
SIMULATION AND CONTROL OF REACTIVE SYSTEMS

Pawel Gburzynski

Department of Computing Science
University of Alberta

Edmonton, Alberta, CANADA T6G 2H1

Jacek Maitan

Tools For Sensor, Inc.
513 Marshall Avenue

Carmichael, CA 95608, U.S.A.
ABSTRACT

We introduce SIDE (the acronym stands for Sensors
In a Distributed Environment)—a software package
for developing control programs for reactive systems.
One distinctive feature of SIDE is that it can be used
as a simulator: some (or even all) components of the
underlying physical network can be virtual. Notably,
the control program itself need not be aware that
some parts of its environment are not real. SIDE
applications can be naturally distributed and inter-
connected via the Internet.

1 INTRODUCTION

These days people start doing remotely many things
that traditionally have required their physical pres-
ence at the processing site, e.g., shopping, banking,
conferencing, learning. There is no reason why re-
mote supervision/coordination of manufacturing pro-
cesses should be excluded from the list. To implement
this idea, we have to change our attitudes toward the
organization and interface of control networks. First,
instead of being based on obscure and “internal” pro-
tocols incompatible with anything used outside, such
networks should be naturally connectible to the Inter-
net. Second, control programs driving these networks
should be expressed in a friendly common language
providing a unifying platform for interoperability, ac-
cessibility, and understanding. These postulates are
now finding their way into industrial reactive net-
works (see IEEE P1451.1/D83, 1996).

The software package presented in this paper of-
fers a number of tools aimed at fulfilling the postu-
lates mentioned above. Interestingly, SIDE is a direct
descendant of a network simulator (Dobosiewicz and
Gburzynski 1993, Gburzynski 1996), to the point of
retaining all the simulation features of its predecessor.
Specifically, SIDE offers:

• A programming language for describing network
configurations and specifying distributed pro-
grams organized into event-driven threads.

• A kernel for executing programs expressed in the
language of SIDE.

• A Java interface (the DSD applet) that can be
used to monitor the execution of a SIDE program
from the Internet.

• A TCP/IP daemon interfacing physical networks
of sensors and actuators to the Internet. This
way such networks become visible to the SIDE
kernel.

The SIDE kernel has two modes of operation. In
the real mode, the events perceived and triggered by
the threads (SIDE processes) occur in actual time
(usually some of them are triggered by real sensors
and some of them affect the behavior of real actu-
ators). In the virtual mode (which is only possible
if the entire environment of the control program is
modeled), the time is virtual and the control program
behaves as an event-driven, discrete-time simulator.

2 THE STRUCTURE OF SIDE

2.1 Control and Simulation

For the purpose of simulation, the source program
in SIDE is logically divided into three parts. The
protocol part represents the dynamics of the modeled
system. The network part is a logical description of
the hardware on which the protocol program is ex-
pected to run. Finally, the traffic part describes the
load of the modeled system, i.e., the events arriving
from outside and their timing.

The terms “protocol” and “traffic” reflect the fact
that the primary application of SIDE’s predeces-
sor was simulating communication networks (e.g.,
see Bertan 1989, Dobosiewicz and Gburzynski 1992,
Gburzynski 1996, Molle, 1994). However, it still



414 Gburzynski and Maitan
makes sense to call a control program driving a net-
work of sensors and actuators a protocol, because, ow-
ing to its reactive nature, such a program looks like
a set of rules prescribing actions to be taken upon
some specific events that may be coming from several
different (and distant) sources. Similarly, it makes
sense to talk about the input traffic in a (simulated)
fragment of a reactive system, because such a system
typically handles some objects arriving from outside,
and it is natural to represent such objects as struc-
tured packets.

