
MULTIPLEXED STATE SAVING FOR BOUNDED ROLLBACK

Fabian Gomes
Brian Unger

Department of Computer Science
The University of Calgary

Calgary, Alberta T2N 1N4, CANADA

John Cleary
Steve Franks

Department of Computer Science
University of Waikato

Hamilton, NEW ZEALAND
ABSTRACT

Optimistic parallel discrete event simulation (PDES)
uses a state history trail to support rollback. State
saving strategies range from making a complete copy
of a model’s state after each event execution to record-
ing a sequence of each state modification made dur-
ing event execution. The former is called copy state
saving (CSS) and the latter incremental state saving
(ISS). Periodic State Saving (PSS) a variant of CSS,
saves the entire state but not after every event.

This paper presents a scheme for maintaining a
multiplexed state history stream that interleaves a
PSS mechanism with an optimized ISS mechanism.
This multiplexed state saving (MSS) mechanism keeps
forward execution overhead low while bounding roll-
back overhead over an arbitrary rollback distance. A
key advantage of MSS over PSS is that events are not
re-executed during a coasting forward phase.

Bounding rollback costs has two significant ben-
efits. First, rollback delay can be controlled reduc-
ing rollback cascading and potential rollback thrash-
ing. Second, interactive optimistic simulation with
bounded response times to human queries can be sup-
ported. Absolute forward execution overheads for
CSS and several ISS schemes are presented for two
hardware platforms. A rough comparative analysis
of MSS versus PSS and ISS is also included.

1 INTRODUCTION

State saving is one of the highest overheads associated
with optimistic PDES. These overheads can severely
limit the performance gains achieved through parallel
execution. Numerous mechanisms have been devel-
oped to address the state saving problem including
those by Bauer, and Sporer (1993), Bellenot (1992),
Bruce (1995), Cleary et al. (1994), Gomes (1996),
Gomes et al. (1996), Lin, and Lazowska (1990), Palaniswa
and Wilsey (1993), Preiss et al. (1994), Rōnngren,
and Ayani (1994), Rōnngren et al. (1996), Steinman
my,

(1993), and West, and Panesar (1996). This paper
presents a new scheme that minimizes both forward
execution overhead and rollback overhead.

Here we examine state saving within a logical pro-
cess modeling methodology. The real world system
being studied is viewed as a network of interacting
physical components. A distributed simulation model
is realized by a corresponding system of computa-
tional units called logical processes (LPs). Each LP
model incorporates a disjoint part of the system’s
state and LPs interact solely by sending and receiving
timestamped messages. Receipt of a message corre-
sponds to an event that occurs at the time specified
in the timestamp.

Concurrent parallel execution of a simulation is
achieved through an asynchronous execution of these
LPs on multiple processors. Fundamental to real
world systems is that the future cannot affect the
past, called the causality constraint. Causality be-
tween events is ensured by an LP synchronization al-
gorithm. The Time Warp protocol, based on the vir-
tual time paradigm, is an optimistic synchronization
algorithm in which LPs execute speculatively advanc-
ing only their own local virtual time (LVT).

Time Warp, innately non-blocking, does not strictly
adhere to the local causality constraint while execut-
ing events. Rather, it detects potential synchroniza-
tion errors and uses a rollback mechanism to recover
from these potential errors. To enable rollback, Time
Warp must maintain a history of all computation in-
cluding past state history, messages received, mes-
sages sent and other rollback sensitive computation
like dynamic memory management.

A synchronization error is detected when a strag-
gler message arrives that may modify the LP’s past
state. Recovery involves rolling back the LP to a
state that existed prior to the synchronization error.
Memory reclamation of past history, also known as
fossil collection, is implemented using a global control
mechanism based on a global virtual time (GVT).

Maintenance of an LPs state history can easily

Multiplexed State Saving for Bounded Rollback 461
become the dominant overhead during forward com-
putation. Secondly, the overhead incurred in recov-
ering the past state during rollback can cause signif-
icant delays resulting in rollbacks in other LPs and
possibly a cascading avalanche of rollbacks. Both
of these sources of overhead can severely limit the
performance of optimistic systems. The multiplexed
state saving (MSS) mechanism described here ad-
dresses both of these issues.

