
SIMULATION OF MULTIPLE TIME-PRESSURED AGENTS

Scott D. Anderson

Department of Computer Science
Spelman College

Atlanta, GA 30314-4399, U.S.A.
ABSTRACT

The paper describes a simulation substrate that al-
lows thinking agents to interact with a world. The
world is simulated by standard discrete event simu-
lation, but the timing of an agent’s behavior is de-
termined by the amount of computation it performs.
Therefore, if an agent thinks a lot about what to do
given a situation in the world, the duration of its
thinking results in a delay to its subsequent actions.
Thus, the thinking of the agent is time pressured.
The computation time of the agent is automatically
assessed by the substrate in a way that is indepen-
dent of the computer running the simulation. This is
done by implementing the thinking of the agents in a
variant of Common Lisp called Timed Common Lisp,
in which each function advances a clock by an appro-
priate, user-specifiable amount of time. This renders
agent thinking and behaviors deterministic, making
results comparable and replicatable across platforms.
The simulation substrate also supports the interac-
tion of continuous activities, in addition to executing
discrete, point-like events. This substrate has been
used to implement an Artificial Intelligence Planning
system that simulates multiple agents fighting forest
fires in Yellowstone National Park.

1 INTRODUCTION

The simulation substrate described in this paper was
developed to support what is called “Real-Time Plan-
ning” within the field of Artificial Intelligence (AI).
“Planning” is approximately what it sounds like:
given a set of operators (ways the agent can change
the state of the world) and a goal (a desired state of
the world), the agent derives a partial order of the
operators that will accomplish its goal (Allen et al.
1990; Russell and Norvig 1995). The term “real-
time” can be confusing, since it doesn’t mean hard
real-time as the term is used by, say, signal processing
engineers. Instead, the research emphasis is on trade-
offs between the quality of the plan and the amount
of time taken to compute it, or the effort to derive
a plan in time for a hard or soft deadline (Stankovic
1988; Bratman et al. 1988). To avoid confusion, this
paper will typically describe the agents as being “time
pressured.”

To be concrete, consider the Phoenix system (Co-
hen et al. 1989; Greenberg and Westbrook 1990),
which simulates forest fires burning in Yellowstone
National Park and agents that fight those fires. Once
the fire is started, the agents notice it, plan how to put
it out given current environmental conditions, and
execute that plan, while also monitoring the weather
and the progress on the fire, and re-planning as nec-
essary. This is a time-pressured planning problem
because the fire continues to burn while the agents
are thinking and acting. An agent that thinks too
slowly will find that fires often get big and out of
control, so that the agents will be unable to achieve
the goal. In a typical Phoenix simulation, there will
be a watch-tower, four bulldozers, one fuel truck, and
a helicopter—each of which is an agent—and finally
a “fireboss” agent that oversees and coordinates the
activities of all the other agents.

The key issue with a simulation like Phoenix is
that the simulation of the fire must continue while
the agents are thinking—but by how much? That is,
there must be a correspondence between some mea-
sure of how much the agent thinks and how much
time passes in the simulation (such as how much the
fire gets to burn). By varying this correspondence,
we can put more or less time pressure on the agents,
because they will think slower or faster relative to the
passage of time in the environment.

This paper concerns the infrastructure that is nec-
essary for simulating time-pressured agents like the
ones in the Phoenix system. That substrate com-
prises two components: the Multiple Event Stream
Simulator (Mess), which is the simulation system,



398 Anderson
Simulation
Engine

list ES

function ES

function ES

Z
Z
Z

ZZ}

�

�
�
�

��=

�

�

�
mess

high-wind scenario

weather simulation
function

fire simulation
function

Figure 1: The Architecture of the Mess Simulation Substrate
and Timed Common Lisp (TCL ), which is the im-
plementation language for the agents and defines the
correspondence between computation and simulation
time.

The rest of the paper is organized as follows. Sec-
tion 2 describes the general design of the Mess sub-
strate and how it coordinates and integrates the mul-
tiple agents. Section 3 describes how the activities
of agents and environmental processes can interact.
Section 4 explains in detail the Timed Common Lisp
component, including different ways of modeling com-
putation time. Section 5 describes the Phoenix

testbed, which uses Mess and TCL , and the archi-
tecture of the agents, including how they sense, react,
plan and communicate.