For the purpose of developing control programs in
SIDE, we adopt a slightly more elaborate view of
the source program (Figure 1). The protocol con-
sists now of two parts: the control program proper
and the simulator for the virtual components of the
driven system. Similarly, the network part is split
into the so-called network map, i.e., the mapping of
logical sensors and actuators perceived by the control
program onto their real (or simulated) counterparts,
and the description of the modeled fragments of the
underlying hardware, i.e., the hardware used by the
simulator part of the protocol. The traffic specifica-
tion only applies to the simulated part of the envi-
ronment (real fragments handle real traffic that need
not be specified).

CONTROL
PROGRAM

SIMULATOR

SIMULATED
HARDWARE

TRAFFIC

PROTOCOL

NETWORK

PART

SIMULATION
PART

CONTROL

NETWORK MAP

Figure 1: A Control System in SIDE.

With the above view, one can separate the software
components that belong to the control system from
those belonging to the simulator. Thus, “control pro-
gram” + “network map” comprise the actual control
system (this part represents the target of the devel-
opment process, with the network map interpreted
as a parameterization of the control program), while
the remaining components will tend to vanish, until
they ultimately disappear altogether in the complete
version of the system.
2.2 Network Interface

A reactive system is defined as a collection of sensors
and actuators. These two objects are very similar; in
fact they are both described by the same data struc-
ture with the following layout:

mailbox Sensor {

private:

int Value;

void mapNet ();

public:

NetAddress Reference;

void setValue (int);

int getValue ();

void setup (NetAddress&);

};

mailbox Actuator : Sensor { };

The base type of Sensor and Actuator is Mailbox,
which is one of the fundamental built-in data
types in SIDE. The only relevant attribute of a
Sensor/Actuator is its Value. For a sensor, the
value represents the sensor’s perception of its environ-
ment. The sensor mailbox triggers an event whenever
its Value changes. For an actuator, the value de-
scribes the action to be performed by the actuator.
By changing the Value attribute of the actuator we
force it to carry out a specific physical operation.

The setup method plays the role of a construc-
tor. Its argument specifies the sensor’s coordinates
in the controlled network. These coordinates may be
interpreted as an actual network address (if the sen-
sor/actuator has a physical counterpart), or they may
be used to identify the object’s model in a simulated
fragment of the system. This mapping is carried out
by method mapNet whose implementation belongs to
the network map portion of the protocol program.

The actual mapping of a logical sensor/actuator
into its real physical counterpart consists of two steps.
The lower-level portion of this mapping is carried out
by a daemon that interfaces a physical network of sen-
sors/actuators to the Internet. The daemon acts as
a server intercepting all status change events in the
sensor network and transforming them into TCP/IP
packets sent to the clients. Similarly, it receives status
change requests from its Internet clients and trans-
forms them into new values of actuators. The sec-
ond level of mapping is performed by the network
map portion of the protocol program in SIDE. This
part is in fact optional, but highly recommended.
Technically, its is possible to implement setValue

and getValue in such a way that their functions
correspond directly to daemon requests. It makes
better sense, however, to keep these functions sim-
ple and generic, and impose one more level of soft-



Simulation and Control of Reactive Systems 415
ware mapping. For example, the same logical sen-
sor/actuator may be mapped differently in different
versions of the control program (e.g., it may be sim-
ulated in some versions or mapped to a physical sen-
sor/actuator in others). Another advantage of the ex-
tra level of mapping is the flexibility of being able to
map one logical sensor/actuator into multiple physi-
cal sensors/actuators and vice versa. This way the
same control program may be easily “recycled” in
environments slightly different from the target one,
which makes it easier to follow the pattern approach
in its design (Gamma et al. 1994).

A control program in SIDE can be implemented
as a single (multi-threaded) program, or as a set of
embedded programs (Edwards et al. 1997, Paulin et
al. 1997) run on independent (possibly diverse) ma-
chines connected via a network. These modules can
communicate with operators (human supervisors) on
other machines via standard Internet browsers capa-
ble of running Java applets.