This paper is organized as follows. First, perfor-
mance issues of the two basic state saving strategies
are discussed in Sections 2 and 3. Performance lim-
itations and possible optimizations are discussed for
each of these strategies. In Section 4, the SimKit
simulation system is described and the performance
of CSS and several variations of ISS are presented.
The MSS mechanism is then presented in Section 5
with a comparative performance analysis in Section
6. Conclusions appear in Section 7.

2 CHECKPOINTING STRATEGIES

Checkpointing the entire state of a simulation before
(or after) each event has been referred to as Copy
State Saving (CSS). Every event is a potential re-
covery point. Rollback to a recovery point requires
finding the associated checkpointed state and copy-
ing it back. The performance issues associated with
CSS and PSS are described in the following.

2.1 Copy State Saving (CSS)

The main performance issues associated with CSS can
be discussed in terms of the state size, state structure,
state fragmentation and state dynamics.

State size: For large state sizes and small com-
pute grain per event, checkpointing cost can easily
dominate simulation execution time. Perhaps the
biggest problem with using CSS is that it is not ro-
bust. It is easy for programmers to inadvertently
create very large states and their concomitant large
checkpointing cost. Another problem with CSS is
that it can consume large amounts of memory. Mem-
ory usage is proportional to the state size and number
of copies that have been kept after GVT.

State structure: If it is important that the state
be restored in the same location then the entire saved
checkpoint needs to be copied back on rollback. If
the state is addressed indirectly through a pointer
then a pointer swizzling optimization may be used for
state restoration. However, in languages which allow
anonymous pointers it is very difficult to sustain this
optimization because there may be pointers from one
part of the state to another.
State fragmentation: When an LP’s state re-
sides in a single contiguous block of memory, it is
possible on many architectures to highly optimize the
checkpointing of large blocks by using the memcpy()

system call on some UNIX systems. However, if the
LP’s state is distributed across memory (not contigu-
ous), then each contiguous block would need to be
individually checkpointed and restored.

State dynamics: Memory to be used for check-
pointing can be pre-allocated when the size of an LP’s
state is known. However, if dynamic state allocation
is allowed then memory pre-allocation optimization
can no longer be possible. Dynamic state also causes
state fragmentation.

The two main disadvantages of CSS are: (i) large
memory requirements that may even prevent the sim-
ulation from ever completing, and (ii) processing over-
heads which often significantly affect simulation per-
formance as all events including those on the critical
path, need to be checkpointed.

2.2 Periodic State Saving (PSS)

Bellenot (1992), Lin and Lazowska (1990), Palaniswamy
and Wilsey (1993), Preiss et al. (1994), and Rōnngren,
and Ayani (1994) show how PSS can overcome the
shortcomings of CSS by checkpointing less frequently.
State is no longer checkpointed for every event, rather,
checkpoints are taken periodically by skipping a few
events. The number of events skipped is termed as
the checkpoint interval.

In PSS, it is quite probable that there may not be
a checkpoint retained at a desired rollback point. An
LP would have to roll further back in virtual time,
to an event where a checkpoint was taken. Hav-
ing restored the previous checkpoint, the state at
the rollback point is recomputed by re-executing the
events up to the rollback point. The LP is said to be
in a coasting forward phase while re-executing these
events. In the coasting forward phase, no output mes-
sages are resent. Fossil collection of events in PSS
must take into account the need for retaining the sin-
gle oldest checkpoint prior to GVT and subsequent
input messages, to enable a rollback to GVT.

Real world simulation models tend to be non-
homogeneous wherein LPs are not identical and tend
to exhibit dynamic state referencing characteristics.
In such situations there is no optimal fixed checkpoint
interval. Preiss et al. (1994), and Rōnngren, and
Ayani (1994) have proposed algorithms that use the
recent execution information to estimate the check-
point interval. The cost to dynamically estimate the
checkpoint interval adds to the forward execution cost.

Perhaps the biggest disadvantage of periodic state
saving is that on an average N−1/2 events need to be

462 Gomes, Unger, Cleary, and Franks
re-executed, where N is the checkpoint interval. The
delay in coasting forward may be beneficial to other
LPs local to the processor. The arrival of messages
during this delay can enable better local scheduling
decisions. However, LPs on remote processors are
likely to perform speculative computations that will
later be rolled back. Preiss et al. (1994) have noted
that the latter cascading rollbacks cause a thrashing
phenomenon which becomes dominant as the check-
point interval increases.