2 SUBSTRATE DESIGN

At its heart, Mess is a straightforward discrete-
event simulator. Events are defined as objects in
an object-oriented programming language (Common
Lisp (Steele Jr. 1990) and Clos (Keene 1989)), where
the user defines methods that determine when the
event occurs and how it modifies the representation of
the world. The “how” code is the realization method
of the event, and executing that code is called realiz-
ing the event. The hierarchy of event classes can be
used to group kinds of events, such as all the move-
ment events or all the fire events, so that they can be
controlled and modified as a group.

Mess is a process-oriented simulator (Bratley et al.
1983, p. 13), which means that each event is produced
by a process, and that process determines subsequent
events. For example, things like fire, weather, and
particularly an agent’s thinking might each be a sep-
arate process in the simulation. The representations
of processes are called event streams. Event streams
are also defined as objects, so that users can add other
kinds of event streams if they need a particular way
of producing events.

Figure 1 shows the structure of Mess . The sim-
ulator has a central “engine,” which interleaves the
streams of events that represent different real-world
processes. These events are drawn from and gen-
erated by event streams of various kinds. A very
general kind of event stream (ES) is a function ES,
where a user-supplied function computes the next
event upon demand. Another kind of ES is a list
ES, which produces a pre-defined sequence of events.
The Mess engine controls instances of these kinds of
event streams, one instance for each world process.
Examples of real-world processes from the Phoenix

domain are shown in the right-hand part of the fig-
ure. Figure 2 presents pseudo-code for the algorithm
to advance the simulation. Each time the simulation
is advanced, exactly one event is realized.

The event to be realized is whichever is nearest
in the future. The simulation literature has several
terms for the data structure holding these events; we
call it the “pending event list” or PEL. In Mess , there
can be two kinds of object in the PEL: an event or
an event stream. In practice, in the simulators imple-
mented using Mess , most of the objects in the PEL
are event streams.

If two events in the PEL are scheduled for the same
time, ties are broken in a deterministic way. First, the
“priority” of the two events is compared, where the
priority is an arbitrary integer specifiable by the user
just for this purpose; it defaults to zero. The event
with the higher priority is realized first. If there is
a tie in priority, the PEL code is structured so that
the first event scheduled will execute first; that is, the
PEL is a FIFO queue. Currently, the PEL is imple-
mented as an implicit binary heap, but future releases



Simulation of Multiple Time-Pressured Agents 399
Algorithm to Advance the simulation:
increment event counter
advance time by head of PEL
If head of PEL is an event stream

Set ES to head of PEL
Peek ES
Set E to event in ES

else
Set ES to nil and
Set E to head of PEL

Check for Interaction
Realize E
Illustrate E (optional)
Unless ES = Nil

Pop ES
Do Every Event Stuff
Check Wakeup Time Functions
Write out E (optional)
Change Activity

Figure 2: Pseudo-code for the Mess Engine

may include better data structures. See Rönngren
and Ayani (1997) for a recent comparison of data
structures for event queues.

The pseudo-code shows the major features of how
Mess works. (A more detailed technical description
is available in my dissertation (1995).) The primary
objective of the engine is to realize events, which oc-
curs in the center of the algorithm. If the first thing
in the PEL is an ES, the engine must make the ES
produce an event to realize, which is done by the peek
operation. (Later, the event is removed from the ES
by the pop operation.) After the event is realized, the
event is illustrated. The purpose of realization is to
change the state of the simulation, while the purpose
of illustration is to modify the graphical user interface
(GUI), if any. This separation of realization from il-
lustration aids in running batch simulations, because
all the GUI code can be ignored. The separation also
helps keep simulations portable, since GUI code is a
common source of portability troubles.

The highlighted operations—peek , interaction ,
realize , illustrate , and pop—are all Clos methods
that can be specialized by the user, so that the sub-
strate can be extended to other kinds of simulations.
Any object that obeys this protocol can be used by
the engine, so different kinds of event streams can be
defined by implementing the protocol.

Several minor steps in the pseudo-code deserve
mention. The “every event” step, near the end of the
algorithm, executes each element of a list supplied by
the user at the start of the simulation. By adding
code to this list, an experimenter can easily arrange
for something to be executed continuously during the
simulation. For example, data-collection code is often
executed this way. The “wakeup time” step awakens
event streams that have been put to sleep for some
reason. For example, the fire-simulation ES is asleep
when no fire is burning. The optional “write out”
step saves every event to a file, so that a simulation
can be analyzed or replayed. Finally, the protocol
includes steps to check for interactions among events
and activities; these are discussed in the next section.