3 THE PROGRAMMING LANGUAGE

3.1 Program Components

Typically, a program in SIDE consists of a number
of source files. The basic unit of execution is called
a process and it looks like a specification of a finite
state machine. A process always runs in the con-
text of some station, which conceptually represents a
logical component of the controlled/modeled system.
One process (Kernel) and one station (SYSTEM) are
predefined and exist throughout the entire lifetime of
the program. All other stations and processes must
be declared and created by the program. One user
process, called Root, is run by the kernel automati-
cally; its role can be compared to the role of main in
a C (or C++) program.

Besides processes and stations, SIDE offers a vari-
ety of built-in types, including tools for creating mod-
els of network channels (types Link and Port), traf-
fic generators (Traffic, Client, Message, Packet),
alarm clocks (Timer), and generic process synchro-
nization tools (Mailbox). Objects of the last type
can be bound to TCP/IP ports, providing a reactive
interface to the Internet.

Stations (and also links and ports) represent the
static components of the program, i.e., the logical
view of the hardware on which the control program or
simulator is run. These objects are typically created
at the very beginning (by the Root process) and re-
main present throughout the lifetime of the program.
Processes are more dynamic: it is not uncommon to
create (and destroy) them dynamically for various in-
termediate tasks. Links and ports are mostly used in
simulators—to model the passage of packets through
some “channels.”

All objects that exhibit dynamic behavior are
dubbed activity interpreters (AI). Such objects are
capable of generating events that can be awaited and
perceived by processes. For example, whenever some-
thing is deposited in a mailbox, the mailbox triggers
an event that a process interested in monitoring the
mailbox contents can perceive and respond to. Sim-
ilarly, an event is triggered by Timer when an alarm
clock goes off. Processes are also capable of triggering
some events; this possibility can be used as a direct
means of inter-process communication (without the
mediation of mailboxes). In contrast, stations do not
exhibit any activities of their own; they do not trigger
any events by themselves, and they are not activity
interpreters.

3.2 Processes

A process consists of its private data area and a pos-
sibly shared code. Besides accessing its private data,
a process can reference the attributes of the station
owning the process, and some other variables consti-
tuting the so-called process environment. Processes
can communicate in several ways, even if they do not
belong to the same station.

A process type usually defines a number of at-
tributes (they can be viewed as the local data area of
the process), an optional setup method (a construc-
tor), and the perform method specifying the process
code. A process type declaration has the following
syntax:

process ptype : supptype (fptype, stype) {
. . . attributes and methods . . .
setup (...) { ... };
states {s0, s1, ..., sk};
perform { ... };

};

where ptype is the name of the declared process type,
supptype is a previously defined process type, fptype
is the type of the process’s parent process, and stype

is the type of the station owning the process. As for
other SIDE types, supptype can be omitted if the
new process type is derived directly from the base
type (Process). The two arguments in parentheses
are also optional: they can be skipped if they are not
useful to the process.

A process code method resembles the description of
a finite state machine (FSM). The states declaration
assigns symbolic names to the states of this machine.
The first state on the list is the initial state.



416 Gburzynski and Maitan
The operation of a process consists in responding
to events. The occurrence of an event awaited by a
process wakes the process up and forces it into a spe-
cific state. Then the process (its code method) per-
forms some operations and suspends itself. Among
these operations are indications of future events that
the process wants to perceive. A typical code method
has the following structure:

perform {
state s0:

. . .
state s1:

. . .
};

Two built-in pointers are available to the code
method: F (of type fptype) pointing to the process’s
parent, and S (of type stype) pointing to the station
owning the process.

Processes in SIDE are executed as threads with
very simple preemption rules. If we ignore process
creation (when the created process is run for the first
time), a process is always run in response to some
event triggered by one of the activity interpreters.
The first event starting a process is assumed to be
triggered by the process itself; thus, in fact, there are
no exceptions. One common element of the interface
between an AI and a process is the AI’s wait method
callable as ai->wait (ev, st, pr);.

