
SilkTM : A JAVA-BASED PROCESS SIMULATION LANGUAGE

Kevin J. Healy
Richard A. Kilgore

Thread Technologies
P. O. Box 7

Chesterfield, MO 63017, U.S.A.
ABSTRACT

We discuss various aspects of the design,
implementation, and use of Silk, a general purpose
simulation language based on the Java programming
language. Silk merges familiar process-oriented
modeling structures with powerful object-oriented
language features in an intelligent design that will
encourage model simplicity and reusability. An
important aspect of this design is the use of Java's built-
in support for multithreaded execution which is
employed as a means to coordinate the concurrent
entity flows in process-oriented simulations. We also
demonstrate how the use of JavaBeans supports
graphical assembly of Silk modeling components in
software environments such as Symantec's Visual Café,
IBM's VisualAge, and Microsoft's J++. It is argued that
a language such as Silk is essential to keeping
simulation modeling on track with other revolutionary
changes taking place in Internet-based computing.

1 INTRODUCTION

Simulation requires programming. If you disagree, you
probably don’t understand what your simulation
software is doing. Behind that table or dialog box or
icon is a section of programming code which is being
modified and assembled into a new computer program.
The business of simulation software has profited from
promotion of the promise that the programming
“burden” can be eliminated. It is a myth that has led to
wasted client investment in models that poorly mirror
system behavior and have no potential for distribution
and reuse within the enterprise.

While software tools for discrete-event simulation
have evolved rapidly over the last fifteen years, anyone
who employs these tools in the solution of significant
problems encounters a great deal of dissatisfaction.
Much of the dissatisfaction stems from flawed
commercial attempts to make simulation modeling
methodology more accessible to non-programmers.
Increased accessibility to non-programmers has
been accomplished through increased separation of the
user from the base languages used to construct the
simulation. Process simulation languages such as
SIMAN (Pegden, Shannon and Sadowski 1995)
separated the user from the libraries of FORTRAN
subroutines which actually performed the simulation.
Simulators such as PROMODEL (Benson 1996)
encouraged greater separation by supplying users with
an underlying model whose general structure is
unchangeable.

 Separation has not eliminated the need for
programming in simulation model building. In fact,
successful industrial modelers are those who overcome
separation by “programming” around the limitations
caused by separation. Separation is also an obstacle to
the long-term model development and maintenance
because this “programming” skill is outside of the
mainstream of information systems training in
academia and within the enterprise. The solution to
separation involves a multi-layered approach suggested
in the design of SLX (Henriksen 1996) but
implemented in an integrated general purpose
programming and discrete-event simulation language.

The current generation of discrete-event
simulation languages are limited in ways that make
their use in implementing sophisticated end-user
models a difficult exercise. In particular, many either
lack completely or implement only crudely many
modern general purpose language design features.
Missing are features such as true object-orientation,
structured data representation, input/output
mechanisms, graphical windowing interfaces, and
support for database and spreadsheet interfaces
necessary to support the development of advanced
modeling tools.

A significant opportunity now exists to address
these limitations through the use of Internet-related
software technologies. Just as the personal computer
revolution fostered prior advancements in
manufacturing simulation (e.g. animation), the Internet

476 Healy and Kilgore
revolution will foster new methods of employing
simulation across the enterprise. One of the most
promising of these enabling technologies is the Java
programming language.

The advent of the Java programming language and
other Internet-related technologies facilitate a
fundamentally different approach to the design and
implementation of simulation software that specifically
addresses the shortcomings of existing tools. In
particular, the combination of process-oriented
simulation, Java, and the JavaBeans component
architecture will allow models to be packaged in a way
that increases accessibility to the user without the
compromises required by increased separation of the
user from the underlying modeling language.

The work described here represents an effort to
change the current course of simulation modeling. It is
not just another simulation language and it is not just
another modeling environment. It is an opportunity to
establish simulation programming in the mainstream of
the computing world. It is an invitation for the next
generation of programmer/modelers to make simulation
a tangible asset that can be shared throughout the
enterprise beyond the tenure of the model creator. It is a
methodology that promotes convenience but not
through the limitation of creativity or skill.