Another serious disadvantage to PSS is that the
rollback distance (i.e., the number of events invali-
dated during a rollback) is often small. Our expe-
rience with broadband network simulations show a
large percentage of rollbacks that are fewer than 5
events. PSS is inefficient in such situations since ei-
ther the checkpoint interval must be very small or a
large number of events will need to be re-executed.

3 INCREMENTAL STATE SAVING (ISS)

Bauer, and Sporer (1993), Bruce (1995), Cleary et
al. (1994), and Steinman (1993) have presented in-
cremental strategies that only save modifications to
state done in an event. A simple mechanism is back-
trailing where, prior to a word being modified, its
old value and address are saved in a linked list called
backtrail. During state restoration, the backtrail is
traversed in the reverse order, from the most recent
event to the rolled back event, by writing the old val-
ues back into the associated addresses.

3.1 Performance

The major advantage of ISS is that both its execu-
tion and memory cost are simply related to forward
event execution. The number of operations which in-
volve modification to the LP’s state tend to be a small
stable fraction of all operations. For example, with
checkpointing strategies, it is possible to dramatically
increase the cost of state saving by something as sim-
ple as adding a large array to the state. In contrast
any significant increase in ISS overheads is likely to be
accompanied by a corresponding increase in the total
event computation. Hence, ISS performance is only
dependent upon the amount of state changed and not
on the state size. This makes ISS a robust state sav-
ing mechanism. Furthermore, unlike checkpointing
strategies, it is independent of state characteristics
like structure, fragmentation and dynamics.

In ISS, every state modification saved during for-
ward computation is undone during rollback. Multi-
ple versions of the same state modified in an event,
or over a sequence of events, may be restored redun-
dantly. However, for state recovery only the earli-
est (since the rollback point) saved modification of a
state variable needs to be restored. The rollback cost
is proportional to the rollback length and is again a
small fraction of the total cost that would be incurred
if rolled back events had to be re-executed.

3.2 Transparency

A major disadvantage of ISS has been the need to
insert state saving operations within LP model code.
This requires great care on the programmer’s part to
insure that a state saving operation is inserted for
every state change. Programming errors here can in-
troduce very subtle bugs that are very difficult to
find. This issue of transparency has been recently
addressed by Gomes (1996), Gomes et al. (1996),
Rōnngren et al. (1996), and West, and Panesar (1996).

Gomes et al. (1996), and Rōnngren et al. (1996)
use parameterized data types to achieve transparent
incremental state saving. Two templates are provided
for declaring the state at the level of basic data types
and pointer data types in a type safe way. In an-
other approach, two new storage-specifier keywords
“recover” and “nonrecover” were provided in the C++

language to facilitate the declaration of the simula-
tion state. A C++ compiler front end was used to
translate declarations using the storage specifier key-
words into C++ code that uses the two templates.

Gomes (1996) addresses both the performance and
transparency issue of ISS. Several optimizations of
ISS that rely on static data flow analysis of the event
processing routines are described. The optimizations
attempt to decrease the amount of information saved
in the backtrail. Moreover, a smart backtrail is con-
structed where a saved record identifies a restore code
segment that needs to be executed on rollback. A
saved record may contain additional parameters that
are used by the restore code segment to reconstruct
the state. Rollback performance was further improved
by implementing a threading of the restore code seg-
ments. These optimizations can be incorporated in a
compiler. While this technique requires all event pro-
cessing source code to be available, West, and Panesar
(1996) propose another technique that edits assem-
bled code and inserts ISS calls automatically.

4 ISS IN SIMKIT

Gomes et al. (1995) present SimKit – a C++ class
library that provides a simple elegant logical process
view of simulation enabling both sequential and par-
allel execution without code changes to the applica-
tion models. For parallel execution, SimKit uses the
WarpKit Kernel, an implementation of Time Warp
optimized for shared memory multiprocessors. The

la

s(

Multiplexed State Saving for Bounded Rollback 463
WarpKit interface comprises of three classes, (i) wk_simu
- a run-time interface to the kernel, (ii) wk_lp - base
class to derive simulation model’s LP objects, and
(iii) wk_event - base class for messages exchanged
between LPs.