The first argument of wait identifies an event; its
type and range are AI-specific. The second argument
is a process state identifier: upon the nearest occur-
rence of the indicated event the process will be awak-
ened in the specified state. Finally, the last (optional)
argument gives the priority of the wait request. If the
priority is absent, a default value (average priority)
is assumed.

A process may issue a number of wait requests,
possibly addressed to different AIs, and then it puts
itself to sleep, either by exhausting the list of state-
ments associated with its current state or by execut-
ing sleep. All the wait requests issued by a process
at one state are combined into an alternative of wak-
ing conditions: as soon as any of these conditions is
fulfilled, the process will be restarted in the state in-
dicated by the second argument of the corresponding
request. The priority argument indicates the prece-
dence of events that occur simultaneously. This pri-
ority is interpreted globally, among all processes that
perceive events at the current moment.

When a process is awakened, it always happens be-
cause of exactly one event. If the process has been
waiting for other events, the pending wait requests
are erased and forgotten. The process is awakened by
the earliest of the awaited events. If several events are
triggered at the same time, the event with the high-
est priority is selected. If several earliest events have
the same priority, one of them is chosen at random.
There is a way of eliminating this non-determinism
(it exists because SIDE is also a simulation system)
and assigning priorities to such events implied by the
order of their perception by the SIDE kernel.

Once a process has been awakened, it will not be
preempted until it decides to put itself to sleep. It
is assumed that processes are strongly I/O bound
(using the operating systems terminology), and the
non-preemptive, declared-priority scheduling policy
used in SIDE is appropriate for their pattern of ac-
tivity. By enforcing the FSM structure of the pro-
cess code method, SIDE forces its threads to be or-
ganized as fast-responding interrupt processors. If
there is a computationally intensive task to be per-
formed in a SIDE process, it is natural to split such a
task into a chain of interrupts communicating via the
IPC mechanisms offered by the SIDE kernel. Each
of those interrupts is non-preemptible, but their se-
quence is subject to priority scheduling that accounts
for the importance of other tasks. One should no-
tice here that computationally intensive tasks are not
typical in SIDE. If there is a true demand for number
crunching in a SIDE system, the best way to include
this capability is to set up a CPU server running the
CPU-bound tasks and communicating the results to
the SIDE kernel via a networked mailbox.

3.3 Time in SIDE

A SIDE program uses its internal notion of time. This
internal time can be mapped to real time (which must
be done if there is at least one real piece of equipment
controlled by the program), or not (in which case
the program behaves as an event-driven, discrete-time
simulator).

Time intervals are expressed in the so-called ITUs
(indivisible time units) and represented as objects of
type TIME. The precision/range of TIME is selected
by the programmer; there is no explicit limit on this
precision. By default, when SIDE is set up to work
in real time, the ITU is mapped to one microsecond.
If required, type TIME is implemented using multiple-
precision integer arithmetic.

Besides the ITU, SIDE defines another unit of time,
the so-called ETU, which stands for the experimenter
time unit. The reason for this duality is that the ITU
(which determines the internal granularity of time)
may not be convenient for the the human operator.
By default, in the real-time setting of SIDE, the ETU
is mapped to one second.



Simulation and Control of Reactive Systems 417
3.4 Mailboxes and Other IPC Tools

Processes in SIDE can communicate in three different
ways. First, they can take advantage of the fact that
they are themselves activity interpreters capable of
triggering events. Thus, it is legal for a process to
issue a wait request for another (or even the same)
process to get into a specific state. Another IPC tool
is signal passing. Each process has a signal repository
that can be used to receive signals (simple messages).