In sections 2 and 3 of this paper we review some
fundamentals of process-oriented models, object-
oriented programs and the Java programming language.
Examples of the integration of process-orientation and
object-orientation in the Java-based Silk simulation
language are presented in Section 4. Section 5
demonstrates the use of JavaBeans component
architecture for developing self-contained, reusable
modeling components.

2 PROCESS-ORIENTED SIMULATION AND
OBJECT-ORIENTED METHODS

Process-oriented simulation is a phrase commonly used
to denote a particular world-view employed in
modeling the dynamics of a discrete-event system. The
prevailing frame of reference is through the transactions
of transient system entities. A process-oriented model
is a description of the sequence of processing steps
these entities experience as they flow through the
system. The approach has significant intuitive appeal
and is the predominant modeling world-view supported
by commercial simulation software tools.

The origins of this approach can be traced to the
creators of SIMULA (Kirkerud 1989), an ALGOL-
based programming language with process simulation
extensions developed in the 1960’s. It is also
significant that the process-oriented features in
SIMULA embodied in their design and implementation
the essence of what are now commonly called object-
oriented methods. Only after a lengthy period of
relative anonymity were these concepts rediscovered
and more generally formalized.

Despite common origins and the ideal suitability
of object-oriented methods to the task of structuring
process models, the simulation user community has
been slow to adopt object-oriented methods. A
contributing factor has been a lack of commercial
simulation software tools with coherent and accessible
support for object-oriented process modeling. Much of
what is available tends to couch simple concepts in
arcane terminology and implementations with
unnecessarily cumbersome syntax and semantics. In
fact, an appreciation for object-oriented methods and
their attendant benefits requires only the understanding
of a few simple concepts; namely, encapsulation,
classes, messages, and inheritance.

Objects and their software implementation are
patterned after real-world objects. They have data
(attributes, characteristics, properties, etc.) that
represent the state of the object and a set of behaviors
that describe the ways in which they can be operated
on. In an object-oriented approach, the association
between the state of an object and it’s set of behaviors
is made explicit via encapsulation whereby both are
defined in an integral, self-contained unit called a class.
This collective definition serves as a template or
blueprint for creating particular instances of the
corresponding class. Each instance (of which there
may be many) possesses its own unique copy of the
state-related data defined by the class but shares the
behaviors. Communication between objects is confined
to a formalized system of messages. It is convenient to
think of message generation and processing as just
additional types of behaviors defined on the sending
and receiving classes. Finally, inheritance is a
mechanism by which new classes can be defined as
extensions of existing ones. The derived class has all
the characteristics and behaviors of the parent class
(which may itself be derived from others) plus some
added functionality in the form of new characteristics
and/or behaviors.

It is easy to see in these concepts two particularly
natural applications to process-oriented simulation
modeling. One is the use of encapsulation to make
explicit the association between the representation of an
entity and its sequence of processing steps. Another is
the encapsulation of extended sequences of low-level
processing steps into submodels whose behavior can be
invoked as a single high-level processing step by
instances of a desired entity class. These two notions
are central to the design of Silk which implements an

Silk TM : A Java-Based Process Simulation Language 477
object-oriented, process modeling capability within the
framework of the Java programming language.

3 WHY JAVA?

The idea of adding process-oriented simulation
capabilities to a general purpose object-oriented
programming language is not new. CSIM (Schwetman
1995) and YANSL (Jones and Roberts 1996), both of
which are based on C++, take this approach. There are,
however, unique aspects to the Java language that lead
to fundamental distinctions between our approach and
others.

