
A FRAMEWORK FOR DEVELOPING AND MANAGING OBJECTS IN A COMPLEX SIMULATION
SYSTEM

James D. Barrett

NYMA, Inc.
Engineering Services Division

4027 Colonel Glenn Hwy., Suite 445
Dayton, OH 45431-1672, U.S.A.
e-mail: j-d-barrett@worldnet.att.net
ABSTRACT

The Integrated Supportability Analysis and Cost System
(ISACS+) Operation and Support (O&S) Simulator is a
flexible, object-oriented software tool that simulates the
operation and support environment for a fleet of aircraft
and engines. The model is written in C++ and runs from
pre-processed flat files generated from any SQL
database, making it both portable and database-
independent.
 Originally developed for General Electric Aircraft
Engines (GEAE), ISACS+ is currently being rehosted
and extended under a Space Act Agreement between
GEAE and NASA Lewis Research Center.
 This paper describes a process that begins with
objects of interest to a simulation model and imposes
order on those objects by defining interactions between
the objects and services required to support those
interactions. The result of this process is an object
framework. An object framework can itself become an
object within a greater object framework. For example,
a simulation module is an object framework imposing
order on the objects it controls. This module can, in
turn, be treated as an object in a larger application that
provides not just simulation capability, but other
capabilities as well (e.g., reporting, database
management). Based on the ISACS+ development
team’s experience, object frameworks provide a useful
means of managing complexity in a large simulation
model.

1 INTRODUCTION

The Integrated Supportability Analysis and Cost System
(ISACS+) Operation and Support (O&S) Simulator was
developed for General Electric Aircraft Engines (GEAE)
to perform operation and support analysis for the U. S.
Air Force F-16 engine program. The object-oriented
model is written in C++ and runs from pre-processed flat
files generated from any SQL database engine, making it
both portable and database-independent.
 The original implementation, delivered early in 1994,
consists of four subsystems: the Graphical User
Interface (GUI), the O&S Simulation Module, the Report
Generator and the Parameter Database. The original
system is hosted on a UNIX workstation, using Ingres as
the RDBMS, X Window/Motif and Ingres
Windows/4GL for GUI generation, and native C++ for
implementation of the O&S Simulation Module. The
subsystems which comprise the ISACS+ functional
architecture are shown in Figure 1.

I SA C S + P ar ameter D B

I SA C S + G UI

I SA C S + Si m u l a t i o n
 Mo d ule

I SA C S +
R e p ort

G e n e r a t o r

Fi g u r e 1 - I SA C S + F u n ctio n al Archite ct u r e

 In 1996, GEAE and NASA Lewis Research Center
entered into a Space Act Agreement to extend the
capabilities of ISACS+ to address the needs of the
commercial airline fleet. This effort began by porting
the ISACS+ Simulation Module and the Parameter
Database table definitions from UNIX to run in a 32-bit
Windows client/server environment, using Borland’s
C++5.0 Development Suite as the compiler and Oracle
7.2 Workgroup Server as the SQL engine.
 This paper details the process that transformed the
functional architecture of Figure 1 into an object-
oriented application framework. The process began by
examining and documenting the ISACS+ object model
(OM) and placing the OM into an object framework by

498 Barrett
describing interactions between objects and services
required to support those interactions. Once the O&S
Simulator module was defined in this way, it became an
object itself. This object is then placed into the ISACS+
application framework which, in turn, defines how the
O&S Simulator interacts with the other subsystems (i.e.,
objects) contained within ISACS+.
 The development of the ISACS+ OM and object
framework is based on sound practices of object-oriented
analysis, object-oriented design, and object-oriented
programming which the development team has used
successfully many times in the past.

2 OBJECTS AS MODELS OF REALITY

2.1 Objects and Object Models Defined

As Rumbaugh et al. (1991) note, simulation models lend
themselves well to object-oriented methodology because
both involve discrete updates to individual items, rather
than a massive update to the system as a whole. This
means it is easy to define objects to be modeled (classes)
and to ascribe attributes (member data or class data) and
behaviors (member functions or object methods) of
interest to those objects.
 The object to be modeled, then, consists of data of
interest, operations on that data, and messages that allow
others to request services or information from that object
(Pressman, 1992). If correctly designed, it is possible to
extend the functionality of an object over time without
adversely impacting existing applications by either
simply adding new member functions or by adding both
new data and new member functions to an existing
object. This information about objects, when
documented, constitutes the OM.
 It is worth noting, however, that objects in the OM
are not allowed to simply proliferate unattended, passing
“messages” about freely and without regard for the
context implied by the state of simulation model. Object
frameworks, then, prescribe the manner in which the
objects in a simulation model interact with one another
and impose order on the OM.