The third and most flexible IPC mechanism is com-
munication via mailboxes. A generic mailbox is a
repository for possibly structured messages whose ar-
rival may trigger various events. Below we list the
implementations of the two public methods of Sensor
and Actuator.

void Sensor::setValue (int v) {

Value = v; put ();

};

int Sensor::getValue () { return Value; };

The second method is trivial, but the first one, hav-
ing modified the Value, executes put, which is a stan-
dard mailbox operation used to deposit an object in
the mailbox. In our case, the object is dummy: put

has no argument and its only action is to trigger a
NEWITEM event. This event will be perceived by the
process (or processes) monitoring the changes of the
sensor value.

4 EXAMPLES

4.1 Stations

For illustration, let us consider a system of conveyor
belts. Each unit of our conveyor system is equipped
with a motor (a switch actuator) driving the unit and
a number of sensors detecting the presence of objects
(boxes) passing through the unit. In agreement with
the object-oriented paradigm of SIDE, all these ob-
jects can be represented as stations descending from a
single station type capturing the common structure of
all units. This common station type can be declared
as follows:

station Unit {

Actuator *Motor; MotorDriver *MD;

Alert *Exception;

void setup (NetAddress&, double);

};

Type Actuator has been presented already. Alert
is another descendant of Mailbox, whose role is to
pass alerts (messages about the abnormal behavior of
the unit) to the operator. MotorDriver is the type of
the process that will be responsible for the operation
of the unit’s motor.

When a Unit is created, its setup method (the con-
structor) receives the network address of the motor
actuator and a value representing the inertia of the
motor. This value will be used by the motor driver
process to make sure that the motor is not switched
on and off too fast. When we talked to people us-
ing conveyor systems driven by commercial software,
they complained about the jerky behavior of the mo-
tors triggered by intermittent spurious sensor signals.
Consequently, we have decided to mediate all refer-
ences to sensors and actuators through simple pro-
cesses whose sole purpose is to dampen the rate of
status changes.

Below we list the station type representing a seg-
ment with one entry and one exit.

station Segment : Unit {

Sensor *In, *Out; SensorDriver *SDIn, *SDOut;

int BoxesInTransit;

void setup (NetAddress&, double, // Motor

NetAddress&, double, // Entry sensor

NetAddress&, double, // Exit sensor

double); // Upper bound on passage time

};

The setup method of Segment accepts seven argu-
ments describing the parameters of one actuator (the
motor switch) and two sensors (one sensing boxes en-
tering the belt, the other monitoring the output end
of the segment). The double argument associated
with a sensor/actuator specifies its inertia, i.e., the
amount of time for which a new condition (value)
must persist to be considered valid. The last argu-
ment is a bound (in seconds) on the amount of time
needed by a box to travel through the segment. It
will be used to diagnose jams.

This is the actual code of the setup methods an-
nounced in the two station types:

void Unit::setup (NetAddress &mr, double inr) {

Exception = create Alert (getOName ());

Motor = create Actuator (mr);

MD = create MotorDriver (mr, inr);

};

void Segment::setup (NetAddress &mr, double mi,

NetAddress &en, double ei,

NetAddress &ex, double xi,

double TransitTimeBound) {

Unit::setup (mr, mi);

BoxesInTransit = 0;

In = create Sensor (en);

Out = create Sensor (ex);

SDIn = create SensorDriver (In, ei);

SDOut = create SensorDriver (Out, xi);



418 Gburzynski and Maitan
create SegmentDriver (TransitTimeBound);

};

The setup methods create the needed components
of the station, i.e., the mailboxes and processes. This
is accomplished by operation create whose argu-
ments are passed to the setup method of the created
object.

Method getOName, invoked to produce the argu-
ment of Alert’s setup method, returns a character
string representing the name of the current object.
This way, the alert will be tagged with the name of
the segment, and the operator will be able to tell the
source of the messages appearing on the screen. Ob-
jects in SIDE have several kinds of naming attributes
that can be used to identify them for the purpose of
displaying their status by DSD.