The Java language has several features that are
ideally suited to the implementation of advanced
discrete-event simulation architectures and reusable
simulation software components. One is a simple yet
powerful framework that greatly facilitates the
implementation of object-oriented design methodology
and its capabilities for creating flexible, modular, and
reusable programs. Also, where other languages rely on
a host of third-party supported libraries, Java includes
native support for networking and common Internet
protocols, database connection (via Java Database
Connectivity), multithreading, distributed objects (via
Remote Method Invocation), and graphical user
interfaces (via the Abstract Windowing Toolkit).
Another well recognized strength and appeal of Java is
the “Write Once, Run Anywhere” platform
independence it provides developers. Perhaps the most
compelling argument for a Java-based approach is to
leverage the rapidly growing number of resources being
dedicated to the support of Java as a programming
standard.

Java was released by Sun Microsystems in May of
1995. The language is actually the by-product of an
initiative by a small group within the company
attempting to develop a compact, portable
programming language for consumer electronics
(O’Connel 1995). Despite the unprecedented level of
attention devoted to Java during the relatively short
time since its introduction, there are some widely held
misconceptions regarding the language. This is the
result of an interesting combination of phenomena.
Foremost among these is the fact that few people have
firsthand experience with Java. Instead, most people’s
impressions are likely to have come from superficial
accounts that appear in the popular press which tend to
focus on the potential business implications of Java’s
widespread acceptance on Microsoft Corp.’s
dominance of the market for desktop computing
software (Schlender 1996). Accounts that address its
use as a programming tool linked to Internet Web
browsers tend to emphasize applications involving
simple types of dynamic behaviors for Web pages or
so-called “thin” client programs whose purpose is
merely to provide users a remote interface to server-
based applications. In fact, Java is full-fledged general
purpose language for creating safe, portable, robust,
object-oriented, multithreaded, interactive programs for
virtually any area of application. (Naughton 1996). And
while the Internet aspects of the language are a key
feature, it is also the case that non-network-based Java
applications can be easily configured to run in a stand-
alone environment that does not require Internet access.

Another widely held misconception involves the
interpretive nature of the Java runtime virtual machine
and its effect on execution speed. In fact, with so-
called just-in-time compilation techniques the
translation to machine level instructions from byte code
that occurs when a Java method is first invoked is
cached so that subsequent calls execute as if pre-
compiled. This results in execution speeds that are
comparable to traditional compiled languages.

4 Silk : A JAVA SIMULATION LANGUAGE

The design of Silk was motivated by the desire for a
small but powerful general purpose process–oriented
modeling capability that could be extended by users in
a straightforward and unrestricted manner. The idea
was to start with a superior general purpose
programming language and add to it process-oriented
simulation modeling capabilities.

In the Silk simulation language, models are
developed directly in the Java programming language
using a package of classes consisting of a relatively few
but powerful process-oriented modeling features. Both
the design and implementation of the modeling
constructs exploit the inherent object-oriented nature of
the Java language to produce a harmonious blend of
process-oriented semantics and syntax. The powerful
and well-designed general purpose object-oriented
framework of the Java language also provides modelers
with a structured mechanism to easily extend the core
modeling components without limitation.

Many of the features of the Silk modeling
formalism can be illustrated by way of a few simple
examples. Although helpful, detailed knowledge of the
Java programming language is not required. Figure 1
contains a Java class named Customer that models
the representation and behavior of entities processed by
a single-server queue.

The Customer class definition begins with
declarations of the data representing the state of these
entity types. Each instance of the Customer class is
assigned an attribute that stores its time of arrival to the
system. The interarrival and processing time

478 Healy and Kilgore
import silk.*;

public class Customer extends Entity {

 double time_of_arrival;

 static Uniform inter_arv_time = new Uniform(2, 5);
 static Uniform process_time = new Uniform(1, 4);
 static Queue in_q = new Queue(“Input Queue”);
 static Resource server = new Resource(“Server”);

 static Time_Weighted = new Time_Weighted(in_q.length, “Queue Size”);
 static Observational system_time = new Observational(“Time in system”);

 public void run () {
 create (inter_arv_time.sample());
 time_of_arrival = time;
 queue (in_q);
 while (condition(server.getAvailability() == 0);
 dequeue (in_q);
 seize (server);
 delay (process_time.sample());
 release (server);
 system_time.record(time – time_of_arrival);
 dispose ();
 }
}

