
THE POWER AND PERFORMANCE OF PROOF ANIMATION

James O. Henriksen

Wolverine Software Corporation
7617 Little River Turnpike

Annandale, Virginia 22003, U.S.A.
ABSTRACT

Proof Animation™ 4.0 is a family of products for
animating discrete event simulations. Proof is available
in a variety of versions, including an inexpensive,
student version, mid-size and unlimited-size commercial
versions, a run-time version, and a royalty-free,
redistributable demo viewer. Proof is an ASCII-file-
driven, post-processing, general-purpose animation
system which runs on readily available PC hardware. Its
vector-based geometry provides a large animation
canvas and the ability to zoom in or out, while
maintaining crisp, clear images. Proof includes built-in
drawing tools and CAD import/export for ease of
creating animation layouts, dynamic bar graphs and plots
for displaying statistics, multiple-window display, and a
unique presentation-making capability. Proof’s open
architecture makes it ideally suited for serving as an
animation engine for models written in a wide variety of
simulation and programming languages. Proof’s
superior power and performance assure smooth, realistic
motion for animations regardless of their size,
complexity, or application. Beginning with Release 4.0,
Proof is available as a full-fledged Windows 95/NT
application.

1 INTRODUCTION

Proof Animation is a general-purpose, ASCII-file-
driven, post-processing animator designed for use with
the widest possible variety of simulation tools. Every
Proof animation requires two files, (1) a layout file,
describing static characteristics of an animation, e.g., the
background drawing over which objects move, and (2) a
trace file, which is a time-ordered sequence of
commands which create, destroy, move, and otherwise
change objects displayed on the layout, portraying events
in a simulation. Both of these files are free-format
ASCII files, with well documented (“open”)
architectures which can be generated easily in a variety
of ways. Trace files are almost always written using a
simulation language or package, such as SLX (Henriksen
1997), GPSS/H (Crain 1997) , Extend, Slam,
Siman, Simscript II.5, etc. Trace files can be written
using non-simulation-languages, such as C, and simple
trace files can even be prepared using a text editor.
Layout files are almost always developed using Proof’s
built-in drawing tools. Proof also includes a CAD
import feature, allowing quick importing of .DXF files.
Layout files can also be generated by a program. While
this is not done very often, it can and has been done
straightforwardly.

Proof’s open, simulation-language-independent
architecture is a great strength, both technically and
commercially. From the user’s perspective, Proof
provides the opportunity to add high-quality animation
to a simulation developed using existing tools, with no
requirement to purchase and use simulation tools
provided by Wolverine Software. From Wolverine’s
perspective, Proof provides a stream of sales to users
already committed to buying and using simulation tools
provided by Wolverine’s competitors.

Because language independence is such an important
strength of Proof, every effort will be made to ensure
that improvements to Proof will preserve this
independence. All the improvements to Proof described
in this paper will be done in a simulation-language-
independent fashion.

2 THE PROOF ANIMATION FAMILY

The Proof Animation product family runs on readily
available, inexpensive PC hardware. All versions
require a 386 or better CPU, a math coprocessor, and at
least a VGA-compatible video card. Running Proof as a
Windows 95/NT application requires Direct Draw driver
support for the video hardware used. Because these
requirements are easily met, animations developed with
Proof are very portable.

Proof runs under DOS, Windows 3.x, and OS/2 as a
32-bit extended DOS application. “Native” Windows
versions are available for Windows 95/NT. A set of

The Power and Performance of Proof Animation 575
Windows icons is supplied with each of the Proof
Animation products to provide single-click launching.
The following products comprise the Proof Animation
family:

• PROOF ANIMATION
Proof Animation is the basic animator.
Memory size is fixed and limited. Includes
built-in CAD import/export feature. Good for
small to mid-sized animations.

• PROOF PROFESSIONAL
Proof Professional exploits all available
extended memory for animating large systems.
Includes built-in CAD import/export feature.

