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ABSTRACT

One of the key issues in reasoning with multiple in-
teracting intelligent agents is how to model and code
the decision making process of the agents. In Arti-
ficial Intelligence (AI), the major focus has been on
modeling individual intelligence and a common ap-
proach has been to use operator or rule-based mod-
els to represent the decision making intelligence of
an agent. If the purpose of the simulation is to pre-
cisely emulate a particular agent’s intelligence, then
such rule-based models may often be most appropri-
ate. However, when the goal is to win the engagement
in the battlefield, where the overall outcome may de-
pend on individual execution of each task, the level
of detail must be extended to the level of simulating
individual task execution. In these cases, we have
created a methodology, Simulation-Based Planning
(SBP), that embeds one simulation inside another.
The embedded simulation simulates the actions of
agents bef or ecommitting to a plan so that it may
evaluate the desiredness of the actions. Plan alterna-
tives are generated based on discrete paths through
spatial regions of a domain, while specific optimal
plans are generated through the use of experimental
design and simulation. We have found that, through
simulation-based planning, near-optimal plans can be
selected by using simulation, in addition to using sim-
ulation once a plan has been adopted.

1 INTRODUCTION

In a multi-agent system, one needs to simulate the
individual agents, but also the coordination of the
agents and methods employed for achieving their
goals through interaction, cooperation and adversity.
Our approach is not to create cognitive models for
individual agents, and then to apply simulation, but
instead to create models for multi-agent systems that
are tightly constrained by their environments. Exam-
ple constraints include 1) geometric paths that are
to be followed, 2) a task or mission to be accom-
plished, and 3) a strict set of operating conditions for
all agents. With these constraints, it is feasible and
logical to apply quantitative simulation techniques to
support decision making involving multiple agents.
Thus, our research focuses on the cons t r ained sce-
na r iotheme. In executing these scenarios, we create
a simulation-based decision mode lwhich can be said
to reside in a decision-making object or agent.

Related work was recently done by Dean et al. (?)
which focuses on a method based on the theory of
Markov decision processes for efficient planning in
stochastic domains. Work by Wellman (?; ?) is
also related in that it also attempts to solve plan-
ning problems in uncertain environments. These ap-
proaches differ mainly because the state transitions
in their models are deterministic (although proba-
bilistic) whereas we can also model nondeterminsitic
state transitions. There has been previous work done
in the integration of AI and Simulation (?; ?). How-
ever, combining different modeling paradigms and
techniques is often a difficult task. Because of the
ability to combine different modeling paradigms at
multiple levels, we consider the object-oriented ap-
proach of multimodeling (?; ?) to be a natural ap-
proach to solving the problem. Models that are com-
posed of other models, in a network or graph, are
called multimodels (?; ?; ?; ?). Multimodels allow
the modeling of large scale systems at varying levels
of abst r actio n. They combine the expressive power
of several well known modeling types such as FSAs,
Petri nets, block models, differential equations, and
queuing models. By using well known models and the
principle of orthogonality, we avoid creating a new
modeling system with a unique syntax.

2 SIMULATION-BASED PLANNING

SBP refers to the use of computer simulation to aid in
the decision making process. In the way that game
trees are employed for determining the best course
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Planner

of action in board games (using a game tree), SBP
uses the same basic iterative approach with the fol-
lowing items: 1) a model of an action is executed to
determine the efficiency of an input or control deci-
sion, and 2) different models are employed at different
abstraction levels depending on the amount of time
remaining for the planner to produce decisions. The
military has been using simulation-based planning for
many decades in the form of constr uc tiv e model simu-
la tio n. Our extension in SBP is one where we permit
many levels of abstraction for a model, not just the
aggregate abstraction level characterized by Lanch-
ester equations and combat result tables. The idea is
to allow the planner the flexibility to balance the need
between the required level of detail and the amount
of time given to make a decision. This is similar to
Dean and Boddy’s anyt imealgorithm (?). The no-
tion that simulation can be used for decision making
is covered in several disciplines, such as for discrete
event based models (?).

