
AWESIM: THE INTEGRATED SIMULATION SYSTEM

A. Alan B. Pritsker
Jean J. O’Reilly

Pritsker Corporation
P.O. Box 2413

Lafayette, Indiana 47906, U.S.A.
ABSTRACT

AweSim is a totally new general-purpose simulation
system. AweSim takes advantage of the latest in
Windows technology to integrate programs and
provide componentware. AweSim includes the Visual
SLAM simulation language to build network,
subnetwork, discrete event, and continuous models.
Network models require no programming yet allow
user-coded inserts in Visual Basic or C. Discrete
event and continuous models can be created using the
object-oriented technology of Visual Basic, C or
Visual C++ and can be combined with network
models. This paper will demonstrate the process of
using AweSim’s componentware, describe examples of
user interfaces that allow integration with other
applications, and present examples of models used for
problem solving using AweSim.

1 INTRODUCTION

AweSim is a program that supports the range of tasks
required to perform a simulation project. AweSim also
provides integrating capabilities to store, retrieve,
browse and communicate with externally written
software applications. The architecture of AweSim is
shown in Figure 1. The most fundamental feature of
the AweSim architecture is its openness and
interconnectivity to databases, spreadsheets and word
processing programs such as Microsoft Office.
AweSim is built in Visual Basic and C/C++ and
programs written in these languages are easily
incorporated into its architecture. The details on the
capabilities of AweSim are contained in the AweSim
User’s Guide (Pritsker Corporation, 1997).

An AweSim project consists of one or more
scenarios, each of which represents a particular system
alternative. A scenario contains component parts.
Software programs called builders are provided by
AweSim to create each component.
Figure 1: The AweSim Architecture

AweSim’s Project Maintainer determines if a model
translation or compilation is required. Each time the
modeler requests a run, the Project Maintainer
examines changes made to the current scenario to
determine if any components have been modified and
indicates whether translating tasks should be
performed. The Project Maintainer then allows the
user to specify whether these tasks should be done
prior to performing the requested function. Multiple
tasks may be performed in parallel while a simulation
is executed in the background. The simulation modeler
can switch between tasks by using a mouse to click in
the appropriate window.

The use of the MS Windows interface simplifies
learning and provides the foundation for combining
application programs using that interface.

User Interface
Templates

and Macros

Spreadsheet
Input
(.XLS)

Text
Input

Microsoft
Paint

Network, Subnetwork,
Discrete Event,

Continuous,
and Combined Modeling

C/C++ User Code
Visual Basic User Code

Interactive
Execution

Environment

Concurrent
Animation

Animation
Replay

User
Defined

Input

User
Defined
Output

Database
Output
(.dbf)

Text
Output

EXCEL

Access

Word

Power
Point

Microsoft
Office

Input

Output

Legend

AweSim
Text

Components

AweSim
Database

Components
(.dbf)

Visual SLAM
Simulation
Language

Spreadsheet
Output
(.xis)

Symbol
(.bmp)

AweSim
Component Builders

Project Maintainer

546 Pritsker and O’Reilly
2 MODEL OUTPUT

AweSim provides the ability to compare output from
various scenarios both graphically and textually. A
report “browser” allows alternative textual outputs to
be compared side by side. Graphically, output maybe
viewed within AweSim in the form of bar charts,
histograms, pie charts, and plots. Bar charts can be
used to display the value of a statistic across scenarios.
It is possible to view multiple windows of graphical
output at the same time, as shown in Figure 2.
Graphical and textual information from the AweSim
database can be exported to other Windows packages
such as EXCEL or Word for additional analysis and
for documentation.

Figure 2: Multiple Report Windows

3 ANIMATION

With the AweSim animator, one may develop and
display multiple animations for a single scenario
(Figure 3).