• RUN-TIME PROOF PROFESSIONAL
Run-time Proof Professional runs developed
animations or presentations, but has no
animation development capabilities. It provides
a low cost way to run different scenarios with a
fixed layout file prepared using Proof
Professional or Proof Animation.

• STUDENT PROOF ANIMATION
The student version of Proof Animation is
included with the Using Proof Animation text.
Size and playing time limitations are imposed;
otherwise it is identical to Proof Animation.

• PROOF ANIMATION DEMO MAKER
Demo versions of animations can be prepared
under a licensed copy of Proof Animation or
Proof Professional containing the Demo-Maker
add-on. Copies of the executable demo files
can be reproduced and distributed free of
charge and viewed by anyone. No licensed
copy of Proof is needed to view a demo
prepared with the Demo Maker.

3 MAXIMUM PERFORMANCE DESIGN

3.1 The General-Purpose Approach

One of the ways in which the performance of Proof
Animation is maximized is its general-purpose design. A
general-purpose animation product can be used without
being tied to a specific simulation or programming
language. While built to work easily with Wolverine's
GPSS/H simulation software, Proof Animation also
provides affordable and powerful animation software to
users who develop models in other simulation and
programming languages.

Most animation software from other vendors is
directly coupled to their simulation software. In other
words, one cannot use their animation software without
also using their simulation software. In some cases, the
simulation and animation software are sold only as a
pair, so both must be purchased regardless of the needs
of the user. The suggested advantage of the coupled
approach is that because the animator has direct access
to the simulation events, development of the animation is
supposedly simplified. However, the real advantage is
felt by the vendors. They sell more software since their
users do not have an option to pick and choose based on
their needs. Moreover, a user of the coupled software
has little or no control over what information is passed to
the animation; therefore, he or she may actually have to
alter the modeling approach used in the simulation to
achieve the desired appearance and level of detail for the
animation.

Another disadvantage of the tightly coupled
simulation/animation package is cost. Sole sources tend
to be expensive. Vendors of these tightly coupled
packages often claim that their approach is the only way
to add animation to a simulation. Proof Animation has
proved that wrong. The number of success stories using
Proof Animation with other software continues to grow.
Furthermore, a benefit of the mix-and-match strategy for
software purchases is that the selection can be based on
optimal functionality and price.

3.1.1 ASCII Input Files

Proof Animation can be used with other software
because of two major design features. One is that Proof
Animation is driven by ASCII files. Therefore, any
software capable of writing ASCII text files can be used
with Proof Animation.

Proof Animation requires two ASCII input files to run
an animation: the layout file and the trace file. The
layout file describes the geometric details of the
background over which objects move, provides
geometric definitions and properties for such objects,
and defines logical paths along which the objects move.

Ordinarily, layout files are produced at least in part by
using Proof Animation's drawing tools; however, the
layout file command set specifications are published so
programs can easily be written to generate layout files.
For example, some users have written front ends for their
simulation models that allow different system design
parameters to be specified for each run. Based on these
parameters, different geometric configurations are
written and incorporated into a layout file. The new
layout appears on screen when Proof Animation is
invoked.

The trace file contains a time-ordered sequence of
commands such as CREATE, DESTROY, PLACE,
PLOT, MOVE, SET SPEED, SET COLOR and many
more. This file provides Proof Animation with
information on when, where, and what to create, destroy,

576 Henriksen
place, plot, etc. Trace files are free-format, and the
commands are easily learned and used. They provide
exactly the kind of flexibility necessary to easily be
integrated with the simulation model logic. Any
language that can produce formatted ASCII output can
write a trace file.

3.1.2 Post-Processor Animation

The second of the two design features that make Proof
Animation compatible with other software is that it is a
post-processing animation package. Post-processing
means that it runs after the simulation has executed.
Both the layout and trace files must exist before
invoking Proof Animation. They cannot be written and
read concurrently.