2.2 The ISACS+ Object Model

The porting process allowed the development team to
evaluate and document the ISACS+ OM in detail,
resulting in a list of class-&-object (Coad and Yourdon,
1991) inputs that are of interest to the ISACS+ O&S
Simulation Module. It turns out that the inputs can be
categorized into three general areas of interest:

1) Basing Structure,
2) Hardware, and
3) Fielded System Configurations.
 Tables 1-3 identify these class-&-object inputs
categorized by area of interest. Indentation in the tables
documents relationships among objects.

Table 1 - Basing Concept Inputs to the O&S Simulator

Classes & Objects

Basing Concepts:

 Levels of Maintenance
 Facilities
 Facility Locations
 Facility Changes
 Facility Statistics

 Locations
 Transportation Times

 Squadrons
 Squadron Facilities
 Sortie Schedule
 Squadron Changes

 Missions
 Mission Factors

 Aircraft Delivery Schedule
 Aircraft Movement Schedule
 Engine Retirement Schedule
 Spares Delivery Schedule
 Spares Movement Schedule

A Framework for Developing and Managing Objects in a Complex Simulation System 499
Table 2 - Hardware Inputs to the O&S Simulator

Classes & Objects

Hardware:
 Part Data
 Durability Failure Modes(Weibull Parameters
etc.)
 Service Limit Factors
 Probability of Detection
 Secondary Damage
 Reliability Failure Modes
 Probability of Detection
 Secondary Damage
 Fleet Time
 Scheduled Removal Requirements
 Windows for Scheduled Removals
 Time to Removals
 System Level Failure Modes (Performance
Degradation)
 Durability Failure Modes for Performance
Degradation
 Time Compliance Technical Orders
 Retrofits
 Replacement Part Configurations
 Pre/Post/Pilot Squawk Inspections
 Inspection Requirements
 Scheduled Flight Line Inspections
 Inspection Requirements

 Task Data
 Indentured Parts
 Inspection Requirements

 Configuration Templates
 Exposed Parts

 Aircraft Templates

 Warranty Requirements
Table 3 - Fielded Configuration Inputs to the O&S
Simulator

Classes & Objects

Fielded Systems:
 Aircraft Identifiers
 Aircraft Configurations
 Installed Engine Configurations
 Initial Time on Parts
 Initial Time on Failure Modes
 Time to Next Scheduled Removal
 Time to Next Scheduled Inspection
 Engines Initialized in the Shop
 In-Shop Configurations
 Initial Time on Parts
 Initial Time on Failure Modes
 Time to Next Scheduled Removal
 Time to Next Scheduled Inspection
 Spare Hardware
 Spare Hardware Configuration
 Initial Time on Parts
 Initial Time on Failure Modes
 Time to Next Scheduled Removal
 Time to Next Scheduled Inspection

To develop a useable OM for ISACS+, it was not enough
to simply add attributes and member functions to the
objects in Tables 1-3. It was necessary to describe how
the objects interact with one another in the model. For
example, parts have failure modes which accumulate
time as aircraft assigned to squadrons fly sorties. The
completed OM for the ISACS+ problem domain, then,
must identify

1) application program interface (API) signatures
through which objects communicate, such as how to
obtain an aircraft to fly a given sortie, and

2) the needs of the O&S Simulator that must be
satisfied by other subsystems of ISACS+, such as
the requirement that a process separate from the
O&S Simulator download the Parameter Database
into the input flat file format.

500 Barrett
3 FRAMEWORKS: CONTROL OF OBJECT
INTERACTION

3.1 Building An Application With Objects

While it may seem that an object-oriented application is
nothing more than objects and their message-passing
interfaces (Lewis, et al., 1995), it is important to note
that the actual design of an application (rather than the
implementation of the individual objects) depends on
defining a problem domain and describing how the
objects within that domain interact with one another. In
fact, ISACS+, or any simulation model, only has validity
in the context of the problem domain within which it is
designed to operate. This being so, it is important that an
organizational framework be defined which provides
consistency and stability for the model over time (Coad
and Yourdon, 1991).

3.1 Object Frameworks

The organizational framework, in this context, contains
the knowledge required to build an application out of
individual objects. Such knowledge includes not only
the interactions between objects within the simulation
model, but the interactions between the simulation model
and the runtime environment as well. Once this
knowledge is catalogued, it is possible to develop a
model of object interaction that is uniquely
representative of the problem domain under study, and is
also generic enough to serve as a reusable application
object. Such a model is called the object-oriented
framework, or simply the object framework. A well-
defined framework is more, then, than objects and
message passing, it is a miniature application (Lewis et
al., 1995) specialized toward a narrow range of
problems.
4 BUILDING THE ISACS+ OBJECT
FRAMEWORK