4.2 Processes

Let us start from the sensor driver process, which
dampens the rate of changes in the sensor value, so
that it is kept below the specified inertia. This pro-
cess is declared as follows:

process SensorDriver (Unit) {

Sensor *TheSensor; int LastValue;

TIME Inertia, Resume;

void setup (Sensor *s, double inertia) {

LastValue = (TheSensor = s)->getValue;

Inertia = (TIME) (Second * inertia);

};

states {StatusChange};

perform;

};

The first line of the above declaration indicates that
SensorDriver is a basic process type and that pro-
cesses of this type will run at stations belonging to
type Unit or its subtypes. The setup method sets
TheSensor to point to the sensor driven by the pro-
cess, converts the specified inertia to internal time
units (ITUs) and initializes LastValue to the current
(initial) value of the sensor. The process has only one
state; its simple code method is listed below.

SensorDriver::perform {

int NewValue;

state StatusChange:

if ((NewValue = TheSensor->getValue ())

== LastValue) {

TheSensor->wait (NEWITEM, StatusChange);

sleep;

}

signal (LastValue = NewValue);

Timer->wait (Inertia, StatusChange);

};
When the process wakes up (in its only state), it
checks whether the current value of the sensor is the
same as the previous value. If this happens to be
the case, the process issues a wait request to the sen-
sor (to perceive the change in its value) and puts it-
self to sleep. Otherwise it executes its own signal

method, passing it the new value as the argument,
and sleeps for Inertia time units before transiting
back to StatusChange. This way, all changes in the
sensor value will be ignored for Inertia ITUs after
the last change was reported.
SensorDriver reports changes of the sensor value

by sending a signal to itself. The signal repository of
SensorDriver can be consulted by any process that
wants to perceive the dampened status of the sensor.
The same idea (but acting in the opposite direction)
is used in MotorDriver.

Now we may have a look at the process actually
driving the conveyor segment. Its type is declared as
follows:

process SegmentDriver : Overrideable (Segment) {

MotorDriver *MD; SensorDriver *SDIn, *SDOut;

Alert *Exception; TIME OutTime, EETime;

void setup (double);

states {WtSensor, Input, Output, PcOverride};

perform;

};

This type descends from Overrideable, which is a
process subclass intended for processes whose actions
can be overridden from outside (e.g., by the operator).
Overrideable offers some standard tools that can be
used for this purpose.

The setup method of SegmentDriver takes one
double argument, which is the bound on the pas-
sage time through the segment. It is typical for a
SIDE process to store in its attributes local copies
of the relevant attributes of the station at which the
process is run. We can see this in the following setup
method of SegmentDriver:

void SegmentDriver::setup (double ttime) {

Overrideable::setup (S->getOName ());

MD = S->MD; SDIn = S->SDIn;

SDOut = S->SDOut; Exception = S->Exception;

EETime = (TIME) (Second * ttime);

};

Each “overrideable” process is linked to an over-
ride object that can be referenced by the operator
to request an override action for the process. Over-
rides are not basic objects in SIDE, but they are im-
plemented via mailboxes. The setup method of the
Overrideable portion of SegmentDriver is invoked
to tag the process’s override object with an identifier



Simulation and Control of Reactive Systems 419
(the name of the station at which the process is run-
ning), so that it can be easily located by the operator.

Now we are ready to look at the code method of
SegmentDriver.

SegmentDriver::perform {

TIME TIdle;

state WtSensor:

onOverride (PcOverride);

SDIn->wait (SIGNAL, Input);

SDOut->wait (SIGNAL, Output);

if (S->Motor->getValue () == ON) {

if ((TIdle = Time - OutTime) < EETime) {

Timer->wait (EETime-TIdle, WtSensor);

} else {

MD->signal (OFF);

Exception->notify ("Jam");

}

}

state Input:

if (TheSignal == ON) {

MD->signal (ON); S->BoxesInTransit ++;

}

proceed WtSensor;

state Output:

OutTime = Time;

if (TheSignal == OFF) {

if (S->BoxesInTransit) {

if (--(S->BoxesInTransit) == 0)