Two great advantages result from the post-processing
approach. First, PC hardware is not shared between the
simulation and the animation. This leaves the entire
CPU for running the animation. Second, it provides the
abilities to jump back and forth in time during the
animation playback, to speed up or slow down the
viewing speed, or show all or a specific portion of an
animation. These features make it easy to investigate
unusual system behavior or highlight points of interest.

3.2 Vector-Based Geometry

In the Proof Animation product family all layout file
information is based on vector geometry. Vector-based
descriptions are automatically mapped into the screen's
pixels to build the image. One of the advantages of this
approach is that layouts can be much larger than a single
screen. With the ability to zoom in or out and pan, larger
layouts are easily navigated to show the overall layout or
zoomed in to whatever level of detail is necessary.
Vector-based geometry also provides the ability to have
moving objects realistically rotate around corners
instead of the sliding effect to which other animation
packages are limited.

Another advantage of vector-based geometry is that
many CAD packages are capable of producing standard
vector-based .DXF files. In many cases, a CAD drawing
already exists for the system to be animated. If that is
the case, the effort of redrawing an entire layout can be
avoided. Proof Animation's built-in CAD Import/Export
feature provides the capability to convert industry-
standard .DXF files into Proof Animation layout files,
and vice versa. Credibility of the study is enhanced
when viewers see a familiar CAD drawing of the system
integrated into the animation. These advantages
maximize the power of the animation by giving a user
total flexibility on the detail and complexity of the
drawing.
Instead of vector geometry, animation packages may
use a pixel-oriented approach for drawing. With the
ability to manipulate individual pixels, one can produce
detailed images. However, this level of detail is time
consuming to draw and can often be lost because of the
scale at which the animations are viewed. Some other
disadvantages of pixel-orientation are: (1) pixel-oriented
images cannot be rotated; (2) layouts are often confined
to single-screen images. Some animators offer multi-
screen operation; however, the individual screens are
disjoint and independent, unlike Proof Animation's
single, continuous canvas; (3) zooming in on pixel
images magnifies the jagged edges inherent in all such
images. When a zoom-in is performed in Proof
Animation, the vector-based image maintains its crisp
and clear appearance. Lines continue to look like lines.
If a zoom-in is performed on a pixel-based animation
layout, the effect of the jagged edged image makes a line
look more like a stairway.

3.3 Smooth Motion

The maximum performance design of Proof Animation
achieves very smooth motion. Proof Animation
maintains this smooth motion by updating or refreshing
the screen 60-70 times per second. Other software can
often sustain refresh rates of only 5-10 updates per
second. The ultimate purpose of an animation is to
achieve a realistic depiction of the system being studied,
allowing the audience to gain confidence in the results of
the simulation study. Objects that move smoothly across
the screen are more realistic than those that jump across
the screen.

3.4 Color and Resolution Options

Beginning with Release 3.0, all versions of Proof,
including the student version, provide for operation in
256-color mode in a variety of screen resolutions.

The “normal” operating mode for Proof is 256-color
mode, and the “normal” resolution is 640x480. Video
hardware which supports this mode and resolution is
very commonplace. Proof can also run at 800x600 and
1024x768 resolutions, provided enough video memory is
available. These resolutions are now even available on
some laptop machines. For older hardware with less
video memory, Proof can run using 640x400 resolution.
For very old hardware, Proof can still be run in its
original 640x350, 16-color mode.

256-color animations are much more attractive than
16-color animations. The expanded color palette
contains 24 foreground colors and 8 background colors.
The background colors consist of 7 layout colors and 1
backdrop color. The background colors do not interfere

The Power and Performance of Proof Animation 577
with the foreground colors and therefore give a user
much more flexibility when drawing the static
background portion of the layout. With more colors
from which to choose, the background can be drawn
with more detail without sacrificing the color integrity.
In addition, in 256-color mode, objects can be multi-
colored. (In 16-color mode, objects must be mono-
chrome.)