3 ACTIVITIES AND INTERACTIONS

Events are “point-like,” in that they happen at a mo-
ment in time. However, many kinds of simulations
involve things that happen over an interval of time;
these are called activities in Mess. For example, a
train traveling from one station to another would be
represented as an activity. Activities are represented
as a pair of point-like events, representing the begin-
ning and ending of the activity.

Mess is designed not only to support activities, but
also interactions between activities and other events,
including other activities. Suppose a bulldozer (or
other vehicle) is traveling from A to B, while another
is traveling on an intersecting course from C to D. In
some simple discrete-event simulators, this collision
would never be noticed because there is no event at
that time, but Mess keeps track of all current activ-
ities and checks for interactions.

The interaction can affect either the activity or the
intervening event, or both. A rain activity might
cancel a scheduled fire-ignition event (which is why
the Mess engine checks for interactions before re-
alizing the event). An event representing the firing
of a surface-to-air missile might terminate a fighter
plane’s flight activity and schedule a plane-crash
event. The movement activities of two vehicles might
result in a collision, with both activities affected by
the interaction. An important kind of activity is
agent deliberation, which might, for example, be in-
terrupted by a sensory event.

Activities are essentially a kind of event that hap-
pens twice. Whenever an activity starts, it is placed
on a list by the Mess engine, and it is removed when
the activity ends. Each event that happens while the
activity is on the list has the opportunity to interact
with the activity. This opportunity is implemented
via the interaction function. The interaction func-
tion is a two-argument Clos generic function, ex-
tended by the user, since the semantics of the interac-



400 Anderson
tion between the activity and the event is necessarily
domain-dependent. While Mess cannot supply the
semantics of the interaction, it automates the book-
keeping required for interacting activities of agents.

4 THE DURATION OF DELIBERATION

The thinking time of an agent seems straightforward
to define: just measure the CPU time of the code.
But on what processor? Should the processor matter?
What code counts in the computation? How is that
code’s duration modeled?

An earlier version of the Phoenix system inte-
grated the thinking of agents with the discrete-event
simulation of the environment by advancing the sim-
ulation clock depending on the amount of CPU time
used by the agent. For example, the default setting
in Phoenix was that one CPU-second corresponds to
five minutes of simulation time, so if an agent thinks
for 3 CPU-seconds, the fire could burn (and bulldoz-
ers move and so forth) for 15 minutes.

This CPU-time approach is standard among AI
simulators for time-pressured planning (Anderson
1995). Unfortunately, there are problems with using
CPU time, all of which we have suffered while using
the original Phoenix:

Variance: Small, random variations in the measure-
ment of CPU time result in random variation
in the behavior of the simulation. This un-
controlled randomness, sometimes called “non-
determinism,” can make it difficult to replicate
particular simulation states, whether for debug-
ging, demonstration, or experimentation.

Platform-dependence: The simulation behaves
differently from one computer to another. This
exacerbates the variance problem and adds un-
wanted noise to data from large experiments in
which trials are run on many different machines.

Interference: Inserting code to record or print data,
say for debugging, demonstrations, or analysis,
affects the CPU time of the code, which in turn
affects the behavior of the simulation. This is
something like the Heisenberg uncertainty prin-
ciple in physics: the act of observing the code
affects the code. While the Heisenberg princi-
ple may be true in the real world, it is hardly
convenient for experimental scientists.

Essentially, all these troubles are “noise” that comes
from using CPU time. Consequently, we looked for
another way of measuring how much computation an
agent has done, one that gives us the ability to repli-
cate simulation states.
4.1 Duration Modeling

The basic idea for modeling a computation’s dura-
tion is to advance the clock by some amount for each
“primitive” that is executed. If these increments de-
pend only on the code that is executed and not the
computer system and compiler, the duration of the
code will be invariant. What remains is to decide
what a primitive is and how the increments are de-
termined.

4.1.1 Low-level Models

A “low-level” primitive is a primitive of the Com-
mon Lisp language, such as first, +, or find. Us-
ing low-level models retains much of the flavor of
the CPU-time approach, because the duration is tied
quite tightly to exactly what code executes. Timed
Common Lisp, or TCL, shadows every primitive of
Common Lisp, so that the functions have the same
semantics but also advance the clock by a certain
amount. Programming in TCL is exactly as in Com-
mon Lisp—the two are essentially the same from the
programmer’s viewpoint. The difference is that TCL

primitives advance the clock.