MD->signal (OFF);

} else

Exception->notify ("Unexpected box");

}

proceed WtSensor;

state PcOverride:

overrideAcknowledge ();

switch (overrideAction ()) {

case OVR_MOTOR_CNTRL:

S->Motor->setValue (overrideValue ());

onOverride (PcOverride);

sleep;

case OVR_SET_COUNT:

S->BoxesInTransit = overrideValue ();

OutTime = Time;

onOverride (PcOverride);

sleep;

case OVR_RESUME:

default:

S->In->setValue (S->In->getValue ());

S->Out->setValue (S->Out->getValue ());

proceed WtSensor;

}

};

The process starts in its first state; this is also the
main state where the process awaits the sensor events.
The first operation in state WtSensor is onOverride
(defined in the Overrideable class), which declares
the state to be assumed when an override action is
forced by the operator. Then the process issues two
wait requests addressed to the signal repositories of
the two processes driving the entry and exit sen-
sors. Whenever there is a change in the value of
the entry sensor (dampened by the driver process),
SegmentDriverwill transit to state Input. Similarly,
a change in the value of the exit sensor will force the
process to state Output.

In state Input, the process checks whether the new
value of the entry sensor is ON, which indicates the
presence of a new box. If this is not the case, the
signal is ignored and the process returns immediately
to its initial state. Otherwise, the motor is switched
on (this operation has no effect if the motor is already
running), and the number of boxes perceived by the
process to be in transit is incremented by one.

In state Output, a transition of the exit sensor from
ON to OFF is interpreted as a departure of one box from
the segment. The time of this event (the global vari-
able Time tells the current time in ITUs) is recorded
in OutTime. Then the number of boxes in transit is
decremented by one, but not below zero. If this num-
ber is zero already, the event is inconsistent with the
process’s perception (there are no boxes in transit,
so no boxes should be departing from the segment)
and the case is reported to the operator. If the up-
dated number of boxes in transit turns out to be zero,
SegmentDriver stops the motor. It will be switched
back on as soon as a box is perceived by the entry
sensor.

The value of OutTime, i.e., the time when the last
box departed from the segment, is used for jam de-
tection. Each time SegmentDriver gets to its initial
state, it checks the status of the motor, i.e., the value
of the Motor actuator. If the motor has been con-
tinuously on for EETime units, and OutTime hasn’t
changed in the meantime, the process concludes that
the last box got stuck somewhere on the belt. In
such a case, the motor is stopped and the operator is
notified about the problem.

State PcOverride is assumed when an explicit
override action is requested by the operator. The
standard protocol of responding to such an event re-
quires the process to acknowledge the reception of
the override request. Otherwise the request would
remain pending, and it would keep triggering more
override events until acknowledged. The process can
learn about the specific action requested by the opera-
tor by calling two methods defined in Overrideable.
Intentionally, overrideAction tells the type of op-
eration to be performed (e.g., motor control, resume
normal operation) and overrideValue specifies an
optional parameter of the operation. We can see that



420 Gburzynski and Maitan
the process remains in the overridden state until its
normal operation is resumed by an explicit request of
the operator. Note that before transiting to its initial
state (WtSensor), SegmentDriver sets the sensors to
their current values. This operation leaves the sensor
value intact, but it forces a sensor event. This way the
values of sensors will be immediately re-examined in
the normal mode of operation. Note that these values
may have changed while the process was overridden.

5 SUMMARY

We have presented SIDE—a a programming environ-
ment for developing distributed reactive programs.
The semantics of concurrency in SIDE is simple: non-
preemptible threads act like coroutines with implicit
control transfer. This approach simplifies synchro-
nization (all problems occur at event boundaries)
and, with the right organization of the threads, does
not impair the real-time performance of the program.

