
THE VISSIM/DISCRETE EVENT MODELING ENVIRONMENT

Herb Schwetman

Mesquite Software, Inc.
4210 Spicewood Springs Rd., #201

Austin, TX 78759, U.S.A.

Arun Mulpur

Visual Solutions, Inc.
487 Groton Road

Westford, MA 01886, U.S.A.
ABSTRACT

VisSim/Discrete Event is a process-oriented, discrete
event modeling toolkit based on the powerful and proven
graphical interface provided by the underlying VisSim
simulation environment. Analysts can use this toolkit to
construct models of many different kinds of systems.
Each model has one or more task graphs and a set of
simulated resources. The task graphs specify the
sequence of actions which characterize the behavior of
entities in the real system. The comprehensive collection
of task action blocks and simulated resources mean that
many kinds of systems can be modeled.

1 INTRODUCTION

VisSim/Discrete Event is a modeling environment which
simulation analysts can use to construct process-oriented
models of complex systems. The environment employs a
powerful graphical user interface which helps the analyst
construct models and analyze the results. The easy-to-
use interface and the comprehensive set of simulation
objects mean that models tailored to specific systems can
be readily constructed.

A discrete event simulation model typically consists of
active entities and simulated resources, all constructed to
model the behavior of a real system. In VisSim/Discrete
Event, the active entities are called tasks, and the
behavior of a task is specified by a task graph. A task
graph actually specifies the behavior of set of similar
tasks. A model must have at least one task graph, but a
model can have many different task graphs, each
specifying the behavior of a different set of tasks (or
entities).

In many models, the tasks compete for access to (use
of) a set of simulated resources, where each simulated
resource corresponds to a real component in the real
system. In a real system, there may be many different
kinds of components. In VisSim/Discrete Event, there
are only four different kinds of simulated resources.
These each serve as an abstraction of a large class of real
components in a real system.

VisSim/Discrete Event is built on top of the well know
VisSim continuous simulation environment [Visual
Solutions 1996]. The CSIM18 simulation engine
[Mesquite Software 1997, Schwetman 1996] supports
the discrete event capabilities provided in the modeling
environment. Many of the features of VisSim, such as
data presentation blocks and arithmetic computation
blocks are useful in constructing discrete event models.

This paper begins by summarizing some of the
features of VisSim/Discrete Event. It then presents two
examples, illustrating both the power and ease-of-use of
this modeling environment. It also discusses using some
of the facilities provided by VisSim.

2 TASK GRAPHS

A model in the VisSim/Discrete Environment consists of
a number of simulation objects and one or more task
graphs. Each task graph depicts the behavior of set of
tasks (or processes). There are two kinds of task graphs:
open graphs and closed graphs. In an open graph, a
taskSource node generates new instances of the task; the
task generation rate is controlled by the parameters of the
node. Open graphs often contain a taskSink node, to
collect (or absorb) completed tasks.

A closed graph contains a sourceSink node. A
sourceSink node generates a fixed number of tasks at the
beginning of the execution of the model. After this
initial phase, tasks that enter this node are delayed for a
period of time and then emerge as new tasks.

A task graph consists of a collection of blocks (or
nodes) connected by arcs. These directed arcs (also
called flexWires) show the paths which tasks follow as
they move from one block to another. The blocks
control the behavior of the tasks and allow the tasks to
simulate the behavior of the entities in the real system
being modeled. The kinds of blocks which control task
behavior include:

694 Schwetman and Mulpur
• taskDelay - delay for a specified interval of
simulated time

• route - choose a subsequent path based on
branching probabilities

• computeResult - modify the values of variables
• evaluateRelation - test the value of a variable
• blocks which reference simulation objects
Figure 1 illustrates the specification and operation of a

simple task graph. In Figure 1, the taskSource block
repeatedly emits a new task The interval between each
new task is determined by attributes of the block which
are specified in a dialog box. In the example, each new
task first travels to (visits) the taskDelay block. The
amount of simulated time spent at this block is
determined, for each task, by attributes of the block;
these attributes are again specified in a dialog box.

After experiencing a delay, each task next visits the
route block. This route block has one input (for tasks)
and two outputs for tasks. A probabilistic routing table
routes incoming tasks to one of the output connectors at
the block; the i-th entry in this table specifies the
probability of exiting via the i-th output block connector.
In the example, the task can either return to the
taskDelay block (via connector 0) or move to the
taskSink block (via connector 1). The taskSink block
absorbs or terminates each task entering the block.

To summarize, a task graph specifies the behavior
(sequence of actions) for each kind of task in a model
There can be many active tasks, all “following” the same
task graph, and there can be several graphs in a single
model.