4 NAVIGATING PROOF’S MODES AND
MENUS

Proof Animation is organized into seven menu-driven
modes. Each mode is a collection of closely related
functions. Switching among these functions is very
easy. Usually, a single mouse click is all that is required.
Switching among modes is also easily done, but it
implies major changes of context. For example, running
an animation and drawing a layout are vastly different
activities. Each mode has one or two main menu bars at
the top of the screen. Clicking on main menu items
invokes the options for the lower level tools. The seven
modes are summarized as follows:

• RUN MODE
This is the mode in which animations are
viewed. It provides menu tools for starting and
stopping an animation, changing views,
controlling viewing speed, jumping ahead and
back in time, and more.

• DEBUG MODE
This mode provides tools for stepping through
an animation by individual events or time
commands and examining the resulting
movement. Information pertaining to an
individual object can be obtained by clicking on
the object with the mouse.

• DRAW MODE
This mode contains the drawing tools used for
creating the layout background. Tools are
provided for drawing static elements such as
lines, arcs, text, fills, etc. Dynamic elements
such as messages, bars, plots, and layout objects
are defined in Draw Mode.

• CLASS MODE
This mode is used for defining object classes.
A class serves as a template for creating both
the dynamic objects that move around a layout
and layout objects that generally remain
stationary. The template determines an object's
size and shape and other initial properties such
as default speed and color. An animation will
usually contain multiple object classes. For
example, an animation of a hospital might
contain classes that represent doctors, nurses,
equipment, and patients.

• PATH MODE
This mode is used for defining fixed paths. A
path is a perfect mechanism for describing for
guided, directional movement such as
conveyors. The geometry or route of a path is
easily defined by clicking on existing lines and
arcs of a layout. Tools are also provided for
defining path speeds, circularity, and
accumulation status. Accumulating paths
provide automatic queuing for objects that pile
up at the end of the path.

 • PRESENTATION MODE
This mode is used for running scripted
presentations. Scripts can include static bitmap
slides and snippets of animation, separated by
special effect segues such as screen fades and
dissolves.

• SETUP MODE
This mode is used for examining and altering
infrequently changed configuration data. For
example, the color palette can be customized or
the mouse speed changed in this mode.

5 CREATING ANIMATIONS AND
PRESENTATIONS

5.1 Drawing the Layout

The first step in developing an animation is to draw a
layout. If a .DXF formatted CAD drawing of the system
is available, a user can begin by importing the drawing
into a Proof Animation layout file. This is done using
the built-in CAD import/export utility. Once imported,
the drawing can be examined by layer or by line style.
Specific layers and line styles can be deleted from the
drawing as desired. When you save the resulting
drawing, it is saved as a Proof Animation layout file.
The original .DXF file remains intact.

If a user does not have a CAD drawing or prefers to
draw using a computer, the drawing tools provided in
Draw Mode are easy to use. Although it is mouse-
oriented, Draw Mode also allows keyboard input, so if a
user needs to draw a line of a specific length at exactly a
certain angle, he or she can enter these specifications
numerically, and the geometry will appear on the screen.
To help in drawing scaled, accurate layouts, a visible
grid is turned on automatically when Draw Mode is
entered. For additional aid in drawing, Proof Animation
has the Snap-to-Grid option. This option is also on as
the default setting. Snap-to-Grid limits the drawing of
layout elements from grid point to grid point, thus
eliminating the chance of small gaps between the

578 Henriksen
endpoints of seemingly connected lines. Other snap
options which help draw accurate layouts are Snap-to-
Endpoint which magnetically attracts the mouse cursor
to the ends of lines and arcs, and Snap-to-Tangent which
quickly finds points of tangency between lines and arcs.
All of these options can be turned on or off by the user
during the drawing session.

5.2 Defining Object Classes

Once the background of the animation is drawn, the
second step in developing an animation is usually to
define one or more object classes. This is done in Class
Mode. Objects and object classes are among the most
important constructs in Proof Animation. A class
provides the geometric description of the individual
objects that move throughout the animation. The class
definition also includes the initial properties such as
physical clearances, color, and speed of the individual
objects. Each animation will usually have a collection of
object classes.