The Time Warp related quasi-operating services
like event-delivery, rollback and commit are provided
as virtual functions in the wk_lp class. These three
functions are implemented in SimKit as follows: event-
delivery may do any pre event initialization (for in-
stance checkpointing) prior invoking the application
model’s event processing routine via the sk_lp::proces
virtual function. The rollback interface is used to im-
plement state restoration, and other rollback sensi-
tive libraries like dynamic memory management. Fos-
sil collection and commitment of irrevocable actions
like output are implemented within commit. The
SimKit application programmer’s interface does not
expose Time Warp related interface to the program-
mer. Only the declaration of state variables is neces-
sary for ISS.

4.1 ISS Backtrail

The backtrail is a linked list of buffer blocks called
State Log Blocks (SLBs). SLBs provide the buffer
space to save records of state modifications. In the
simplest form, a record also called the State Log En-
try (SLE), is an old image of the state consisting of
an address and value field. A free pool of SLBs is
maintained on each processor.

An LP manages its own backtrail using four point-
ers, namely, curSLB, curSLE, trail, and lastSLE.
curSLB and trail identifies the head and tail of the
backtrail, while curSLE points to the most recent SLE
recorded. lastSLE marks the end of the SLB and is
used for SLB overflow handling. Each event has two
pointers evSLB and evSLE. Each event demarcates the
start of the state modification history (epoch) by sav-
ing the curSLB and curSLE pointers in evSLB and
evSLE, respectively, prior to its execution.

Prior to a state modification, its image is saved
by recording an SLE in the backtrail using an inlined
SaveState(). The lastSLE in each SLB structure is
initialized once to the last SLE in the array of SLEs
when the free pool of SLBs are created.

struct SLB {

SLB * nextSLB;

SLB * lastSLE;

SLE SLE_Array[SLB_SZ];

};

void SaveState(StAddress) {

/* tempSLB is a temporary variable */

if (curSLE != lastSLE)
tion

)

curSLE ++;

else { /* SLB overflows */

/* Get a new SLB from pool */

tempSLB = Processor->getSLB();

/* Link into backtrail */

tempSLB->nextSLB = curSLB;

curSLB = tempSLB;

/* Reset overflow condition */

lastSLE = curSLB->lastSLE;

/* Initialize for next log entry */

curSLE = curSLB->SLE_Array;

}

/* curSLE points to available space */

/* Record state image */

curSLE->address = StAddress;

curSLE->oldValue = * StAddress;

}

Rollback, given the earliest event to be rolled back
in the processed event history, is implemented by a
backtrailing mechanism. Each SLE recorded from
curSLE up to (not inclusive) the one identified by the
evSLE field in the earliest event is restored by writ-
ing the old values into the associated addresses. SLBs
that have been completely restored are reclaimed into
the free pool. At the end of rollback, the LP’s curSLB
and curSLE point to the earliest rolled back event’s
evSLB and evSLE, respectively. The LP’s lastSLE

is initialized to curSLB->lastSLE. Commit involves
reclaiming all SLBs from trail upto (not inclusive)
the one identified by evSLB in the latest event not
committed.

Variation of ISS, include saving a block of state
variables in a variable length SLE structure. An opti-
mization to variable length ISS is to prevent multiple
SLEs from being recorded when a state block is modi-
fied multiple times in an event. Moreover, at rollback
only the earliest saved SLE for a state block needs to
be restored. This optimization is sustained by saving
a timestamp of the event in the SLE and linking all
SLEs for a given state block in the backtrail.