Figure 3: Animation with Multiple Windows
For example, the modeler can create one animation
of a system at an aggregate level and another at a
department level, side by side in separate windows.
The two views may then be displayed by associating
the animations with the current scenario and running
the simulation. Animation constructs, called actions,
correspond to elements in an AweSim network model.
For example, the ACTIVITY action shows movement
of a symbol. It requires that the modeler define a
symbol, a graphical path location where movement of
the symbol will be shown, and the number of an
activity in the AweSim model to which to tie the
movement. Other actions are provided to display
resource status, items in a queue, variable values, and
other system status conditions. The symbols
manipulated by the animator are of two types:
graphical items one wants to display or move, and the
background on which they will appear. These symbols
are stored in standard Windows bitmap format,
allowing them to be exchanged between programs
using the Windows clipboard.

4 INTERACTIVE EXECUTION

The AweSim Interactive Execution Environment (IEE)
provides an interface with an executing simulation.
The modeler may examine, modify, save, or load the
current system status using the IEE. The IEE supports
the debugging of a model under construction and
verification of a completed model. The analyst may
use the IEE to develop and analyze alternative control
strategies for a system or to demonstrate the operation
of the model to non-modelers. The IEE control panel
(Figure 4) lets you advance through the model step-by-
step or by setting breakpoints. At any point you may
examine variable values, statistics, or queue entries or
save the system status in order to reload and
experiment with alternative scenarios.

Figure 4: Interactive Execution Environment

AweSim: The Integrated Simulation System 547
5 MODELING AGENTS AT AN AIRPORT
COUNTER

At an airport counter, there are two lines for
passengers waiting to check in or to purchase tickets.
One of the two lines is for first class passengers and
passengers who receive priority treatment due to the
number of miles they fly with the airline. The second
line is for coach passengers. The airline maintains 6
agents to process passengers during a peak period.
Two agents process priority passengers but will serve
coach passengers if no priority passengers are waiting.
Two of the agents select their passengers from either
of the two lines with a preference for passengers
waiting in the priority line if both dedicated agents are
busy. If no one is waiting in the priority line, then
these agents select the next passenger waiting from the
coach line. The last 2 agents are dedicated to coach
passengers. If more than 1 of the coach agents are idle,
the agents have an informal rule that the agent that has
been idle the longest serves the next incoming
passenger. Passengers in the priority line are served
by the closest available agent that serves priority
passengers.

Priority passengers arrive during the peak period
according to an exponential distribution with a mean
time between arrivals of 5 minutes. Coach passengers
also arrive with an exponential distribution but with a
mean time between arrivals of 2 minutes. For priority
passengers, the service time is uniformly distributed
between 2 and 20 minutes as they require different
types of service. Coach passengers have a processing
time that is triangularly distributed with a modal value
of 6 minutes, a low value of 3 minutes and a high
value of 12 minutes. It is desired to estimate the
amount of time each type of passenger waits in the
system and to assess the utilization of the 6 agents,
both individually and as part of the first class and
coach groups. A schematic of the system is shown in
Figure 5.

Figure 5: Schematic Diagram of Airport Counter.
The Visual SLAM network model consists of two
disjoint network segments involving the arrival of
passengers, the waiting for an agent, the processing by
the agent, the freeing of the agent and the collection of
time-in-the-system statistics. These functions are
modeled by a CREATE node, AWAIT node,
ACTIVITY, a FREE node, a COLCT node and a
TERMINATE node. Consider first the resource
definitions and the resource GROUP definitions which
graphically are shown in blocks (Figure 6).

Figure 6: Resource and Group Blocks

A RESOURCE block defines each resource
individually by number and name and resource
capacity. Then the file numbers where entities wait for
the resources are listed in a preferred order for
allocation. The GROUP block defines a group number
and name, the order in which individual resources are
allocated from the group and the rule by which they
are allocated. For example, for the GROUP
FCAGNTS, agent F6 is allocated before agent F5 if
both are idle. At an AWAIT node, multiple GROUPS
can be listed so that combinations of sets of resources
can be allocated to entities.

In Figure 7, the flow of entities is shown. The
arrival time is assigned at the CREATE nodes and
placed in ATRIB[0] for each arriving passenger entity.
The entity is then routed to an AWAIT node where it
waits, if necessary, in File 1 for priority service or File
2 for coach service. For priority service, a selection is
made of one of the resources in GROUP FCAGNTS
and the coach agents C4 and C3. The coach passenger
entities wait in File 2 for one of the resources in
GROUP COACHAGNTS or for an idle FCAGNTS.
The agent or resource number allocated to a passenger
is stored in LTRIB[0] as indicated at the AWAIT
nodes. Activities 1 and 2 model the agent processing
time. For priority passengers the processing time is
uniformly distributed between 2 and 20. For coach
passengers the processing time is triangularly
distributed with parameters 3, 6 and 12.