It is helpful to think of an object class as the template
from which the individual objects are made. An
individual object is based on the single geometric
description of a particular object class. There can be an
arbitrary number of objects, such as widgets, in the
system at once, but there need be only one widget object
class.

Motion and color-changing commands in the trace file
operate on objects. The drawn background components,
produced in Draw Mode, cannot be moved or changed.
If dynamic changes in background elements are required,
the appropriate components must first be defined as
object classes and can then be created and positioned
directly in Draw Mode. Objects that are created and
placed in the layout while the user is drawing the
background are called layout objects. Layout objects
enable a user to scale and position the objects into the
layout while having the background components visible
as reference points. While the animation is running,
layout objects can be manipulated using trace file
commands. For example, if an idle machine is shown as
green and a busy machine as red, the machine must first
be defined as an object class. Objects from that class can
be created and placed as part of the layout file, and their
color can be changed while the animation is executing.

5.3 Defining Paths

Proof Animation provides two kinds of motion: absolute
and guided. Absolute motion, specified by the MOVE
trace file command, causes an object to be moved
between two points. Guided motion always occurs along
a fixed route, called a path. If objects will follow
guided motion, such as travel on conveyors or along
guide wires, the next step in the animation development
is to use Path Mode to define one or more paths.

Paths are comprised of lines and arcs that represent
the route that the objects will follow. This underlying
geometry must first be drawn using Draw Mode or
imported from CAD. The logical path segments are then
defined on top of the existing lines and arcs. A single
line or arc can be part of one or more paths. Once
defined, paths are saved as part of the layout file.

Using paths is very simple because Proof Animation
does all the work. The most commonly used trace file
path command is PLACE objectID ON path. Once an
object is placed on a path, it will follow that path until it
visually comes to rest at the end of the path or until it is
PLACEd elsewhere or DESTROYed. All objects
traveling on the same path can be stopped
simultaneously and resume movement at a later time.
Paths provide outstanding animation power in response
to a single trace file command.

Accumulating paths provide even greater power for
animating paths on which queuing can take place. On
accumulating paths, Proof Animation reflects physical
reality by visually queuing objects when bottlenecks
occur. This often makes a simulation model of the
system much simpler to construct, because such queuing
need not always be explicitly represented in the model
code. Most systems contain some accumulation. This
property can be used to represent certain types of
conveyors, cars at a traffic signal, bank lines, and more.
Paths play an especially important part in transportation,
product flow, and material handling animations.

5.4 Writing the Trace File

The next step in the animation development is producing
the animation trace file. Trace files consist of very
readable ASCII commands. Trace files are time ordered.
That means the specific animation events take place
between TIME commands. Consider the following
portion of a trace file:

TIME 34.6
CREATE PLANE 1
PLACE 1 ON RUNWAY3
SET 1 SPEED 75
TIME 52.8

It is very easy to visualize the results of these
commands. At time 34.6, an object with an id number of
1 is created with geometry and properties inherited from
class PLANE. This object will appear on screen at the
beginning of a path named RUNWAY3 and begin
moving along the path. The speed at which object 1 will

The Power and Performance of Proof Animation 579
move is set to 75 units of distance per unit of simulated
time. These units are user-determined, e.g., feet and
seconds. Proof Animation will continue reading trace
file commands until it reads the TIME 52.8 command,
signaling the end of the events that are to begin at time
34.6. It is very easy to produce simple trace files with
any ASCII editor.

For most applications, it is impractical to create trace
files by hand. Using a simulation model or program to
generate the trace file is usually the only viable
approach. In order to produce a trace file, output
statements are inserted into the simulation model to write
the appropriately formatted commands. The Proof
Animation trace file command set has been designed to
be easily generated. Any language with the ability to
write a formatted ASCII file is capable of producing a
trace file.