2.1 The SBP Framework

We present the SBP framework in terms of three com-
ponents: the simulation component, the experimen-
tal design component and the output analysis compo-
nent. The model in Figure 1 is the top level general
framework for simulation-based route planning sys-
tems.

2.2 Simulation Block : Trial

To use simulation in planning, we first need to iden-
tify the set of co nt r o l l ab l eand unc ont r o l l abl evari-
ables. Speeds, routes, actions of objects are control-
lable, whereas any kind of uncertainty such as uncer-
tainty of weather conditions and outcome of combat
are uncontrollable. The main objective of plan sim-
ulation is to gather the effects of the uncontrollable
through repeated sampling (replication) while vary-
ing the parameters to find a near-optimal combina-
tion of controllable values in spite of the uncertainty.
We say near-optimal because we can never guaran-
tee the optimality of a plan given the uncertainties of
actual plan execution. Unlike most plan evaluation
schemes where the predicted state transition occurs
by analytic (therefore, deterministic) and probabilis-
tic functions, SBP nondeterministically chooses the
“most likely to happen” transition given the situation
by either sampling the probability or by executing a
detailed model of the transition itself. Thus, both an
advantage and possibly a drawback, SBP may come
to evaluate transitions which do not have the highest
probability of occurring.

Here we present some definitions that will help us
formally describe the simulation algorithm we have
created. Let W = {W1,W2, ...,Wk} be the set of all
objects in the environment and let Q(t) = q1(t) ×
q2(t)× · · ·× qk(t) be the world state at time t, where
qi(t) is the state of object Wi at time t. Also, we
define Ai(t) as the set of actions the object Wi can
take at time t. Note that zero or more actions may
be chosen from this set to be simulated at time t.
The total number of routes is N and Rj denotes the
jth route where 1 ≤ j ≤ N . Then, the simulation
algorithm is as follows:

INITIALIZE environment

(for every replication, setup all objects)

For each route $R_{j}$

WHILE ( (not success) or (not failure) )

Obtain Q(t) FOR each object Wi

Determine actions for Wi using set Ai(t)

Update state qi(t) to qi(t+1) by either

1) simulation of chosen actions

or 2) sampling distribution

Update world state Q(t+1) t = t + 1

The simulation strategy is usually a mix of time slic-
ing and event scheduling. Time slicing is used to
routinely check each object for its responses to any
change in the world state. Event scheduling is needed
to allow objects to schedule any delayed response or
action that is to occur at some future time which
may not necessarily coincide with a particular time
slice. The simulation proceeds until the termination
criteria—such as goal success or failure—is met. The
necessary output data of the simulation is now sent
to the Evaluator block.

2.3 Experimental Design Block : Executive

In simulation, experimental design is a method of
choosing which configurations (i.e., parameter values)



Simulation-Based Planning for Multi-Agent Environments 407
to simulate so that the desired information can be ac-
quired with the least amount of simulation (?). The
number of runs, S, is a function of the total num-
ber of factors, the number of factor levels and the
number of replications (repetitions). For a typical
route traversal simulation we can express the com-
putational complexity of a single run for route Rj,
in the worst case, as follows (given that we are us-

ing time slicing), φ(Rj) = O
(

(Numso + L)
distRj
∆dist

)
where distRj is the total length of route Rj; ∆dist
is the size of time slice ∆t ∗ Speed(t); Numso rep-
resents the number of stationary objects previously
calculated; and L denotes the total number of mov-
ing objects in the simulation. Thus, the total time
complexity of the experimental part of the SBP algo-

rithm will be, in the worst case, O
(∑N

j=1 S · φ(Rj)
)

.