4.2 State Saving Overhead

The overhead for three variations of ISS that were
implemented in SimKit are listed in Table 1 for two
shared memory multiprocessor platforms, the SGI Power
Challenge (64 bit, 75MHz processor) and the SPARC
Server 1000 (32 bit, 50MHz processor). A simple all
overhead application consisting of an LP (on a single
processor) that repeatedly sends a message to itself
is used to perform the measurements. The LP’s state
consists of 800 bytes of contiguous memory. The av-
erage cost to save 8 bytes was measured for each of
the ISS variations: (i) ISS-8, one SLE saved per 8
byte state modified, (ii) ISS-V, one SLE saved per

464 Gomes, Unger, Cleary, and Franks
event, and (iii) BSS (Block State Saving), one SLE
saved per event where each variable is saved at most
once even if its modified multiple times during the
event. CSS costs were measured using memcpy() to
checkpoint the entire state of 800 bytes. The CSS
cost shown in Table 1 lists the cost per 8-byte store
when 800 bytes are checkpointed.

Table 1: Cost to Save 8 Bytes (in microseconds)

Platform CSS ISS-4 ISS-8 ISS-V BSS

SGI 0.028 0.303 0.095 0.036 0.122
SPARC 0.201 0.538 0.318 0.314 0.244

These variations of ISS give a range of options for
creating an efficient backtrail mechanism. A seman-
tics where a state variable may be saved by either
ISS variation requires the order in which the SLEs
were recorded to be retained for state reconstruction
on rollback. A simple solution would be to have a
single unified backtrail using an additional ISS vari-
ation type field in each SLE. Alternately, each SLE
record could hold the address of a restore code seg-
ment. One restore code segment per ISS variation
would be needed where the last instruction in the re-
store code segment would effect a jump to the label
identified in the next SLE while backtrailing.

This threading of restore code segments is used by
Gomes (1996) to implement smart backtrails. A la-
bel is used to identify an inverse operation that uses
parameters in the saved SLE for regenerating state
or functions that effect end of SLB, end of rollback,
etc. optimizations. These smart backtrails with op-
timizations based on data flow analysis of state mod-
ification in each event have been shown to decrease
the forward state saving overheads from 38% to 8%
of the average application level event processing time
in a large broadband network application.

5 MULTIPLEXED STATE SAVING (MSS)

The multiplexed state saving mechanism combines
the advantages of PSS and ISS. First, the motivation
for MSS is outlined, and then a design is presented.

5.1 Motivation

The number of events rolled back, i.e. rollback dis-
tance, has significant performance implications for
both PSS and ISS mechanisms. Short rollback dis-
tances in PSS either require a large number of events
to be re-executed or a small checkpoint interval, thereby
limiting the benefits of PSS. On the other hand, large
rollback distances require a larger number of SLE
records to be restored in ISS. Large rollback delays
may result in a cascading avalanche of rollbacks and
unstable Time Warp performance. One of the rea-
sons for interleaving ISS and PSS is to reduce roll-
back delays and consequently possible cascading roll-
backs and thrashing. A second need to bound roll-
back cost is to enable interactive input and output in
Time Warp. The principle behind MSS is based on
the following observations.

Observation 1. The CPU cycles for restoring
an LP’s state by backtrailing is likely to be less than
the cost for regenerating the state by re-executing the
events. In ISS, the cost to backtrail state modified in
an event is a small fraction of the cost to execute the
event.

Observation 2. For situations where the check-
point interval is large and the rollback distance is
small, the number of events that would need to be
re-executed in coasting forward phase would be larger
than the number of events rolled back.

Observation 3. An LPs state can be reconstructed
at a rollback point given a state modification history
that led to an image of the LP’s state.

5.2 Design

The backtrailing mechanism presented in section 4 is
used to implement the interleaved ISS. A buffer for
checkpointing, referred to as copyAhead buffer is set
aside. The LP maintains a pointer copyAheadPtr to
this set aside buffer. Each event message has an addi-
tional pointer field called the evCopyAheadPtr which
is set to copyAheadPtr prior to execution of the event.
In addition, a pointer to the linked list of checkpoints
is maintained by the LP using chkptTrail. Check-
pointing is done as follows:

struct copyAhead {

copyAhead * nextCopyAhead;

SLE * ISSTrail;

char buffer[CHKPT_SIZE];

};

void Checkpoint() {

copy LPState into copyAheadPtr->buffer

/* Link into checkpoint trail */

copyAheadPtr->nextCopyAhead = chkptTrail;

/* Drop a pointer into ISS trail */

copyAheadPtr->ISSTrail = curSLE;

/* reserve another copyAhead buffer */

copyAheadPtr = Processor->getCopyAhead();