5.5 Building a Presentation

As an optional final step, a professional looking
presentation can be built using Proof Animation.
Presentation Mode lets users display scripted sequences
consisting of bit-mapped screen images or slides, full
animations, and/or segments selected from full
animations. These presentation elements can be linked
together using fades, dissolves, and other special effects,
to produce a polished presentation. This is done by
writing a simple ASCII presentation script file.
Complete presentations can be viewed without ever
exiting Proof Animation. This eliminates the
awkwardness of switching back and forth between the
computer and other display media during a presentation.

Slides can be created directly in Proof Animation or
any software package capable of exporting industry-
standard .PCX image files. There are many such
packages available, and virtually all of them can produce
very high-quality charts, graphs, and slides. Proof
Animation can both read and write these .PCX screen
images. It is very straightforward to save Proof
Animation screen images as .PCX files and incorporate
them into presentations as slides.

Presentations can be developed so that slides and
animations appear on the screen for a defined amount of
time. The viewer does not have to interact with the
computer for the presentation to continue. Presentations
can also be developed to continue once a key or mouse
button is pressed, giving the viewer or presenter ample
time to comment on what is currently on the screen.

When developing the presentation, a user can choose
to highlight areas of interest within the animation by
using different views or sound to draw the viewer’s
attention to particular aspects of the animation.
Presentations can incorporate selectable menus defined
by the presentation developer. These menus can be set
up by topic, giving the viewer or presenter complete
control and flexibility of what to show.

6 THE PROOF PROFESSIONAL
ADVANTAGE

Proof Professional offers obvious advantages because it
is limited only by the total memory available on a
computer. No artificial memory limits are imposed;
therefore, large-scale animations can be run on the PC.

Proof Professional runs surprisingly well on 386-
based machines with a math coprocessor and VGA
display; but when run on high-end PCs with fast video
hardware, Proof Professional’s performance is stunning.

7 RECENT ADDITIONS TO PROOF

A number of improvements have been made to Proof to
provide enhanced realism for vehicular motion. When
an object representing a wheeled vehicle moves along an
animation path, there are now four options for
representing its motion. An object is by default assumed
to be non-directional. If so, it will not rotate to point in
the direction in which it is moving; i.e., it will slide
around corners, rather than turning them. For most
applications, this is unacceptable (See Figure 1). If an
object is declared to be directional, and it will always
point in the direction it is moving. When such objects
move along arcs, they are drawn tangent to the arc. For
long objects, this can produce unsightly fishtailing (See
Figure 1). A second point of attachment to a path can be
declared for an object. If so, the second point is called a
rear guide point (RGP). At all times, both the object’s
hot point (normal point of path attachment) and its RGP
are kept in contact with a path (See Figure 1). When
real-world wheeled vehicles turn a corner, the rear
wheels do not follow the same path as the front wheels.
Rather, they are pulled along a minimum-distance
trajectory, always traveling a shorter distance than the
front wheels (See Figure 1). If a vehicle turns a corner
and resumes linear motion, its rear wheels only
asymptotically approach the path followed by the front
wheels. Proof now offers an “RGP Pulled” option which
supports very realistic wheeled vehicle motion.

8 IMPROVEMENTS UNDERWAY

As of this writing, the “native” Windows 95/NT version
of Proof (Release 4.0) is under development. Rehosting
Proof to be a true Windows application will greatly
facilitate its use with other software; however, our plans
extend well beyond rehosting. We plan to implement an
interface which will allow Proof to communicate with

580 Henriksen
simulation software packages by a means other than
files. Although our design is not fully formulated as of
this writing, in all probability, we will provide a DLL
(Dynamic Link Library) version of Proof for use under
Windows. DLLs provide a widely used standard for
which developer and user support is readily available.