In summary, we can save time in two ways: ei-
ther by reducing S or by reducing φ(Rj), while still
obtaining meaningful results. Heuristics in reducing
S include: reducing the number of factors, reducing
the levels of an ith factor and reducing the number of
replications. For our problem domain, routes, behav-
iors and the planner’s speed are candidate factors. By
setting any one of these factors to be a constant, we
are effectively reducing the number of factors. For in-
stance, using some heuristics, we can prune away un-
promising routes before they are simulated and thus
reduce the number of levels of the route factor. The
number of replications depends mostly on the type of
output analysis method used. Some different output
analysis methods we have employed are discussed in
Section 2.4. The number of replications can also be
reduced by heuristic sampling or controlled sampling
of the uncertainties. This way, we can converge on
the answer faster than sampling purely by random.
The number of replications will partly depend on the
randomness of the data. In effect, the number of un-
certain objects in an alternative greatly affects the
number of replications needed to reach an acceptable
level of accuracy.

Next, we discuss some ways to reduce φ(Rj), the
total simulation time spent during the evaluation pro-
cess. In time critical situations, the quality of the de-
sired information may be sacrificed to meet a given
time constraint. Increasing the size of the time slice
∆t (assuming the simulation is based on time slicing)
is one way of decreasing the simulation time. Speed
up will result at the expense of accuracy since the
longer the time slice, the faster the simulation. Re-
ducing (Numso) to be simulated for route Rj can also
improve the simulation speed. This can be achieved
basically by calculating an effective set of objects–
objects that are in the area of moving objects. More
in depth discussion appears in (?). We can also save
time by using aggregated or abstract models where
possible. Currently, research is underway to allow
simulation at levels of abstraction (?).

By distinguishing routes based on their distance,
we can also build experimental strategies based on
this information. Depending on the particular prob-
lem domain, the effect of the route distance on the
simulation time will vary and thus, the Executive
must make a decision as to where the time must be
saved, either in S or φ(Rj)s, depending on which is
dominant.

We now present our approach which can produce
simulation results within a given time constraint. The
approach is best explained in two phases. In the first
phase, we perform a set of n replications. It is hard
to tell what is a good value for n but 20 is a com-
monly used number in simulation (?). While the n
replications are being performed, the CPU times of
each replication for each route Rj are recorded (this
is measured by calling the system call clock() and
calculating the elapsed time between the start and
the end of the replication). An issue exists as to
whether CPU time is a good measure since it can
vary depending on the load of the computer or the
network. In the second phase, we make a decision
as to which output analysis approach (strategy of
performing replications and choosing the appropriate
stopping conditions) to use based on the expected
simulation time and the current remaining time. The
basic idea of the algorithm is to perform the needed
number of replications–given that the remaining time
is sufficient for their completion–for each route ob-
tained from the SelectBestk algorithm which com-
putes the exact number of replications necessary to
reach a decision (select the best alternative among k
alternatives) for alternative j. If the remaining time
to perform the simulations is not sufficient, then we
perform as many replications as possible given the
time allowed. As the replications are performed it-
eratively, we also try to eliminate any alternatives
that appear to be significantly worse than other al-
ternatives. With the latter approach, the idea is to
incrementally converge on the answer while trying to
meet the time constraints.

2.4 Output Analysis Blocks : Replicator,
Evaluator, Analyzer

Specifying the right types of statistical analyses is
just as important as performing the right types of
simulation runs. With simulation, several different
interpretations can be obtained from the same out-
put data. Different analysis methods apply depend-
ing on whether a simulation is terminating or steady
state. Because plans have a definite start and an end
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time, ours are terminating simulations. Suppose we
are simulating k alternatives (or routes in our case).
We describe in the following our current strategy for
obtaining the appropriate outputs and their analyses.

2.4.1 Replicator

Replication provides the easiest form of output anal-
ysis. An issue is using common random numbers
(CRN) to provide a controlled environment for com-
parison among alternatives. We use it here across dif-
ferent alternative route plans within the same repli-
cation to eliminate any “environmental differences”
that can exist between different simulations. Depend-
ing on how the Trial block proceeds with the simu-
lation, the designer may choose to vary the random
number streams either in between each execution of
the Trial block or within a single execution of the
Trial block. In the air force route planning system
in (?), for example, a single execution (or replica-
tion) of the Trial block consists of simulating all al-
ternatives using a common random number seed. The
next time the Trial block is invoked, the Replicator
will provide a different random number seed so that
a different environment will be created in the next
replication.