}

When rollback occurs, the evCopyAheadPtr in the
earliest event rolled back is used to identify the earli-

Multiplexed State Saving for Bounded Rollback 465
A B C D E F inputEvList
evCopyAheadPtr
evSLE

S1

IS
S

T
ra

il

ne
xt

C
op

yA
he

ad

curSLBTrail

S2

virtual time

set aside copyAhead Buffer

C1 C2 C3

C4

curSLE

Figure 1: MSS State History Snapshot

est checkpoint saved (if any) since the rollback point.
The following two cases may arise:

Case 1. A checkpoint exists since the earliest rolled
back event.
The copyAhead buffer identified by the rolled back
event’s evCopyAheadPtr contains the earliest check-
point since the rollback point. After recopying the
state, the state at the rollback point is restored by
backtrailing from the SLE pointed to by the ISSTrail
in the just used copyAhead buffer upto the SLE (not
inclusive) identified by evSLE field of the earliest rolled
back event.

Special care must be taken while freeing copyAhead
buffers on rollback. The copyAhead buffer identified
by the rolled back event’s evCopyAheadPtr must be
set aside instead of the previous set aside copyAhead.
All buffers used for subsequent checkpoints as well as
the previously set aside one can be freed. Similarly at
fossil collection, the copyAhead buffer pointed to by
the latest event that is being committed is retained
in the linked list checkpoints, all earlier ones can be
freed.

Case 2. No checkpoint was taken since the earliest
rolled back event.
This case is detected when the earliest rolled back
event’s evCopyAheadPtr points to the LP’s copyAheadPtr.
State restoration involves a simple backtrail as dis-
cussed in section 4.

A snapshot of the state history in MSS is sketched
in Figure 1. Events A, C and E have taken snapshots.
The ISSTrail pointer in each of the copyAhead buffer
points to an SLE in the backtrail. The backtrail is
made up of 4 SLBs where each SLB consists of an
array of 5 SLEs. the arrival of a straggler S1 would
require checkpoint C2 to be copied followed by 3 SLEs
to be backtrailed, starting from C2->ISSTrail (in-
clusive) upto B->evSLE (not inclusive). C3 and C4

would be freed and C2 would be the new set aside
buffer. Arrival of straggler S2 would result in 2 SLEs
to be backtrailed starting from curSLE.

A possible optimization of MSS is that events that
are checkpointed need not be incrementally state saved.
To implement this optimization, two versions of every
event will have to be coded. Alternatively, events that
modify a large percentage of state may be candidates
for checkpointing. This corresponds to application
model based checkpointing rather than an automatic
checkpointing where the interval is set dynamically
or statically.

6 PERFORMANCE COMPARISON

An analysis of the relative average performance of
MSS, PSS and ISS follows. The following notation is
used in the analysis:
Fp – Forward execution cost for PSS per event,
Fi – Forward cost for ISS per event,
Fm – Forward cost for MSS per event,
Rp,Ri,Rm – Rollback cost for PSS, ISS and MSS,
S – State size in words,
α – Average % of state modified per event,
te – Average time to execute an event (model level),
tm – memcpy() time per word,
tw – 8byte word copy time,
Np – Number of events in checkpoint interval for PSS,
Nm – Number of events in checkpoint interval for
MSS,
D – Rollback distance in number of events.

Forward execution costs for PSS, ISS, and MSS
are as follows:

Fp =
Stm

Np

Fi = αStw

Fm =
Stm
Nm

+ αStw

Notice that Fi < Fp when

α <
tm
twNp

≈
0.7

Np

and Fm < Fp when

Np <
Nm

1 + αNm(tw/tm)
≈

Nm
1 + 1.4αNm

Np < 1/(1.4α) for large Nm (e.g. Np < 7 if α = 10%)
For this case,

Fm
Fi

=
tm/tw
αNm

+ 1 =
7

Nm
+ 1.

466 Gomes, Unger, Cleary, and Franks
Thus ISS has a lower forward execution overhead
than PSS when α is less than (100(tm/tw)/Np), or
equivalently, when Np is less than (tm/tw) ≈ 1. For
this case MSS also has lower forward overhead than
PSS.

The rollback overhead however favors MSS as fol-
lows.

