
MODELING WITH EXTEND

Jim Rivera

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119, USA.
allow you to define the behavior of the block as well as
report on block results. Blocks reside in libraries. Each
library represents a grouping of blocks with similar
characteristics such as Discrete Event, Plotters, Elec-
tronics, or Business Process Reengineering. Blocks are
placed on the model worksheet by dragging them from
the library window onto the worksheet. The flow is then
established between the blocks.

There are two types of logical flows between the
Extend blocks. The first type of flow is that of “items,"
which represent the objects that move through the
system. Items can have attributes and priorities associ-
ated with them. Examples of items include parts,
patients, or a packet of information. The second type of
logical flow is “values," which will change over time
during the simulation run. Values represent a single
number. Examples of values include the number of items
in queue, the result of a random sample, and the level of
fluid in a tank.

Each block has connectors that are the interface points
of the block. Figure 1 shows the connector symbols for
the value and item connectors.

Item InputValue Input

Value Output Item Output

Figure 1: Value and Item Connectors

Connections are lines used to specify the logical flow
from one connector to another. Double lines represent
item connections and single lines represent value
connections.

3 CAR WASH EXAMPLE
In the following example, we will consider a single
server, single queue system. For the purpose of illustra-
ABSTRACT

This document presents an overview of the Extend
modeling environment. Extend is a general purpose
graphically oriented discrete event and continuous
simulation application with an integrated authoring
environment and development system. Extend’s features
will be demonstrated by examining a simple model of a
single server, single queue system to which detail and
enhancements will be added.

1 INTRODUCTION

For many years there has been a perceived dichotomy in
simulation software between simulation languages and
simulators. The languages were viewed as more powerful
and general purpose, while simulators focused on ease of
use and were generally limited to a specific industry.
Extend bridges these two types of programs in one easy-
to-use yet flexible software program. It exists as:

• A stand-alone simulation tool which can be used to
create complex discrete event and continuous mod-
els without programming

• A simulation authoring package where model
interfaces can be easily created, without program-
ming, to enhance productivity and ease of use

• A development environment for building custom-
ized models of unique types of systems. The
programming environment allows the modeler to
create a simulator for a specific industry.

2 EXTEND’S MODELING ENVIRONMENT

Before looking into how Extend can be used to build
models, it is helpful to understand the Extend modeling
environment.

Extend models are constructed with library-based
iconic blocks. Each block describes a step in a process or
a calculation. The dialogs associated with each block

Modeling with Extend TM 675
tion, we will model a car wash with one wash bay and
one waiting line. The model for this car wash is shown
in Figure 2.

Figure 2: A Single Server Single Queue Model

The block on the far left is a Generator block and
periodically creates items (in this case dirty cars).
Following this is a Queue, FIFO block that holds the cars
until requested by the next block. The Activity Delay has
a limited capacity of one processing unit and delays the
car for a fixed amount of time. This block represents the
wash bay. The last block in the model is an Exit block
that removes the cars from the system.

3.1 Random Processing Time

Suppose that the processing time for the wash bay is best
represented by a specific random distribution. This can
be modeled by connecting the output of an Input
Random Number block to the delay connector (labeled
"D") on the Activity Delay block as in Figure 3. Every
time a car enters the wash bay, a new processing time is
requested from the Input Random Number block. For
each request, the Input Random Number block generates
a new processing time from the specific random
distribution defined in the block’s dialog.

Figure 3: A Model with Random Process Times

3.2 Graphical Output
To graphically display model metrics, you can add a
Discrete Event Plotter. In this example (Figure 4), the
Plotter will graph the contents of the Queue, or the
number of dirty cars waiting in line, over time. To
accomplish this, the Discrete Event Plotter value input
connector is connected to the Queue's length (labeled
"L") value output connector as follows:

Figure 4: Discrete Event Plotter Added to Model

3.3 Attributes

Assume that our car wash offers two types of washes,
basic and deluxe, and that the processing time is
dependent upon the type of wash requested. To differen-
tiate between the two different types of wash requests,
we can add attributes to the dirty cars. Using a Set
Attribute Block we can add an attribute called “type” to
each car and randomly set the value of this attribute to 0
(basic) or 1 (deluxe) using another Input Random
Number Block as shown in Figure 5. As the dirty cars
leave the queue and enter the wash bay, we can read the
“type” attribute using a Get Attribute block, and convert
this number to a value representing the mean processing
time for washes of that type using a Conversion Table
block. The mean value can then be fed into the Input
Random Number Block that is already connected to the
delay connector of the Activity Delay (Figure 5).

Figure 5: Setting "Type" Attribute

3.4 Resources

When the dirty cars are ready to be washed, they are
driven through the wash by one of the car wash atten-
dants. We can model the attendants as resources by

adding a Resource Pool block. Within this block we can
specify how many attendants are on shift. We must also
replace the Queue, FIFO block with a Queue, Resource

676 Rivera
Pool block. Within the Queue, Resource Pool Block we
can specify the type and number of resources required
before the item may be released to the next block.
Therefore, dirty cars will enter the Queue, Resource Pool
block and wait until an attendant is available. If an
attendant is available and the wash can accept another
car, the number of attendants in the Resource Pool block
is decremented by one and the car is allowed to proceed
into the wash bay. Upon exiting the wash bay, the
attendant is no longer needed and may be release back to
the Resource Pool with the Release Resource block as
shown in Figure 6.