Figure 1: Example of Silk Process-Oriented Syntax (Single-Server Model).
generators, the server, and its associated queue also
constitute part of the state of the Customer class. The
static qualifier that precedes each of these
declarations means that these data are shared by all
instances of the Customer class rather than being
unique to each entity that is created. It is significant
that to note that each of these process simulation
specific data types (Uniform, Queue, and
Resource) are themselves implemented as classes in
the Silk package. Access to them from the Customer
class is enabled by the inclusion of the import
statement. The remaining components of the state
consists of static instances of other Silk classes used
to record time-weighted statistics on the queue length
and observational statistics on the time customers spend
in the system.

In Java, class behaviors are implemented as
methods which are similar to executable functions in
traditional procedural programming languages. The
Silk formalism requires that each entity class definition
contain, at the least, the distinguished method named
run which serves as the starting point of execution for
each instance that is created. In this case, the run
method consists of a sequence of other method
invocations that model the familiar “inter-create, wait-
for-server, seize-server, delay, release-server” logic that
characterizes the activity in a single server queue. The
corresponding methods that implement these individual
process modeling behaviors are all inherited from the
predefined Silk class named Entity by virtue of the
extends qualifier included in the Customer class
definition.

It is also interesting to note the explicit
uncoupling of the queueing, status delay, and seize
processes that is employed in the design of Silk. Delays
based on the state of the system are modeled more
generally by the powerful and flexible
while(condition()) construct which delays an
entity until the prescribed condition is satisfied. In fact,
the queue and dequeue processes are in this case
employed only as a means to collect statistics on the
number of entities awaiting service.

In addition to the entity classes like Customer,
two other classes are needed to produce a working
simulation. The first is a class named Simulation
that implements the behavior associated with the
initialization of a model. At a minimum, this includes
setting the simulation run length and creating the first
instance of an entity class. The Simulation class
also serves to define any state-related data that is global
to the simulation model. The other required class is
part of every Java program and provides the point-of-
entry at which the program begins execution. By
convention, this is the init method for programs

Silk TM : A Java-Based Process Simulation Language 479
implemented as browser-based applets or the main
method for those implemented as stand-alone
applications. Silk simulations can be implemented as
either. The only requirement is that this distinguished
class create an instance of the predefined class named
Silk and invoke its start method. The two class
definitions appearing in Figure 2 along with the
Customer class defined in Figure 1 constitute a
working simulation model of the single server queue.

Native support for multithreaded execution is a
crucial aspect to the implementation of a natural
process-oriented modeling capability in Java. Instances
of classes that extend Entity run as separate threads
of execution that are alternately suspended and resumed
to coordinate the time-ordered sequencing of entity
movements in the model. A thread is suspended when
the corresponding entity encounters a deterministic or
status delay modeled by the delay method and
while(condition()) constructs, respectively.
There is also an executive thread running that
coordinates the management of simulated time and the
resumption of suspended threads whenever a
corresponding entity’s deterministic time delay expires
or a system state change occurs that triggers the
emergence of an entity from a status delay.

It is always intimidating to see a new modeling
language or programming language for the first time, so
before moving to the next example, consider the
potential of what has been presented in this section.
The objective of Silk is not a “better” approach to
modeling the single-server queue. Every simulation
language is successful in making simple models appear
simple. What is unique in the design of Silk is the
flexibility provided to the user to make complex models
more manageable through a combination of

import silk.*;

public Class Example {

 public static void main(String args[]){
 Silk my_silk = new Silk();
 my_silk.start();
 }
}

public Class Simulation extends Silk {

 public void run () {
 end_time = 100.;
 Customer first_one = new Customer();
 first_one.start();
 }
}

Figure 2: Required Silk Simulation Classes
programming and modeling extensions to the
fundamental Silk classes. Users are encouraged to
make full use of the Java programming language to
write customized extensions to Silk that include more
complex process classes such as “transport”,
“warehouse” or “schedule ”. And users are encouraged
to demonstrate and share these extensions with their
internal and external clients who can browse and
execute Silk models over the network using any Java-
compatible browser on any hardware platform.