Ri = αStwD

Rp = Stm +
teNp

2

Rm = αStwD if D < (Nm/2)

Rm = Stm + (αStwNm/2) if D > (Nm/2)

thus Rm = Ri when D < (Nm/2) and
Rm < Ri when D > (tm/αtw) + (Nm/2).

For example, when tm/tw = 0.7 and α = 10%
then MSS has a lower rollback overhead than ISS if
D > 7 + Nm/2, and of course MSS is equivalent to
ISS when D < Nm/2. Comparing Rm and Rp gives
Rm < Rp when

Stm +
αStwNm

2
<
Stm

+

teNp

2

or when

te >
αStwNm

Np
.

The event execution time te must include calcu-
lations that incur at least αStw since on average αS
amount of state is modified during the event. Each
such state modification is at a cost of about tw. If
te > 2αStw then MSS performs better than PSS when
Nm < 2Np.

7 CONCLUSIONS

Except for unusual cases where (i) there is either a
small amount of state information or a large amount
of state modified per event, or (ii) there is unac-
ceptable rollback overhead due to very large check-
point intervals, ISS will have the lowest overhead dur-
ing forward computation than any of the other ap-
proaches, i.e., MSS, PSS and CSS. Since the criti-
cal path of any parallel execution incurs this forward
overhead, ISS would appear to have relatively robust
superior performance during forward computation.

However, the forward overhead of MSS can be
made arbitrarily close to that of ISS by increasing the
checkpointing interval. This is feasible since, in gen-
eral, longer checkpointing intervals can be used with
MSS than with PSS. Further, MSS can outperform
PSS in the forward direction since larger checkpoint
intervals can be used while incurring similar rollback
overheads.
On the other hand, MSS has bounded rollback
overhead that is typically lower that ISS, PSS or CSS.
This enables limiting rollback delays and thus con-
trolling the potential for cascading rollbacks. In ad-
dition, MSS has been used by Franks et al. (1997)
to support interactive input and output in optimistic
systems where the response time to human queries,
for example, needs to be bounded.

Our experience with one large industrial strength
application, a broadband ATM simulation, suggests
that there are many rollbacks with very short dis-
tances, and occasional rollbacks with very large dis-
tances. We can only conjecture that the behavior of
MSS will provide robust high performance optimistic
execution.

Future work is required to determine whether MSS
can deliver better overall Time Warp performance
than ISS. Exploring the relative advantages of MSS
and ISS requires further experimentation with a range
of applications that exhibit varied rollback distance
behavior.

REFERENCES

Bauer, H., and C. Sporer. 1993. Reducing rollback
overhead in Time Warp based distributed simula-
tion with optimized incremental state saving. In
Proceedings of the 26th Annual Simulation Sym-
posium, ed. J. Miller, 12–20. Arlington, Virginia.

Bellenot, S. 1992. State skipping performance with
the Time Warp operating system. In Proceed-
ings of the 1992 SCS Western Simulation Confer-
ence on Parallel and Distributed Simulation, eds.
M. Abrams and P. Reynolds Jr., 53–64. Newport
Beach, California.

Bruce, D. 1995. Treatment of state in optimistic sys-
tems. In Proceedings of the 9th Workshop on Par-
allel and Distributed Simulation (PADS95), ed.
Y-B. Lin, and M. Bailey, 40–49. Lake Placid, New
York.

Cleary, J., F. Gomes, B. Unger, X. Zhonge, and R. Thudt.
1994. Cost of state saving and rollback. In Pro-
ceedings of the 8th Workshop on Parallel and Dis-
tributed Simulation (PADS94), ed. D. Arvind,
R. Bagrodia, and Y-B. Lin, 24(1):94–101. Ed-
inburgh, Scotland, U.K.

Franks, S., F. Gomes, B. Unger, and J. Cleary. 1997.
State saving for interactive optimistic simulation.
In Proceedings of the 11th Workshop on Parallel
and Distributed Simulation (PADS97), eds. R. Ayani
and C. Tropper, Burg Lockenhaus, Austria.

Gomes, F. 1996. Optimizing Incremental State Sav-
ing and Restoration. PhD thesis, Department of
Computer Science, University of Calgary, Canada.