Figure 6: Modeling Resources

3.5 Activity Based Costing

Now that we have a basic model of our car wash, we may
decide that we would like to calculate the average cost of
washing the cars. We know that each attendant is paid
$8.50 an hour. We also know that each car will use $1.25
in soap and that the electricity and water used by the
wash bay cost $1.50 per minute. We can define the cost
of the attendant within the Resource Pool block and the
cost of the soap, water and electricity into the Activity
Delay block (Figure 7). As we run the model, the
accumulated cost of each vehicle is automatically
calculated and stored in an attribute. The Cost By Item
Block can be added to read the cost attribute, sort the
items by an attribute, such as the “type” attribute, and
report on the throughput, total cost and average cost by
type of wash requested. The Cost Stats Block can also
be added to report the total cost generated in each of the
blocks, for example the total cost generated by the
attendants (Resource Pool) or the wash bay (Activity
Delay).
Figure 7: Cost Tab of Activity Delay Block

3.6 Interprocess Communication

The term interprocess communication describes the act
of two applications communicating and sharing data with
one another. Suppose we would like to use data from an
Excel spreadsheet as inputs to our Extend model. After
copying data from the spreadsheet, you can select a
parameter in Extend and choose Paste Link from the Edit
menu. The data will be copied into the parameter’s field
and a dynamic link between that parameter and the
specific cells from the Excel spreadsheet will be created.
If the values change in the spreadsheet, the parameters
will automatically be updated in Extend. A link of this
type can be created for both input parameters and output
data. Blocks and functions are also provided for
additional interprocess communication capabilities such
as running macros, using spreadsheets as lookup tables,
or even controlling Extend from another application.

3.7 Sensitivity Analysis

Suppose we would like to determine how sensitive our
system is to changes in the inter-arrival time of dirty
cars. To accomplish this, we can perform sensitivity
analysis on the inter-arrival mean parameter of the
Generator Block. By selecting the parameter and
choosing Sensitize Parameter from the Edit menu, we
can define how the parameter should change from run to
run. Simulation parameters such as the number of runs
and simulation end time can be specified in the Simula-
tion Setup dialog item under the Run menu. By cycling
through different inter-arrival times for the dirty cars and
comparing the results from the different runs, we can get
an understanding of how sensitive our car wash is to the
arrival rate of dirty cars.

3.8 Model Results

Once the simulation run has completed, the results of the
simulation are reported within the blocks. Double

Modeling with Extend TM 677
clicking on each block reveals the information collected
from the simulation run. For example, double clicking on
the Queue, Resource Pool block opens a dialog showing
the following information about the state of the Queue,
Resource Pool block:

Figure 8: Dialog of Queue FIFO

The Plotter block shows the number of items stored in
the Queue, Resource Pool over time in both graphical
and tabular format:

Figure 9: Plot of Queue Length

Simulation results may be stored in a table, plotted,
cloned to a different area of the worksheet, exported to
another program such as a spreadsheet or database,
displayed in an animation, or even used to control some
aspect of the outside world through external device
drivers.

4 CUSTOMIZING EXTEND

The above discussion illustrates the highly graphical and
interactive nature of Extend. However, Extend can also
take the shape of the model application. Interfaces,
components, and graphics can be used which tailor the
model to a specific application area.

The most visible aspect of a custom model is the user
interface. By modifying an existing interface or creating
a new one, the simulation modeler is able to create a
model which can be exercised by someone more familiar
with the system than with the simulation tool. Models
can be built that fit naturally into the conceptual frame-
work of the person using the model. The following
sections will describe some of the tools provided in
Extend that allow you to customize your model.

4.1 Animation

Animation is a powerful presentation and debugging tool
that can greatly increase model clarity. In Extend,
animation icons moving from block to block represent
the flow of items through the system. Users can choose
from a number of icons provided with Extend or create
their own in an external drawing package.

For example, we may want to see cars traveling from
block to block in our car wash model. By selecting the
appropriate icon in the Animate tab of the Generator
block, we can define how all of the items created by the
Generator will be represented. In addition, any block that
the items pass through has the capability of changing the
item’s animation icon. For example, we may choose to
represent every item exiting the Generator block with a
picture of a dirty car. As the items pass through the wash
bay, we can have the Activity Delay block change each
item’s animation picture to a clean car, thus providing
visual cues of how the items are changing as they
progress through the model.

In addition, custom animation can be added to display
flashing pictures and text, level indicators, pixel maps,
and QuickTime movies.

4.2 Hierarchical Modeling

Hierarchy allows models to be subdivided into logical
components or sub-models. A single descriptive icon
can represent each sub-model. Double clicking on the
hierarchical block will open a new window displaying
the sub-model. This can greatly simplify the representa-
tion of a model and allow the user to hide and show
model details as appropriate for the target audience.