As an example of the potential of this extensibility
and reusability, consider the possibility of creating a
more generic “single-server” process. The goal is to
encapsulate the generic behavior associated with a
single-server queue. One approach is to implement the
single-server sub-model as the inheritable method of
the Entity parent class. However, in models where
many different types of entities exist, only a subset of
these entity types may utilize the new “single-server”
process.

An alternative is to encapsulate the single-server
sub-model in its own class that inherits from the
predefined Silk class named Process. This approach
is shown in Figure 3. The queue, server, and delay time
distribution objects have been made properties of a new
class named SingleServer whose serve method
implements the generic process logic of a single server
queue. The particular delay time distribution is
specified when creating an instance of the
SingleServer class which takes place when the
Simulation class is automatically instantiated at
initialization. Finally, the process logic associated with
instances of the Customer class has been modified so
that the sequence of steps involved in serving
customers of this type is triggered by simply invoking
the serve method on the desired single server.

The value of these types of extensions to the Silk
language may be best appreciated by more experienced
modelers who can better visualize the possible
consolidation of the base Silk classes into a customized
higher-level language. But the ultimate value may be
to those new users who are attracted to visual modeling
techniques where models are created through point-
and-click/drag-and-drop interfaces with libraries of
modeling components. This capability is simply
another extension of the Java language known as
JavaBeans.

480 Healy and Kilgore
import silk.*;

public class Simulation extends Silk {

 public SingleServer station = new SingleServer(new Uniform(2,4));

 public void run () {
 end_time = 100.;
 Customer first_one = new Customer();
 first_one.start();
 }
}

public class Customer extends Entity {

 double time_of_arrival;

 static Uniform inter_arv_time = new Uniform(2, 5);

 public void run () {
 create (inter_arv_time.sample());
 time_of_arrival = time;
 station.serve(this);
 system_time.record(time – time_of_arrival);
 dispose ();
 }
}

public class SingleServer extends Process {

 Resource server = new Resource ("Server");
 Queue in_q = new Queue ("Input Queue");
 Distribution process_time;

 public SingleServer (Distribution dist) {
 process_time = dist;
 }

 public void serve (Entity ent) {
 ent.queue (in_q);
 while (ent.condition (server.getAvailability() == 0));
 ent.dequeue (in_q);
 ent.seize (server);
 ent.delay (process_time.sample());
 ent.release (server);
 }
}

Figure 3: Example of Extending Silk to Include a Single-Server Process
5 JAVABEANS AND VISUAL MODELING

There is a clear trend in software development toward
object-oriented techniques and component software
environments that allow programmers to build
applications in less time and with less money. The
conventions that constitute JavaBeans bring the
component development model to Java and Silk.
The component model is made up of an
architecture and application programming interface.
Together these elements provide a structure whereby
program components can be combined to create an
application. One of the important features of
JavaBeans is that it does not alter the existing Java
language. Instead, the strengths of Java have been
built-upon and extended.

Silk TM : A Java-Based Process Simulation Language 481
Since JavaBeans are built purely in Java, they are
fully portable to any platform that supports the Java
runtime environment. Visual programming is a key
part of the JavaBeans component model. User-defined
“beans” can be incorporated into any of the growing
number of sophisticated visual development tools that
support the open JavaBeans standard including
Symantec's Visual Café, IBM's VisualAge, and
Microsoft's J++.

It is a relatively simple matter to write self-
contained, reusable JavaBean components that
automatically make known their functionality and
interoperability to these development environments.
Within the environment, they can be incorporated into
user-defined component toolboxes or palettes. Users
can then assemble components visually into an
application by placing them in a workspace and editing
their properties to create a desired behavior. None of
these manipulations require code to be written by the
application developer.