Gomes, F., J. Cleary, and B. Unger. 1996 Language

Multiplexed State Saving for Bounded Rollback 467
based state saving extensions for optimistic paral-
lel simulation. In Proceedings of the 1996 Winter
Simulation Conference, Coronado, California.

Gomes, F., S. Franks, B. Unger, Z. Xiao, J. Cleary,
and A. Covington. 1995. SimKit: A high perfor-
mance logical process simulation class library in
C++. In Proceedings of the 1995 Winter Simu-
lation Conference, ed. C. Alexopoulos, K. Kang,
W. Lilegdon, and D. Goldsman, 706–713. Arling-
ton, Virginia.

Lin, Y-B. and E. Lazowska. 1990. Reducing the
state saving overhead for Time Warp parallel sim-
ulation. Technical Report 90–01–02, Department
of Computer Science, University of Washington,
Seattle, Washington.

Palaniswamy, A. and A. Wilsey. 1993. An analyti-
cal comparison of periodic checkpointing and in-
cremental state saving. In Proceedings of the 7th
Workshop on Parallel and Distributed Simulation
(PADS93), eds. R. Bagrodia and D. Jefferson,
23(1), 127–134. San Diego, California.

Preiss, B., W. Loucks, and I. MacIntyre. 1994. Ef-
fects of the checkpoint interval on time and space
in Time Warp. ACM Transactions on Modeling
and Computer Simulation, 4(3):223–253.

Rōnngren, R., and R. Ayani. 1994. Adaptive check-
pointing in Time Warp. In Proceedings of the 8th
Workshop on Parallel and Distributed Simulation
(PADS94), ed. D. Arvind, R. Bagrodia, and Y-
B. Lin, 24(1):110–117. Edinburgh, Scotland, U.K.

Rōnngren, R., M. Liljenstam, R. Ayani, and J. Mon-
tagnat. 1996. Transparent incremental state sav-
ing in Time Warp parallel discrete event simula-
tion. In Proceedings of the 10th Workshop on Par-
allel and Distributed Simulation (PADS96), 70–
77. Philadelphia, PA.

Steinman, J. 1993. Incremental state saving in SPEEDES
using C++. In Proceedings of the 1993 Winter
Simulation Conference, 687–696. Los Angeles, Cal-
ifornia.

West, D., and K. Panesar. 1996. Automatic incre-
mental state saving. In Proceedings of the 10th
Workshop on Parallel and Distributed Simulation
(PADS96), 78–85. Philadelphia, PA.

AUTHOR BIOGRAPHIES

FABIAN GOMES is a post doctorate fellow in the
Dept. of Computer Science at the University of Cal-
gary. He received his Ph.D. degree in Computer Sci-
ence from the University of Calgary in 1996. His re-
search interests are in parallel simulation, modeling
ATM broadband networks, distributed systems and
rollback based computing.
BRIAN UNGER is a professor in the Dept. of
Computer Science at the University of Calgary. His
current interests include the modeling and simulation
of ATM broadband networks, parallel simulation and
simulation in Java.

JOHN CLEARY is a professor in the Dept. of
Computer Science at Waikato University. His re-
search interests include parallel and distributed sys-
tems, logic programming, complexity theory applied
to adaptive and learning systems, and parallel simu-
lation.

STEVE FRANKS is a lecturer in the Dept. of
Computer Science at Waikato University. He is pur-
suing a Ph.D. degree in Computer Science at the Uni-
versity of Calgary. His research interests include in-
teractive visual simulation, graphics and multimedia.

	MULTIPLEXED STATE SAVING FOR BOUNDED ROLLBACK
	ABSTRACT
	1 INTRODUCTION
	2 CHECKPOINTING STRATEGIES
	2.1 Copy State Saving (CSS)
	2.2 Periodic State Saving (PSS)

	3 INCREMENTAL STATE SAVING (ISS)
	3.1 Performance
	3.2 Transparency

	4 ISS IN SIMKIT
	4.1 ISS Backtrail
	4.2 State Saving Overhead

	5 MULTIPLEXED STATE SAVING (MSS)
	5.1 Motivation
	5.2 Design

	6 PERFORMANCE COMPARISON
	7 CONCLUSIONS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 460
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