Of course, the clock should not be advanced by
the same amount for each TCL primitive. Indeed, it
should not even be advanced in the same way. For
example, first should advance the clock by a small
constant; most primitives fall into this category, al-
though the constants are all different. Functions like
+, on the other hand, should advance the clock de-
pending on the number of arguments they get. The
duration of a function like member, which searches a
list for some element, should depend on the length of
the list. For a function like make-array, the dura-
tion should depend on the number of elements in the
array.

TCL defines about two dozen classes of such du-
ration models. A duration model is some measure
of the amount of work a primitive does. This mea-
sure is then multiplied by a coefficient to yield the
actual duration of the primitive with that duration
model. Duration models are entirely analogous to
the “big-O” notation of complexity theory. A con-
stant time function like first has a duration model
that is O(1), while a function like * has a duration
model that is O(n) where n is the arity (number of
arguments) of the function. The duration model of
sort is O(n logn), where n is the number of elements
to be sorted.

By using these low-level models, TCL can report
numbers that seem like CPU time, but are noise-free
and can be replicated on any Common Lisp platform,



Simulation of Multiple Time-Pressured Agents 401
since TCL runs on any Common Lisp.

4.1.2 High-level Models

The fundamental operations of an agent’s mind need
not be reduced to the primitives of Common Lisp—
we can define duration models at a higher level. For
example, a chess-playing agent might define “evalu-
ating a board position” or “generating a move” as a
fundamental “cognitive primitive.” The duration of
some chess deliberation is then O(f(n,m)), where m
and n are the number of these higher level primitives;
for example, m could be the number of board posi-
tions evaluated and n could be the number of moves
generated, and f is some arbitrary function of those
numbers, determining the duration of a move.

Of course, as with the primitives of Common Lisp,
we don’t want to confine ourselves to constant-time
models. TCL allows duration models to be defined as
arbitrary functions of the primitive’s arguments and
the computational state of the system. The model
can even be pseudo-random, if that’s desirable.

An agent that is thinking about its own thinking
time (for example, it might decide “I’d better stop
planning and go fight the fire” or “I’ll think about
it for ten minutes and then stop”) needs a simple,
declarative representation of how long its thinking
will take. High-level cognitive primitives can help
here, especially since the duration models are stored
in a TCL database that is accessible to the agent.
If the duration model is not a simple constant, the
agent can still try to predict how long the computa-
tion will take by guessing at the aspects of the sim-
ulation state used by the duration model. For exam-
ple, it might be reasonable to guess at the number of
board positions that will be evaluated during a move.
It certainly seems easier to guess at that number than
to guess at the amount of CPU time that the move
would take. Of course, a historical approach can also
be used, where the durations that occurred on pre-
vious runs are used for prediction; these historical
durations can also be stored in the TCL database.

Using a high-level model also allows for a new class
of simulation experiments on agents in which the du-
rations of different cognitive primitives are indepen-
dently controlled. For example, if “move generation”
and “board evaluation” are two cognitive primitives
in a chess agent, we can modify the duration model
for one primitive independently of the other to see
the effect on the agent’s behavior and performance.
That is, as it becomes relatively slower to think about
A than B, what does this do to the quality of the
agent’s behavior? In principle, one can also alter the
duration model for low-level Lisp functions indepen-
dently, but there are no interesting research questions
posed by that manipulation. By moving to high-level
primitives, one can ask sensible questions about du-
ration/quality tradeoffs.

4.2 Non-interfering Code

So far, we’ve described how the clock advances as
each primitive executes. What if we don’t want the
clock to advance? Suppose, for example, we put in a
print statement either to debug or demonstrate the
program’s behavior. We don’t want that insertion to
affect the behavior of the simulation. With a CPU-
time approach, it can be hard to turn off the clock,
but with TCL it’s trivial. Any code that shouldn’t
advance the clock is wrapped in a free form. For ex-
ample, the following reports what the agent is think-
ing about without affecting its thoughts or their du-
ration:

(defun think ()

...

(free (format t "Thinking about ~s~%"

current-thought))

...)

This ability is particularly important in extensive
simulations, where we may want to log the agent’s
thoughts and actions, so that the simulation can later
be analyzed, either for debugging or hypothesis test-
ing. We certainly want the behavior of agents to be
independent of the experiments performed on them.

4.3 Overhead

What are the disadvantages of using TCL? There are
no notational disadvantages, since it looks just like
Common Lisp and requires no commitment to a par-
ticular agent- or cognitive-architecture. The advanc-
ing of the clock, however, does entail an inevitable
overhead. Quite simply, the code is doing more work.
Therefore, there will be some slowdown of the user’s
code.

