually 1.4%
higher for gRP and the standard deviation is 7% higher.
The difference of the means seems to be insignificant,
but it does indicate that the gRP is less successful at
coordinating components for assembly when the shop
experiences significant order cancellations and
introductions, as product structure becomes increasingly
complex, and as we move away from a FIFO queue
dispatching strategy. The same observations are made
when we look at order completion time versus order due
date (for Experiments 1 and 16).

T{HWTT}‘HWW

gRP

HTHTHHWTW}
MRP
Figure 6: Experiment 16 Staging Delays

5 CONCLUSIONS

A new methodology for requirements planning (qRP)
based on discrete simulation was discussed. qRP was
fairly compared with a MRP-based approach using an
automated system/model generator and an experimental
framework that allows us to generalize our results.
Through the additional experimentation efforts reported
first in this paper, evidence was found to support the
following conclusions: 1) The benefits of gRP tend to
diminish as we a shop becomes more volatile (increase
conditions where customers orders are often canceled
and emergency orders injected into the system at the last
moment); and 2) The benefits of gRP tend to diminish if
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the planner uses a queue dispatch strategy other than
FIFO during the DFRUN pass, and the scheduler does
the same in the SFRUN pass. This finding suggests that
gueue dispatching is a key factor, perhaps one that can
be used to increase the benefits of gRP. As well, further
studies to investigate the replanning effectiveness of gqRP
under volatile conditions may be justified.

From the results of the experiments conducted thus
far, we suggest that gqRP may be most beneficial in
environments where demand can be forecasted fairly
well at least one planning period in advance, where there
are large variations in the utilization of various resources
from period to period (roving bottlenecks), where shop
load is relatively high at least some of the time, where
product structures have many levels and many
components per assembly, and where the shop is
governed by complex control and flow logic.

In summary, this experimentation indicates that qRP
may be a superior approach for MTO environment. In
such environments, production managers are not capable
of anticipating the affect of change since they have little
experience on which to baseit. qRP provides the insight
required to make intelligent decisions.
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