2.4.2 Evaluator

In its simplest form, the Evaluator serves as the accu-
mulator of any relevant simulation data that is pro-
duced from the Trial Block. If the objective function
within the Trial block produces a set of scores for
each alternative, a straightforward way is to total the
scores produced from the replications for each alter-
natives. Other relevant data such as elapsed CPU
time for simulation of each alternative may also be
accumulated so that the Executive block may later
analyze and predict future time usage.

2.4.3 Analyzer

Based on statistical criteria (e.g., highest mean,
smallest variance), we can consider several alternate
plans and choose the “best” plan for execution. Cri-
teria other than statistical in nature can also be im-
posed, that are based on heuristics or expert knowl-
edge. This block is primarily responsible for analyz-
ing data that was accumulated in the Evaluator. For
most of our applications, the averages of the replica-
tion results serve as the basic “data” points in our
response surface or graph, representing the goodness
of a plan. Using the confidence-interval approach,
there are mainly two ways to compare among k alter-
natives that are discussed in the literature (?). Since
we are trying to select the best out of k alternatives,
we must detect and quantify any significant pairwise
differences in their means. The first “iterative” ap-
proach, although quite accurate in terms of the re-
sults, can include an unnecessarily large number of
replications due to the fact that a constant number
of replications is performed uniformly across the cur-
rent set of alternatives. The second approach, which
we call the “non-iterative” approach (also called the
“Selecting the Best of k Systems” approach) selects
one of the k systems or alternatives as being the best
one while controlling the probability that the selected
system really is the best one. The approach is dis-
cussed in detail in (?).

3 NONDETERMINISTIC ADVERSARIAL
ROUTE PLANNING EXAMPLE

As one of the applications of the SBP, we have chosen
a typical air interdiction scenario, and developed its
Simulation Based Planner (C++) and GUI (Tk/Tcl)
under our Multimodeling Object-Oriented Simula-
tion Environment (MOOSE). Interdiction mission is
a typical air mission where the purpose is to destroy,
delay, or disrupt existing enemy surface forces while
they are far enough from friendly surface forces that
detailed coordination of aerospace and surface activ-
ities is not needed. However, difficulties arise be-
cause methods of penetration can vary according to
the strength and sophistication of the enemy’s detec-
tion, reporting, command and control network, and
how much intelligence is available about its capabili-
ties. Considering these uncertainties and constraints,
selecting the best route is a very difficult task.

Figure 2 defines a scenario with dynamically mov-
ing objects. The mission of the blue (friendly) force
aircraft is to destroy a red (enemy) force munitions
factory. There are three Radars (R1, R2, R3) and
two Surface-to-Air Missile (SAM) sites (S1, S2), each
with different effective detection ranges. Two red
force aircrafts (A1, A2) are located in air defense
zones Zone2 and Zone3 respectively, while one red
force aircraft (A3) is located outside of the air de-
fense zones. At a first glance, the problem of guiding
the blue force around the radar, SAM and air de-
fense zone coverages, and toward the factory seems
like a simple problem in computational geometry. In
fact, this is the manner in which most route plan-
ning is done. A typical rule might be formed “To
locate a path, avoid radar and SAM fields, and avoid
fighting against enemy fighters.” However such a rule
based reasoning becomes more onerous when uncer-
tainty and dynamics are present. For each simulation
trial, the uncertainty of S2 is handled by first sam-
pling a random location for S2 within the boundaries
of the circle drawn around S2. Taking this location
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Figure 2: A Typical Air Interdiction Scenario

as the center point of the SAM site, a boundary cir-
cle is drawn representing the arm range of the SAM
site. The uncertainty of the radar R3 is handled in
a similar manner. The location is first determined
by sampling the point within the uncertainty circle
drawn by the user. Using the sampled point as the
center point of the radar, a boundary circle is drawn
representing the detection range. For the objects in
our air force mission planning domain, we have con-
centrated mainly on location and range uncertainties,
even though other types such as uncertainty of mis-
sion, fire power and existence can also exist.