3 SIMULATION OBJECTS

VisSim/Discrete Event provides four kinds of simulation
objects:

• serviceStations,
• storages,
• events, and
• mailboxes.
A serviceStation consists of one or more servers and a

single queue (for waiting tasks). Tasks access a

Figure 1: Task Graph

taskSource taskDelay

taskSink
route
serviceStation by visiting either a use block or a reserve
block A task visiting a use block first reserves a server
at the specified serviceStation; it then delays for an
interval of simulated time and then releases the server. A
task visiting a reserve block reserves a server at the
specified serviceStation and then proceeds to other task
action blocks; it will later visit a release or releaseStack
block, to release the reserved server.

A storage consists of a collection of storage units (or
tokens). A task can allocate a specified amount of
storage (allocate a number of tokens); if the requested
number of units is not available at the storage, the task
will wait until a sufficient quantity of units has been
deallocated by other tasks. A task allocates units of
storage by visiting an allocate block; an allocate block
"points to" or references a specific storage block. A task
deallocates all of the storage units from a particular
storage block by visiting a deallocate block.

An event is an object used to synchronize interactions
between tasks. A task can wait for an event to occur by
visiting a wait or queue block. Each of these blocks
"points to" or references a specific event block. Another
task can visit a set block ("pointing to" the same event
block). This "set operation" changes the state of the
event block, and allows all waiting tasks and one queued
task at that event block to move on to other blocks.

A mailbox implements a means for communicating
between tasks. A mailbox consists of two queues: one is
a queue for unreceived messages and the other is for
tasks waiting to receive a message. Both queues are
FIFO (first-in, first-out) queues. A message is an
integer-valued number. A task uses a send block to send
a message to a mailbox. Another task can visit a receive
block, to retrieve the next message from a mailbox. If
there are no messages in the mailbox, the receiving
mailbox waits until the next message arrives.

Many blocks have two exit connectors for tasks: one
is labeled "pass" and is the path followed by tasks that
"succeed" at the block; the other is labeled "fail" and is
the path followed by tasks that "fail" at the block. An
example of such a block is the reserve block: a maximum
queue length can be specified for a serviceStation. If a
task arrives at a reserve block and the queue length is at
the specified limit, then that task will exit the reserve
block as a failed task. If a task arrives at this reserve
block and can join the queue; when it has obtained a
server at the serviceStation, it will exit the reserve block
via the "pass" connector. In addition to a maximum
queue length condition, many types of blocks allow a
"time limit" or time-out interval to be specified at a
block.

4 FIRST EXAMPLE

The VisSim/Discrete Event Modeling Environment 695
Figure 2: Assembly Station
Consider an assembly station where units arrive to be
assembled. After assembly, the units then advance to an
inspection station; units which pass the inspection leave
the system; units which fail the inspection return to the
assembly station, where they are reworked and then
inspected again. Units which fail this inspection for the
second time are discarded as rejects. The assembly
station has a finite capacity for storing waiting units; the
number of units at the station cannot exceed 15. When
units arrive at the assembly station and the capacity will
be exceeded, these units will be "lost".

In this example, the mean interarrival interval (for
newly arriving units) is seven. The mean service interval
at the assembly station is six units of time, and the mean
service interval at the inspection station is two units of
time. All intervals have negative exponential probability
distributions. The probability of a unit passing the
inspection is 0.8. A VisSim/Discrete Event version of
this model appears in Figure 2.
The model in Figure 2 illustrates the use of several
kinds of blocks. The two simulation objects are both
serviceStations (the assembly station and the inspect
station). The task graph begins with the source block on
the left of the diagram. The parameters of the block
specify the interarrival process for newly arriving units.
The next block (the "use Assembly" block) represents
the task activity associated with arriving at the station,
waiting for access to the assembly "server", being
assembled and then moving on as an assembled unit to
the inspection station. The second input to the assembly
station is the path used by units which failed the
inspection and are being "reworked". The "fail" exit
from the assembly station block is for units which cannot
be held in the finite storage capacity of the station.
These "lost" units go to a sink and the counter tallies the
number of lost units. The parameters of the "use
Assembly" block govern the service times at the block.

696 Schwetman and Mulpur
The "use Inspection" block represents the task
activities associated with waiting for inspection and then
being inspected by the inspector server. The parameters
of this block control the inspection service time.

The route block routes tasks using the probability of
passing or failing the inspection to select the output
connector for the block taken by a task. The requirement
that units which fail the inspection for the second time
are rejected is handled using the "class attribute" for
tasks. There can be two routing tables in the route block:
one table for class 1 tasks and another table for class 2
blocks. In this example, class 1 tasks are those being
assembled and inspected for the first time and class 2
tasks are those being reworked and inspected for the
second time.

On leaving the route block, passed units exit the
system via the upper sink block; the counter for this sink
tallies the number of assembled units which passed the
inspection. Failed class 1 tasks move to the changeTask
block where the class attribute for the task is changed
from 1 to 2. These tasks then move back to the "use
Assembly" block for rework. Failed class 2 blocks leave
the route block and move to a sink block; the counter for
this sink block tallies the number of rejected units. The
numbers in the lost, passed and rejected counters can be
used to estimate the performance of this system.
This model can be enhanced in many ways. Different
assembly times for newly arriving units and rework units
can be specified by introducing an additional "use
Assembly" block for the rework units. Introducing
simulated travel times for units moving between stations
can be accomplished by inserting hold blocks between
pairs of blocks. The impact of having multiple assembly
servers can be modeled by changing the number of
servers as the " Assembly" (serviceStation) block.