The interface of a SIDE program with the con-
trolled environment is contained in a single type
(mailbox) that can be optionally associated with a
TCP/IP port. As the control program only sees vir-
tual sensors and actuators separated from their phys-
ical counterparts by a translation layer implemented
in SIDE, there is no principal difference between a
real system and its simulated artificial model. This
way, SIDE is also a rapid prototyping tool. A con-
trol program in SIDE can be built together with the
development of its underlying physical system.

At http://sheerness.cs.ualberta.ca/~pawel/SIDE/,
the reader will find a set of pages about SIDE with
pointers to three on-line experiments, including two
simulated networks of conveyor belts.

REFERENCES

Bertan, B. R. Simulation of MAC layer queuing and
priority strategies of CEBus. IEEE Transactions
on Consumer Electronics, 35:557–563, Aug. 1989.

Dobosiewicz, W., and P. Gburzyński. SMURPH:
An object oriented simulator for communication
networks and protocols. In Proceedings of MAS-
COTS’93, Tools Fair Presentation, pages 351–352,
Jan. 1993.

Dobosiewicz W., and P. Gburzyński. An alterna-
tive to FDDI: DPMA and the Pretzel Ring. IEEE
Transactions on Communications, 42:1076–1083,
1994.

Edwards, S., L. Lavagno, E. Lee, and A. Sangiovanni-
Vincentelli. Design of embedded systems: Formal
models, validation, and synthesis. Proceedings of
IEEE, 85(3):366–390, 1997.
Gamma, E., R. Helm, R. Johnson, and J. Vlissides.

Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

Gbrzynski, P. Protocol design for local and metropoli-
tan area networks. Prentice-Hall, 1996.

IEEE P1451.1/D83 Draft standard for a smart trans-
ducer interface for sensors and actuators—Network
Capable Application Processor (NCAP) informa-
tion model, Dec. 1996.

Molle, M. A new binary logarithmic arbitration
method for Ethernet. CSRI-298, Computer
Systems Research Institute, Toronto, Ontario,
Canada, 1994.

Paulin, P., C. Liem, M. Cornero, F. Nacabal, and
G. Goossens. Embedded software in real-time sig-
nal processing systems: Application and architec-
ture trends. Proceedings of IEEE, 85(3):419–435,
1997.

Pree, W. Design Patterns for Object-Oriented Soft-
ware Development. Addison-Wesley, 1995.

AUTHOR BIOGRAPHIES

PAWEL GBURZYNSKI received his MSc and
PhD in Computer Science from the University of War-
saw, Poland in 1976 and 1982, respectively. Before
coming to Canada in 1984, he had been a research
associate, systems programmer, and consultant in
the Department of Mathematics, Informatics and Me-
chanics at the University of Warsaw. Since 1985 he
has been with the Department of Computing Science,
University of Alberta where he is a Professor. His re-
search interests are in network protocols, operating
systems, simulation, and performance evaluation.

JACEK MAITAN received his MSc in Automa-
tion from the Silesian Technical University in 1976,
PhD in Electrical Engineering from the University
of Arizona in 1984, and MBA from Queens College
in 1996. He held engineering and management po-
sitions at MCC, RCA, CompuServe, and Lockheed,
providing technical leadership for a number of con-
tracts with government agencies, including NASA,
ARPA, and ONR. He has extensively consulted for
the industry in the areas of communication and dis-
tributed systems. Jacek Maitan is President of Tools
For Sensors, Inc.


	SIMULATION AND CONTROL OF REACTIVE SYSTEMS
	ABSTRACT
	1 INTRODUCTION
	2 THE STRUCTURE OF SIDE
	2.1 Control and Simulation
	2.2 Network Interface

	3 THE PROGRAMMING LANGUAGE
	3.1 Program Components
	3.2 Processes
	3.3 Time in SIDE
	3.4 Mailboxes and Other IPC Tools

	4 EXAMPLES
	4.1 Stations
	4.2 Processes

	5 SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 413
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