The combination of JavaBeans and the Silk
package of process simulation extensions to Java is
demonstrated in Figure 4 using Symantec’s Visual
Café. The single-server process is associated with an
icon and incorporated into Symantec’s component tool
palette under a tab labeled Simulation. In this case, the
server is a Lithography workstation which is part of a
semiconductor fabrication processs. All of the
properties of the Lithography workstation object are
automatically exposed to the user and can be modified
through a “properties” editor. The standard Java
paint method was also added to the single server
component to control its graphical depiction during
design time and animation during the execution of the
model.

6 SUMMARY

The Silk simulation language has been proposed
as a breakthrough opportunity to encourage better
discrete-event simulation through better programming
by better programmers. Since the modeling language is
integrated into the programming language, the full
power and flexibility of the Java programming
language is available and any Java environment
(Symantec Visual Café, Microsoft J++, etc.) can be
used for model building and debugging. And since a
simulated entity is implemented as a separate program
thread, there is a direct correspondence between an
entity executing process steps in the process model and
Figure 4: Graphical Modeling Using Silk-Based JavaBeans.

482 Healy and Kilgore
the entity object processing program statements in the
modeling program. These features encourage a host of
future extension to visual modeling, distributed
modeling and easily distributed libraries of modeling
components.

Most importantly, the Silk language is an
opportunity to make simulation more accessible
without sacrificing power and flexibility. The Silk
language offers the potential for industry-specific and
company-specific modeling components which can be
distributed and even executed through the Internet.
Support for these models can utilize existing
information system resources and computer science
training. Finally, the simulation software industry can
leverage commercially available programming
environments and focus on building models instead of
modeling environments that quickly become obsolete.

REFERENCES

Benson, D. 1996. Simulation Modeling and
Optimization using Promodel. Proceedings of the
1996 Winter Simulation Conference.

Henriksen, J. O. 1996. An Introduction to SLX.
Proceedings of the 1996 Winter Simulation
Conference.

Jones, J. and S. Roberts. 1996 Design of Object-
Oriented Simulations in C++, Proceedings of the
1996 Winter Simulation Conference.

Kirkerud, B. 1989. Object-Oriented Programming with
SIMULA. Addison-Wesley.

Naughton, P. 1996. The Java Handbook. Osborne
McGraw-Hill, Berkeley, CA.

O’Connel, M. 1995. Java: The Inside Story. In
SunWorld Online. Sun Microsystems, Inc.

Pegden, C. D., R. E. Shannon, and R. P. Sadowski.
1995. Introduction to SIMAN. McGraw-Hill, New
York, NY.

Schlender, B. November 1996. Sun’s Java: The Threat
to Microsoft is Real. Fortune Magazine.

Schwetman, H. 1995. Object Oriented Simulation
Modeling with C++/CSIM17, Proceedings of the
1995 Winter Simulation Conference.
AUTHOR BIOGRAPHIES

KEVIN J. HEALY is the author of the Java-based Silk
simulation language and a partner in Thread
Technologies, a company involved in the development
of Internet-based simulation capabilities. He received
his Ph.D. in Operations Research from Cornell
University. He served as the General Applications
Track Coordinator for the 1994 Winter Simulation
Conference and is an Associate Editor for the
Proceedings of the 1997 Winter Simulation
Conference.

RICHARD A. KILGORE is a partner in Thread
Technologies. He has over 15 years of experience as a
modeling consultant to Fortune 500 firms in a variety
of industries. He received his B.B.A. and M.B.A
degrees from Ohio University and Ph.D. in
Management Science from the Pennsylvania State
University. Formerly, he was a capacity-planning
analyst with Ford Motor Co. and Vice-President of
Products for Systems Modeling Corp.

	Silk TM : A JAVA-BASED PROCESS SIMULATION LANGUAGE
	ABSTRACT
	1 INTRODUCTION
	2 PROCESS-ORIENTED SIMULATION AND OBJECT-ORIENTED METHODS
	3 WHY JAVA?
	4 Silk : A JAVA SIMULATION LANGUAGE
	5 JAVABEANS AND VISUAL MODELING
	6 SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 475
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