Let us consider our car wash model (Figure 6). As we
have added detail to the model, the number of blocks has
increased. As a result, the representation of the model
has become slightly encumbered with model details.

Suppose we would like to represent the model by the
system’s most basic elements:

• the arrival of dirty cars

develop libraries of custom blocks for specific industries.

678 Rivera
• the queue of dirty cars waiting for availability of the
wash bay

• the wash bay

• the departure of clean cars

By selecting a group of blocks and choosing Make
Selection Hierarchical from the Model menu, you can
encapsulate a section of the model within a hierarchical
block. This block can be saved to a library to be used
again in other models. The icon for the hierarchical
block can be modified by using the built-in icon editor or
by importing an existing picture. The number of
hierarchical layers allowed in Extend is unlimited. Figure
10 shows the car wash model with hierarchical blocks
representing some of the basic elements of our car wash.
While the representation of the model is more intuitive
and simple than Figure 6, all of the detail of the model
can still be accessed by double clicking on any of the
hierarchical blocks to display the underlying sub-model.

Figure 10: Car Wash Model with Hierarchical Blocks

4.3 Dialog Cloning and the Notebook

As noted in the previous section, input and output
parameters associated with the model can be found in the
dialogs of the appropriate blocks. While this provides an
intuitive association between system metrics and the
constructs used to model them, it can make searching for
specific data more difficult when working with large
models containing many layers of hierarchy. An effective
way of dealing with this is to use the notebook and
cloning feature. With the notebook, you can create a
single custom interface to your model consolidating
critical parameters and results to a central location.

The notebook is a separate window associated with
each model. Initially the notebook is a blank worksheet
to which text, pictures, and clones can be added. Clones
are direct links to dialog parameters and can be create by
selecting the Cloning Tool from the tool bar and
dragging a dialog parameter from a block dialog to the
notebook or model worksheet. Once a clone is created,
any changes to the clone are immediately reflected in the
block and visa versa. Therefore it is no longer necessary
to access the block’s dialog to change an input parameter
or view updated results. Creative use of the notebook can
result in a simple yet effective interface for a large,
complex model. Figure 11 shows the notebook for the
car wash model as an illustration of how the notebook
can be used to consolidate important parameters into one
location.

Figure 11: Notebook for Car Wash Model

4.4 Block Development

The block development environment is one of Extend’s
most powerful features. While the majority of Extend’s
users find the pre-built constructs sufficient for their
needs, the block development environment provides a
way for users to expand the modeling capabilities to
perform unusual or highly specialized tasks.

Extend’s open architecture allows you to access the
structure of any block that is shipped with Extend. By
opening the structure, you may edit the icon, dialog, help
text, and script of the block. You can modify the
interface and functionality of any block or create a new
block from scratch.

ModL is the scripting language used to define the
behavior of the block. With a C-like syntax, ModL
provides powerful high-level functions and features
while having a familiar look and feel for users with
experience programming in C. In addition, external
XCMDs and DLLs can be called from within ModL
giving you the option of programming in any language.

This level of extensibility has prompted many users to

Modeling with Extend TM 679
Users and third-party developers have created libraries
for modeling many systems including neural networks,
control systems, bulk manufacturing systems, chemical
processes, silicon wafer fabrication, pulp and paper
mills, and radio and microwave communication systems.

5 SUMMARY

As demonstrated above, the ease-of-use of a graphical
simulator and the power and flexibility of a simulation
language are not mutually exclusive. By providing an
intuitive interface along with an extensive authoring and
development environment, Extend has succeeded in
combining the best of both simulation worlds.

REFERENCES

Imagine That, Inc. 1995. Extend Software Manual. San
Jose, CA.

Krahl, David. 1996. Modeling with Extend, In Proceed-
ings of the 1996 Winter Simulation Conference, ed.
J. Charnes, D. Morrice, C. Brunner, J. Swain, 578-
583. IEEE Piscataway, NJ.

AUTHOR BIOGRAPHY

JIM RIVERA is partly responsible for block develop-
ment and technical support for Extend at Imagine That,
Inc. Mr. Rivera received a BS in 1993 in Electrical
Engineering from Michigan State University. Prior to
joining Imagine That, Inc. Mr. Rivera worked as design
and analysis engineer in the nuclear power and automo-
tive industries.

	MODELING WITH EXTEND TM
	ABSTRACT
	1 INTRODUCTION
	2 EXTEND'S MODELING ENVIRONMENT
	3 CAR WASH EXAMPLE
	3.1 Random Processing Time
	3.2 Graphical Output
	3.3 Attributes
	3.4 Resources
	3.5 Activity Based Costing
	3.6 Interprocess Communication
	3.7 Sensitivity Analysis
	3.8 Model Results

	4 CUSTOMIZING EXTEND
	4.1 Animation
	4.2 Hierarchical Modeling
	4.3 Dialog Cloning and the Notebook
	4.4 Block Development

	5 SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHY
	SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 674
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