548 Pritsker and O’Reilly
Figure 7: Network Mod

After being processed, the passenger entity arrives at
a FREE node where the resource allocated at the
AWAIT node is freed. Next, the time in the system,
TNOW-ATRIB[0], is collected at COLCT nodes
which are numbered as 1 and 2. The entities are then
terminated as they have received service from an
agent.

6 MODELS WITH A SUBNETWORK

The Visual SLAM subnetwork (VSN) shown in Figure
8 is used to demonstrate the basic capabilities and
concepts related to subnetworks. The VSN block
provides a name, COMPRES, a computer resource for
the subnetwork. COMPRES is used to make a
computer resource available at different locations in a
calling network or subnetwork. The parameters of
COMPRES are COMPCAP, a computer resource
capacity, and PROCTIME, a processing time for the
computer activity.
el for Airport Agent Model.

Figure 8: Subnetwork for Computer Processing

The RESOURCE block in the VSN specifies the
label for resource 1 as COMP which has a capacity as
defined by Parameter 1, that is, COMPCAP. The value
of COMPCAP on the RESOURCE block for the
instance CPU is set on the first call to VSN
COMPRES through the process of instantiation. The
first node of the VSN is an ENTERVSN node which is
the start of the path of the entity in the subnetwork.
Next the entity waits at an AWAIT node in file 1 for
one unit of the resource COMP. When the entity is
allocated the resource, it proceeds to activity 1 where
Parameter 2, PROCTIME, provides a value for the
processing time. Following the processing time
activity, resource COMP is freed at a FREE node and
the entity is returned from the VSN by the
RETURNVSN node.

The VSN is called from the main network or a
subnetwork when an entity arrives to a CALLVSN
node. An example of a calling network with two calls
to the VSN COMPRES from nodes CALL1 and
CALL2 is shown in Figure 9.

Figure 9: The Main Network.

where the attributes of the two entities are combined.
The transplanted patient entity is then routed to

AweSim: The Integrated Simulation System 549
At both CALLVSN nodes, the resource is identified
as CPU which provides an instance of the VSN whose
name is COMPRES. At node CALL1, the processing
time is specified as EXPON(10.,1) and at node
CALL2 the processing time is specified as 6. In this
illustration, the entities arriving to the CALLVSN
nodes both wait in file 1 for resource COMP with
instance CPU in accordance with the priority rule for
file 1. The processing time is taken as parameter 2 of
the VSN. The resource capacity, COMPCAP, is taken
from parameter 1. Since no special exit numbers are
prescribed, the entity is returned to the CALLVSN
node from which it came and normal branching from
the CALLVSN node occurs.

A second calling network that uses the VSN
COMPRES is shown in Figure 9 involving two
resources, CPU1 and CPU2. The CALLVSN nodes
CALL3 and CALL4 specify the instance of the
subnetwork as CPU1 and CPU2, respectively. Each
different instance of the subnetwork is a separate
object with its own capacities, files, etc.

Figure 10: A Second Main Network.

In Figure 10, parameter 1 at both CALLVSN nodes
indicates a capacity of 1. Parameter 2 specifies the
processing times. Entities wait in file 1 but in a
different instance of file 1. Statistics for file 1 would
be collected separately for entities waiting for CPU1
from those waiting for CPU2.

If CPU2 has a capacity of 2 then parameter 1 at
node CALL4 would be changed to a 2. Since there are
two instances of the VSN COMPRES, the resource
capacity COMPCAP is set on the first call of VSN
COMPRES for each instance.

7 LIVER TRANSPLANTATION POLICY
EVALUATION

Organs for transplantation are a scarce life-saving
resource. The number of cadaveric donors has not kept
pace with increasing demand. The United Network for
Organ Sharing (UNOS) operates a nationwide system
to procure and allocate human organs to potential
recipients. Pritsker Corporation in conjunction with

UNOS developed the UNOS Liver Allocation Model,
ULAM, for assessing proposed policies for allocating
livers (Pritsker et al., 1995, 1996). The material
presented here referred to as ULAMjr is based on
ULAM with major changes made to reduce the size
and scope of the model.