4.1 The ISACS+ Problem Domain

The ISACS+ OM defines a problem domain in which
aircraft may be assigned anywhere in the world and fly
any route to any legitimate end-point, accumulating time
on parts and increasing the likelihood of a failure
(random or durability). Once a failure event occurs, the
offending component (piece-part, line-replaceable unit
(LRU), assembly, or end item) is removed and repair
tasks and other maintenance events (including
inspections which might reveal other failures) are
initiated.
 Once repaired, a part is either returned to the
assembly from which it was removed or placed into the
spares pool. By serializing and tracking parts, it is
possible to watch the distribution of parts within the
maintenance environment, giving a measure of the
“mixing” of fleet reparables over time (in addition to the
capturing of the primary event data and related repair,
packaging, and transportation events.) Figure 2 provides
a simplified object model view of location objects in a
typical ISACS+ model.

4.2 Controlling the Proliferation of Objects

While Figure 2 may appear at first glance to be simply a
class hierarchy, it is actually an interconnection of
smaller object models that represent, in effect, a
subsystem (Islam, 1996) of the O&S Simulator. For
instance, each location being simulated may have zero or
more repair facilities, spares pools (warehousing), or
squadrons located there. In turn, each squadron may
L e v e l of
M a in tenance

(L O M)

F a c ilities

N e x t H igher
F a c ility
(L O M)

C a p a c ities
a n d O ther

Pa ram e ters

S c h e d u les

L o c a tio n

Spa res Poo l
(H /W I tems)

Sor t ies

M iss ion
Pa ram e ters

S q u a d r o n s

H a rdware
C o n figura t ion

Inform a tio n
Aircraf t

E n g ines
(H /W I tems)

O ther O n c r a ft
Ite m s (H /W

Ite m s)

F igure 2 - S im p lified O b ject M o d e l of ISA C S + L o c a t ion Ob jec ts

A Framework for Developing and Managing Objects in a Complex Simulation System 501
have zero or more aircraft assigned with which to fly
zero or more sorties, etc. (Note the tree-like pattern of
relationships. That pattern is exploited for its very
efficient memory storage and retrieval capability - see
Weiss, 1993 for a discussion of memory models and
computational complexity.) In a typical ISACS+ run,
there are literally tens of thousands of such objects
communicating simultaneously at any instant in time.
The ability to create such large numbers of objects is
draining on computing resources and must be managed
and used effectively.

4.3 The ISACS+ Object Framework

To manage the objects and the connections between
objects requires that rules of interaction and documented
application program interfaces (APIs) be defined to
allow objects to determine the “reasonableness” of
messages received from or sent to other simulation
objects. The process for defining such rules is akin to
the process of top-down software design, in that a
procedural interaction sequence is established.
Sequencing is not only allowable under the rules of
object-orientation, it is a natural reflection of the world
being modeled. The sequence of events within ISACS+
is controlled by the passage of time in user-defined units
and levels of granularity. This sequence imposes order
on the ISACS+ OM and defines the ISACS+ O&S
Simulator Object Framework, shown in Figure 3. In this
context, the object framework equates to a software
module.
 Figure 3 exhibits the “procedural” logic that is used to
establish an object framework for the ISACS+ O&S
Simulator. Each time the O&S Simulator is run, it
performs data initialization wherein comma-delimited
flat files produced from the ISACS+ Parameter Database
are loaded into memory to create a map of the simulation
model. Once that map is created, aircraft are flown, time
is accumulated, failures detected, work performed, and
spares placed back into service, all while keeping
detailed records of every occurrence in the simulation.

5 THE NEED FOR AN APPLICATION
FRAMEWORK

5.1 Using Knowledge About the Application

The knowledge that the O&S Simulator expects another
process to create flat files for upload into its memory
map is part of the object framework which defines the
rules that apply to the O&S Simulator OM. The
coordination required to generate the flat files and then
Run O&S
Simulator 5.1

Simulation Initialization
5.1.1

CurrentInterval = 0
TimeStep = 0

Interval Initialization
5.1.2

Fly A/C, Generate
Events 5.1.3

Conduct Shop
Workscoping 5.1.4

Perform
Maintenance/Spares

Management 5.1.5

TimeStep++

End of
Interval?

Generate Age
Distribution 5.1.6

CurrentInterval++
TimeStep = 0

End of
Simulation?

Return Completion
Message to GUI

Yes
No

Yes No

Figure 3 - ISACS+ O&S Simulator Object Framework

502 Barrett
run the O&S Simulator represents knowledge that must
be stored in a higher-level application object framework,
or simply application framework. In this case, the object
frameworks that represent the O&S Simulator, the
Report Generator, the Parameter Database, and the
graphical user interface become objects themselves.
 The knowledge contained in the ISACS+ object
framework had to be complete enough and robust enough
to enable:

1) redesign of the Parameter Database to make best use
of newer database technologies such as triggers and
stored procedures;

2) redesign and rewrite of the Graphical User Interface
(which was not portable from the original Ingres
environment); and

3) design of a Report Generator Database, data
preprocessor, and graphical user interface (also not
portable from the original Ingres environment).