4 RESULTS

Figure 2 shows two possible routes (Route3, Route4).
The goal of blue force aircraft is to destroy the red
force munitions factory while satisfying three con-
straints: time or fuel level, safety, and destruction of
the target. Given the possible routes, the role of the
simulation-based planner is to choose the best route
minimizing time and fuel consumption, and maximiz-
ing safety and target destruction. Route3 was chosen
to avoid direct attack from A1, but for a short time
period it will be detected by R1. Route3 also takes
the blue aircraft into the track range of S1, but not
into its arm or missile range. Being detected in the
track range of S1 is not very dangerous since only
tracking functions may be performed by S1. Overall,
we expect the success rate of route 3 to depend largely
on the result of the samplings for uncertainty factors:
specifically, the location and guidance capability of
SAM S2 and the mission type of A3. If the powerful
guided system of SAM is sampled close to this route,
or A3 has an intercept capability, then the chance of
success will be very small. Otherwise, the chance of
mission success will be very good. These nondeter-
Figure 3: Inserting Two New Routes

ministic and stochastic characteristics are resolved by
multiple simulations using different samplings of the
uncertainty factors. Route4 was carefully chosen to
minimize the amount of time that a blue force air-
craft falls within the detection ranges of R2 and R3.
The result of the SBP shows almost the same mean
score for Route3 and Route4 (Route3 : 110.36, Route4
: 103.08) with Route3 being slightly better (the goal
is to maximize the mean score for determining the
better plan). Intuitively, Route 4 seems like a better
route since it only involves radar sites whereas Route
3 has a SAM site S2, although its location may be
uncertain. With simulation-based planning, however,
we discover that Route 3 is slightly better. But de-
pending on our objective, we may select Route4 as
the best overall route based on its narrower confi-
dence interval (Route4 : 1.3, Route3 : 6.0). Next, in
order to reduce the total number of replications in the
simulation, we compare two different methods of out-
put analysis. The first one, which we refer to as the
“iterative” method, attempts to quantify significant
pairwise differences among the k means within a given
confidence interval α. We call it “iterative” because
of the fact that the algorithm iterates–performing for
every iteration, a set number of b replications and an-
alyzing data to see if there are any significant differ-
ences. Whenever a route is found who is significantly
worse than all the other routes, it is eliminated. The
iteration continues until only two routes remain and a
difference exists between the two of them. Note that
since we have 4 routes in our experiment, each confi-
dence level for the pairwise differences must be made
at 1− α/6. When two alternatives are actually very
close together, in terms of their goodness, we might
not care if we erroneously choose one system (the one
that may be slightly worse) over another (the one
that is slightly better). Thus, given a “correct selec-
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tion” probability P ∗ and the “indifference” amount
d∗, the “non-iterative” method calculates how many
more replications are necessary in order to make a
selection–a selection where with the probability at
least P ∗, the expected score of the selected alterna-
tive will be no smaller than by a margin of d∗. In the
following experiment, we have chosen P ∗ = 0.95 and
d∗ = 13. A smaller d∗ will produce more accurate
results but with many more replications.