ULAMjr illustrates the use of the AweSim
integration capabilities to: provide input data for a
model; store model outputs for presentation using
Excel; and build animations illustrating the allocation
of organs to waiting patients. Outputs are stored in an
AweSim database to facilitate the computation and
display of performance measures. A MATCH node is
used to determine the patient to which an arriving liver
is to be allocated. A ranking of entities in a queue
based on primary and secondary priority variables is
demonstrated with the first priority being status and the
secondary ranking based on waiting time.

The ULAMjr model is shown in Figure 11. Only the
novel features will be described in this paper (see
Reference 1 for more details).

The arrival time of the liver entity is established as
ATRIB[0] and the time between arrivals of liver
organs is specified at the CREATE node. READ node
READ0 is used to read a file which contains attributes
for liver entities. The liver entity is then routed to
QUEUE node Q2 where it is matched with a waiting
patient. The coordinates of the donor hospital are read
in as ATRIB[4] and ATRIB[5] and these are used to
collect statistics on the donated liver travel distance
and in an animation that shows the transfer of livers to
patients throughout the United States.

The arrival of patients is separated into arrivals by
status type. Prior to running the Visual SLAM
program, files were constructed with the attributes
necessary to describe the type of patient arriving for a
given status. The random sampling from these files to
represent a set of characteristics for patient entities is
referred to as “bootstrapping.”

The patient entity is sent to an ASSIGN node where
the patient’s current status is set. The value of the next
status for the patient, and the time at which the status
change will occur, are set in a user function.

For each status code, patient entities are routed to
QUEUE node Q1 where they are inserted into the file
1 waiting list in accordance with the file's priority
ranking rule. A MATCH node MAT is used to match
an arriving liver entity with a waiting patient with the
same blood type who has the highest value of the
ranking expression. The matched entities are routed
from the MATCH node to an ACCUMULATE node
COLCT node DISP where the distance between the
donor hospital and the patient transplant center is
collected and the patient entity is routed according to

550 Pritsker and O’Reilly
the status code at which the patient was transplanted.
Three COLCT nodes are used to obtain the waiting
time until transplant by status type. Following each
COLCT node is an activity which has a condition that
represents the 2-year survivability of the transplanted
patient.

A disjoint network is used to model the status

change process. To accomplish this reviewing of
patients, a CREATE node creates one entity at 4 a.m.
of the first simulated day and routes it to FINDAR
node SEARCH. The FINDAR node initiates a search
through file 1 and a testing of the value of LTRIB[2]
to determine whether it is less than or equal to TNOW.

Figure 11: Visual SLAM Network

If the value is less than or equal to TNOW, the
patient entity that is making a status change is removed
from file 1 and routed to GOON node CHST where it
is further routed to ASSIGN nodes, STAT2 or STAT3,
based on its changed status code, LTRIB[2]. At nodes
STAT2 and STAT3, the current status of the patient is
reset and the next transition state and time are
established. If the patient is making a transition to
Status 4, the death state, then statistics are collected on
Model for Transplantation Analysis.

the number and waiting time of a pre-transplant death
categorized by status at death. The pre-transplant death
waiting times are collected at a single COLCT node by
making the COLCT node number an expression,
7+LTRIB[0], and concatenating a string with
LTRIB[0] as the output identifier. This entity is then
terminated from the simulation.

Function INTLC is used to provide an initial list of
200 patients in file 1. Fifteen hundred hours was

AweSim: The Integrated Simulation System 551
selected as the start time of the simulation because the
earliest arrival time of the 200 patients was within this
1500 hour time interval.

The policy being simulated involves a single
national list in which patients are allocated a liver
based on their medical status first and patients of the
same status selected based on longest waiting time.
The allocation requires identical blood matching
between the organ donor and the patient. Livers were
available to transplant approximately 66% of the
arriving and initial patients. Of the patients
transplanted, 3,156 survived for greater than two years
to give a transplantation survival fraction of 0.778.