Non-Directional Directional RGP RGP Pulled

Figure 1: Wheeled Vehicle Motion

The ability to call DLLs has already been added to
Wolverine’s SLX simulation system. We anticipate that
other vendors will develop conforming “client”
applications which use Proof as an “animation server.”
This approach will preserve Proof’s simulation language
independence, but offer tighter integration between
Proof and simulation tools than is possible by means of a
file-driven interface. Establishing a non-file-based
interface for information presently stored in layout and
trace files will be a fairly straightforward first step. A
second step will be to implement a new “command
channel” to allow another application to exert dynamic
control over Proof, e.g., “run this animation now,” and
“restart the current animation at time 100, using a new
view.”

Over the longer term, we hope to implement a user-
callable subroutine interface for Proof. For example,
trace file commands such as create, place on, etc. could
be implemented as user-callable subroutines. A user-
callable subroutine interface to Proof Animation is very
appealing, because it would provide the basis for
concurrent animation in a simulation-language-
independent manner. In principle, building a callable
interface is straightforward, because it only requires
establishing public interfaces for primitive operations
which already take place. However, the devil lies in the
details. Providing greater user access into what have up
until now been regarded as Proof internals will require
careful re-examination of security and error-checking
issues. Until a thorough re-examination of these issues
is performed, it’s difficult to assess how big an effort
will be required to develop the user-callable interface.
Accordingly, no definite schedule has been set for this
development effort.
9 SUMMARY

Wolverine Software's Proof Animation has set the
standard for maximum power and performance. Some
of Proof Animation’s many unique features include the
ability to show statistics using bar graphs and plots,
create presentations, built-in CAD import/export,
drawing tools, smooth motion, and a unique multi-
windowing display.

Proof Animation is not tied to a specific application.
There are features that make it an ideal choice for the
animation of systems like computer networks, health
care, transportation, reengineering, manufacturing, and
more while maintaining ease of use.

An animation benefits a user in every phase of the
study: verification, validation, presentation of results,
and the overall system design process. Proof
Animation’s unmatched features make it the perfect tool
for each of these phases regardless of the application.

REFERENCES

Crain, R.C. 1997. Simulation using GPSS/H. In
Proceedings of the 1997 Winter Simulation
Conference, eds. S. Andradóttir, K.J. Healy, D. H.
Withers, and B. L. Nelson.

Earle, N.J., and J.O. Henriksen. 1994. Proof animation:
Reaching new heights in animation. Proceedings
of the 1994 Winter Simulation Conference, eds. J.
Tew, S. Manivannan, D. Sadowski, and A. Seila,
509-516. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

Henriksen, J.O. 1997. An introduction to SLX. In
Proceedings of the 1997 Winter Simulation
Conference, eds. S. Andradóttir, K.J. Healy, D. H.
Withers, and B.L. Nelson.

Wolverine Software. 1995. Using Proof Animation
(Second Edition). Annandale, Virginia: Wolverine
Software Corporation.

AUTHOR BIOGRAPHY

JAMES O. HENRIKSEN is the President of Wolverine
Software Corporation. He is a frequent contributor to
the literature on simulation. Mr. Henriksen served as the
Business Chairman of the 1981 Winter Simulation
Conference and as the General Chairman of the 1986
Winter Simulation Conference. He has also served on
the Board of Directors of the conference as the
ACM/SIGSIM representative.

	THE POWER AND PERFORMANCE OF PROOF ANIMATION
	ABSTRACT
	1 INTRODUCTION
	2 THE PROOF ANIMATION FAMILY
	3 MAXIMUM PERFORMANCE DESIGN
	3.1The General-Purpose Approach
	3.2Vector-Based Geometry
	3.3Smooth Motion
	3.4Color and Resolution Options

	4 NAVIGATING PROOF’S MODES AND MENUS
	5 CREATING ANIMATIONS AND PRESENTATIONS
	5.1Drawing the Layout
	5.2Defining Object Classes
	5.3Defining Paths
	5.4Writing the Trace File
	5.5Building a Presentation

	6 THE PROOF PROFESSIONAL ADVANTAGE
	7 RECENT ADDITIONS TO PROOF
	8 IMPROVEMENTS UNDERWAY
	9 SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 574
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