5.2 Applications as Objects

In order to develop an application, it is necessary to first
define an application framework composed of lower-
level object frameworks that interact (Islam, 1996). In
particular, if each subsystem, such as the ISACS+ O&S
Simulator, the Report Generator Process, or the
Parameter Database GUI is treated as an object, an
application framework can be established that defines

1) the objects of interest within the framework;
2) the responsibilities of each object in the framework;

and
3) the interactions between objects in the framework.

 The ISACS+ Application Framework Model
exhibited in Figure 4 represents the object frameworks
that compose ISACS+.

Server Framework

Application Server

Parm DB
Process

O&S
Simulator

RptGen
Process

Parm
DB

LCC
DB

Database
Server

Client Framework

Simulation
GUI

Parameter DB
GUI

Report
Generator GUI

RptGen
DB LCC

Process

LCC
GUI

RDBMS

Figure 4 - The ISACS+ Application Framework Model
5.3 Connecting Application Objects in a Framework

Each of the object frameworks in Figure 4 represents a
complete application in and of itself. Each works with a
known input to generate a known output. However, the
output of one object framework (e.g., Parameter DB
process) may serve as input to another object framework
(e.g., O&S Simulator). In this context, it is easy to see
how each object framework serves as an object that fits
within a larger application framework. This larger
application framework defines the relationships between
individual object frameworks. These relationships can
be captured and customized to define an application
suite, as has been done in the case of ISACS+.

6 CONCLUSIONS

This paper has demonstrated a recursive approach to
object modeling whereby objects are defined and rules
are applied to how those objects interact with one
another. This approach yields an object framework.
Object frameworks may, in turn, be treated as simple
objects that interact with other object frameworks in an
application framework. In this manner, it is possible to
start with a very simple object and build up a very
complex application. This approach was applied
successfully to ISACS+.

REFERENCES

Coad, Peter and Edward Yourdon. 1991. Object-
Oriented Design. Prentice-Hall, Englewood
Cliffs, NJ.

Islam, Nayeem. 1996. Distributed Objects:
Methodologies for Customizing Systems
Software. IEEE Computer Society Press, Inc.,
Los Alamitos, CA.

Lewis, Ted, Glenn Andert, Paul Calder, Erich Gamma,
Wolfgang Pree, Larry Rosenstein, Kurt
Schmucker, John Vlissides, Andre Weinand.
1995. Object Oriented Application
Frameworks. Manning Publications Co.,
Greenwich, CT.

Pressman, Roger S. 1992. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, Inc.,
New York, NY.

Rumbaugh, James, Michael Blaha, Frederick Eddy,
William Lorensen, William Premerlani. 1991.
Object-Oriented Modeling and Design.
Prentice-Hall, Inc., Englewood Cliffs, NJ.

Weiss, Mark Allen. 1993. Data Structures and
Algorithm Analysis in C. Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA.

A Framework for Developing and Managing Objects in a Complex Simulation System 503
AUTHOR BIOGRAPHY

JAMES D. BARRETT is an engineering specialist with
NYMA, Inc., in Dayton, Ohio. He is responsible for
selecting and installing the ISACS+ development
environment and for development of the Simulation
GUI, the Parameter Database GUI, the Main Menu GUI,
and all C++ development. In addition to ISACS+, he has
developed simulation models for factory and laboratory
facilities planning. He is currently a member of the
IEEE, IEEE Computer Society, the Association for
Computing Machinery, and the Society for Computer
Simulation.

	A FRAMEWORK FOR DEVELOPING AND MANAGING OBJECTS IN A COMPLEX SIMULATION SYSTEM
	ABSTRACT
	1 INTRODUCTION
	2 OBJECTS AS MODELS OF REALITY
	2.1 Objects and Object ModelS Defined
	2.2 The ISACS+ Object Model
	3 FRAMEWORKS: CONTROL OF OBJECT INTERACTION
	3.1 Building An Application With Objects
	3.2 Object Framework

	4 BUILDING THE ISACS+ OBJECT FRAMEWORK
	4.1 The ISACS+ Problem Domain
	4.2 Controlling the Proliferation of Objects
	4.3 The ISACS+ Object Framework

	5 THE NEED FOR AN APPLICATION FRAMEWORK
	5.1 Using Knowledge About the Application
	5.2 Applications as Objects
	5.3 Connecting Application Objects in a Framework

	6 CONCLUSIONS
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 497
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