There were 900 patients who died after
transplantation and 699 patients who died while
waiting for a transplant. This constitutes 26% of the
patients.

Although the data in this example is hypothetical, it
does present the dilemma involved in allocating a
scarce life-saving resource. In actuality, there is a great
need to increase the number of donors. This can be
done by making the general public aware that each
donor can save as many as five lives of terminally ill
patients. Donation of organs needs to be discussed
among family members.

There are many performance measures that need to
be taken into account in selecting a liver allocation
policy. A policy must balance the utility of an organ
placement with the equity involved in treating all
patients in the same manner. Simulation is a tool that
has supported policy selection in this complex
medical environment.

8 INTEGRATION OF AWESIM WITH
OTHER SOFTWARE

AweSim was designed to integrate easily with other
Windows applications. AweSim is built on a relational
database which is accessible with standard tools such
as Dbase, Access, FoxPro and Excel. Input data is
easily moved from an Excel worksheet to the AweSim
input tables. Output data is stored in AweSim output
tables, available for creating custom reports using a
favorite tool. In addition to standard output data, raw
data from the simulation can be stored in standard
database or Excel format for analysis, manipulation, or
presentation. Data used to create AweSim output
graphics can also be exported “on the fly” to an output
file for use in any tool accepting comma-delimited
input.

An AweSim animation can use graphics created

from other programs. As mentioned in the discussion
of animations, the graphical elements manipulated by
the animator can be created using CAD, drawing or
paint programs and loaded into AweSim by using the
Windows bitmap format. The output charts and plots
created by AweSim can be exported via the clipboard
to other applications. For example, a pie chart created
by AweSim may be copied to the clipboard and pasted
into a word processing document describing the results
of the model.

9 SUMMARY

AweSim is a new simulation support system. which
takes advantage of the latest Windows technology in
order to provide a simulation support system able to
interface with a variety of familiar tools. It
incorporates the Visual SLAM modeling methodology.
AweSim is distributed by Pritsker Corporation, which
offers regularly scheduled training classes as well as
applications support.

REFERENCES

Pritsker, A.A.B. et al, "Organ Transplantation Policy
Evaluation", Proceedings, 1995 Winter
Simulation Conference, pp. 1314-1323.

Pritsker, A.A.B., O.P. Daily and K.P. Pritsker, "Using
Simulation to Craft a National Organ
Transplantation Policy", Proceedings, 1996
Winter Simulation Conference, pp. 1163-1169.

Pritsker, A.A.B., J.J. O'Reilly and D.K. LaVal,
Simulation with Visual SLAM and AweSim, John
Wiley and Systems Publishing Corporation, 1997.

Pritsker, A.A.B., J.J. O'Reilly, Solutions Manual for
Simulation with Visual SLAM and AweSim,
Systems Publishing Corporation, 1997.

Pritsker Corporation, AweSim! User's Guide, West
Lafayette, IN, 1997.

Pritsker Corporation, Visual SLAM Quick Reference
Manual, West Lafayette, IN, 1997.

AUTHOR BIOGRAPHIES

A. ALAN B. PRITSKER is Chairman of the Board of
Pritsker Corporation. He obtained a Ph.D. from The
Ohio State University in 1961. In 1967, he was
awarded the IIE Distinguished Research Award for his
pioneering work on network simulation languages. In
1985, he was elected to the National Academy of
Engineering for the basic concepts underlying
discrete/continuous simulation languages. Dr. Pritsker
served twice as a member of the Board of Directors of
the WSC and as Board Chairman in 1984 and 1985.

	AWESIM: THE INTERGRATED SIMULATION SYSTEM
	ABSTRACT
	1 INTRODUCTION
	2 MODEL OUTPUT
	3 ANIMATION
	4 INTERACTIVE EXECTION
	5 MODELLING AGENTS AT AN AIRPORT COUNTER
	6 MODELS WITH A SUBNETWORK
	7 LIVER TRANSPLANTATION POLICY EVALUATION
	8 INTERGRATION OF AWESIM WITH OTHER SOFTWARE
	9 SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 545
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