5 SECOND EXAMPLE

As a second example, consider a model of a computer
system processing computational tasks. Each task
consists of a sequence of intervals in which both the
CPU and one of three disk drives is accessed. These
accesses occur simultaneously, but the task waits until
both of these activities complete before advancing to the
next interval. The number of intervals is uniformly
distributed between 1 and 10.

Figure 3 gives the diagram for a model of this system.
In this model, each arriving task needs a local variable,
to hold the number of intervals (called count) for the
task. The fork node spawns a sub-task, to perform the
disk access, while the main task performs the CPU
access. The CPU is represented by a single server
serviceStation, and the disk is represented by a three-
Figure 3: Computer System

The VisSim/Discrete Event Modeling Environment 697
server serviceStation. The join block forces the “parent”
task to wait until the “child” task (the sub-task) has
passed through. This is the synchronization that is
required. The compute count and the evaluateRelation
blocks decrement the “count” variable and then test, to
see whether the task should perform another interval or
exit as a completed task.

This kind of model is useful in determining the
number disk servers and the CPU speed required to
“keep up” with the arriving tasks. More complex
models, with more resources and more complex behavior
patterns can be easily constructed using this model as a
starting point.

6 OTHER FEATURES

The underlying VisSim continuous simulation
environment contains many features which are useful to
VisSim/Discrete Event models. For example, display
blocks and strip charts are often used to present data
such as number of completed tasks at a block, server
utilization at a serviceStation and queue length at an
event. Examples of these blocks appeared in the two
preceding examples. The comprehensive arithmetic
computation blocks can be used to derive statistics useful
to the model user. An example of this would be to
calculate the percentage of arriving tasks which complete
“successfully”.

In some applications, it is convenient to combine
continuous and discrete event simulation techniques to
construct a more accurate representation of the
underlying system. An example of this would be an
application in which the behavior of a component is best
described by a time-dependent equation. The
VisSim/Discrete Event detector block allows a task to
wait until a value crosses a threshold value.

VisSim also has an animation block, which lets a
model display some aspect of its behavior in a more
visual fashion. This animation block lets an model select
and display one of 16 bit-mapped images. This can be
very helpful in display the changing state of a component
within the model.

7 SUMMARY

VisSim/Discrete Event is a powerful simulation
modeling environment with an easy-to-use and consistent
graphical interface. The environment supports the task
(or process) oriented approach to implementing discrete-
event simulation models. The collection of simulation
objects and task control blocks is used to construct
models of many different kinds of systems. The
examples above demonstrate just a few of the features
available to the analyst building and using these models.
ACKNOWLEDGEMENTS

CSIM is copyrighted by Microelectronics and
Computer Technology Corporation (MCC). CSIM18 is
supported and marketed by Mesquite Software, Inc.
under license from MCC. VisSim and felxWires are
trademarks of Visual Solutions, Inc. VisSim/Discrete
Event was developed by Mesquite Software, Inc. and is
marketed under a joint arrangement with Visual
Solutions, Inc.

REFERENCES

Mesquite Software, Inc. 1997. User’s Guide, CSIM18
Simulation Engine. Austin, TX.

Schwetman, H. 1996. CSIM18 - The Simulation Engine.
In Proceedings of the 1996 Winter Simulation
Conference. ed. J. Charnes, D. Morrice, D. Brunner,
and J. Swain, 517 - 521. San Diego, CA.

Visual Solutions, Inc. 1995, VisSim user’s guide,
Version 2.0, Westford, MA.

Visual Solutions, Inc. 1996. VisSim/Discrete Event
user’s guide, Version 1.0. Westford, MA.

AUTHOR BIOGRAPHIES

HERB SCHWETMAN is founder and president of
Mesquite Software, Inc. Prior to founding Mesquite
Software in 1994, he was a Senior Member of the
Technical Staff at MCC from 1984 until 1994. From
1972 until 1984, he was a Professor of Computer
Sciences at Purdue University. He received his Ph.D. in
Computer Science from The University of Texas at
Austin in 1970. He has been involved in research into
system modeling and simulation as applied to computer
systems since 1968.

ARUN MULPUR is a product manager at Visual
Solutions, Inc., which he joined in1994. He received his
Eng. D. in Electrical Engineering from the University of
Massachusettes, Lowell, in 1994.

	THE VISSIM/DISCRETE EVENT MODELING ENVIRONMENT
	ABSTRACT
	1 INTRODUCTION
	2 TASK GRAPHS
	3 SIMULATION OBJECTS
	4 FIRST EXAMPLE
	5 SECOND EXAMPLE
	6 OTHER FEATURES
	7 SUMMARY
	ACKNOWLEDGEMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 693
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