In addition to the two routes that appear in Fig-
ure 2, we add two more routes to test how much the
number of replications reduce and also if the identical
selection is made. The routes are shown in Figure 3
and are renumbered. Route 2 and Route 0 represent
two alternatives that are very close together so that
it will likely require many replications to quantify
a significant difference between them. As expected,
Routes 0 and 2 do exhibit similar responses as shown
in the following plots. Figures 4 and 5 are results
with just 3 routes: 0, 1 and 2. Figure 4 shows the
mean score change of the routes using the simple it-
erative method. After the first 20 replications, the
planner decides that route 1 can be eliminated since
its scores are in general significantly lower than those
for the other two routes. It then performs 120 repli-
cations for both routes 0 and 2 before it decides that
there is a significant pairwise difference in their means
to make a selection. Using this method, we perform in
total 60 replications. With the non-iterative method,
although the method decides that 10 more (130) repli-
cations are needed to make a decision on route 2, a
smaller number of replications is made in terms of the
total number–130 + 54 + 20 = 204. In this particu-
lar scenario, both the iterative and the non-iterative
methods select route 0 as the best alternative.

Now, we add a 4th route, Route 3 which is the
shortest but perhaps the most dangerous route. Fig-
ures 6 and 7 show the mean score changes for these 4
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Figure 6: Mean Score Changes of 4 Routes: Iterative
Method

routes. Route 1 and 3 are eliminated after 20 replica-
tions since the average scores are significantly lower
than routes 0 and 2. With another route added, the
mean score change plots are somewhat different than
in the case where there were only 3 routes. And
this difference pushes the iterative method to con-
tinue replicating 60 more times for each of the two
routes before it makes a decision. Consequently, it
chooses route 0 as the better route–a different selec-
tion than when only 120 replications were performed.
In the non-iterative method, it makes only 69 repli-
cations for route 0 and 21 replications for route 2 be-
fore it makes a selection. The method chooses route
2 to be the best route in this particular case. As dis-
cussed in (?), this can occur because the non-iterative
method only ensures that it makes a correct selection
within a given probability P ∗. Overall, the iterative
method performed 400 replications whereas the non-
iterative method only did 130 replications.
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5 CONCLUSIONS

We have presented the method of simulation-based
planning as a new approach to route planning un-
der uncertain and complex environments. In par-
ticular, for the area of multi-agent planning, SBP
can break down the complexity of reasoning by dis-
tributing the reasoning tasks to individual objects us-
ing object-oriented multimodel simulation. SBP goes
about its business in a way that is considerably differ-
ent from the cognitive model method that attempts to
model each individual agent in terms of a knowledge-
base and reasoning engine. The behaviors of humans
in tightly constrained environments or in emergency
conditions has successfully been modeled without em-
ploying cognitive modeling. To be flexible and realis-
tic, we acknowledge that the hypothesis of the ineffec-
tive cognitive model in a crowd/multi-agent scenario
may not always hold true. We are unsure of how ef-
fective SBP would be in scenarios which are not as
tightly controlled and orchestrated as command and
control in the military. For these reasons, it is pru-
dent to view SBP as one method of handling deci-
sion making for multiple agents. Possibly, a hybrid
SBP/cognitive modeling approach may yield the best
decision-making results.

6 FUTURE WORK

We must address the issue of the validation of simu-
lation models–making sure that the models we build
appropriately represent the actual object’s behavior.
A common approach is using sensitivity analysis or
an inspection by an expert. More detailed, sophisti-
cated models should be built to obtain better results
in terms of answer quality and also test the degree
of CPU time consumption in respect to the model’s
complexity. An immediate future work would be to
extend the implementation of the Air Force models
to include all the levels of abstraction. Larger num-
bers of objects should also be simulated to further
study the scalability and the rate change of time con-
sumption. Extending the multimodeling paradigm to
enable model execution at any level of abstraction is
also currently underway and SBP can greatly benefit
from the success of this work since it will allow re-
duction of model execution time. Possibilities exist
for future work in finding other ways of meeting real-
time constraints: a hybrid approach of using quanti-
tative and qualitative (fuzzy) simulation, developing
additional heuristics to aid in optimizing the simula-
tion process are some ideas that we plan to research
in the future. Finally, to further extend the study
of the SBP methodology, additional experiments in
other application areas should be performed. Also,
building and comparing two planning systems, one
built using the SBP approach and one built using an-
other planning approach, should prove to be useful in
further improving the SBP approach.
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