It’s difficult to make any blanket statements about
how much slowdown there will be without knowing
the kind of code and duration models. The speed will
depend partly on the level of the primitives that the
code uses. For example, if the code is “low-level” code
that does a lot of operations like car and cdr, each
of those primitives now has an associated increment
of the clock. For such simple functions, incrementing
the clock is a significant slowdown. On the other
hand, a function like sort is barely slowed down by
measuring the size of its input (n) and incrementing
the clock by cn logn, where c is the duration model



402 Anderson
coefficient. If the user defines cognitive primitives at
a higher level, the overhead may be even less. In
addition, unfortunately, the speed also depends on
the quality of the Lisp compiler.

Timings have been done using the worst case
of low-level duration models. One set of tim-
ings were done using Gabriel’s Lisp benchmark pro-
grams (Gabriel 1985) and these indicate that using
TCL appears to increase execution time by between
20 and 120 percent. (The results varied widely over
the roughly two dozen programs in Gabriel’s bench-
mark suite.) On average, the overhead is about 50
percent. Informal experience with simulations in the
Phoenix system suggest the overhead for TCL seems
to be on the order of 20 percent.

5 PHOENIX

In the late 1980s, the Experimental Knowledge Sys-
tems Lab (http://eksl-www.cs.umass.edu/), at
the University of Massachusetts at Amherst, em-
barked on a research program into Real-Time Artifi-
cial Intelligence. The goals of the project were to chal-
lenge AI agents with difficult problems to solve un-
der time pressure. The domain that was chosen was
fighting forest fires, since it involved changing condi-
tions over long and short time scales, communication
and cooperation among agents, and tradeoffs between
planning time and plan quality (minimizing measures
such as forest burned and agents killed). The project
was called Phoenix, a term that comprises the simu-
lator system and simulated environment (Yellowstone
National Park) as well as the agents.

5.1 Agents

Each of the Phoenix agents has the same agent archi-
tecture (although it is possible to substitute a differ-
ent agent architecture). This architecture comprises
two components: the cognitive component and the
reactive component.

The reactive component has a number of simple
situation-action rules that are frequently executed so
that the agent can react to environmental conditions.
For example, while a bulldozer is traveling, it will
have reactions to maintain its speed and direction, to
check for fire, and to come to a quick halt if something
dangerous like fire or a lake appears in its path.

The cognitive component does planning and other
kinds of thinking activities for the agent. It can con-
sult a map of the park, a database of facts about fires
(such as how fast they burn under various conditions)
and facts about agents (such as how fast bulldozers
can move, or how much fuel they use), and a library
of skeletal plans, which can be retrieved and adapted
to the current situation. The cognitive component
maintains an agenda of actions it intends to do (or
has done—this history is useful when plans need to
be repaired). In the standard agent architecture, the
cognitive component repeatedly selects an executable
action from the agenda (an action is executable when
all its preconditions have been executed) and, if pos-
sible, executes the action. If the action can’t be exe-
cuted, the plan library is searched for some plan that
will accomplish the action, the plan is instantiated,
and placed on the agenda to be executed later. This
method is of interleaving planning (by instantiation
from a library) and execution of actions is called “lazy
skeletal refinement.”

Compared to the cognitive component, the reactive
component is limited: the reactions cannot consult
the map, knowledge base, or agenda. This limita-
tion is because the reactions must be quick and the
limitation also helps to ensure that they are. If a
reaction rule notices a problem that it doesn’t have
an immediate solution for, it places the problem on
the cognitive component’s agenda. For example, the
reactive component can stop the agent from moving
into a lake, but it can’t plan a path around the lake,
so it places that planning problem on the agenda.

5.2 Communication

Communication is integral to the Phoenix system,
because the agents must work together to put out
the fire. For example, the fireboss instructs bull-
dozers where to dig, and bulldozers request refuel-
ing when necessary. Currently, the communication
is done in a very simple way, where the sender exe-
cutes a function giving the name of the receiver and
the text of the message, and the simulation system
inserts the message into a queue that is read by the
receiver’s cognitive component as part of its “main
loop” (the loop that executes actions on the agenda).
Thus, the communication is much like email ought to
be: reliable, noiseless and essentially instantaneous,
but there is no guarantee when the receiver will read
the message. It would be straightforward to modify
the simulator to delay or mislay messages, but adding
noise to a message would require a very different mes-
sage processing ability of all the agents.

5.3 Sensing

Sensing is done by the reactive component, since most
reactions are triggered by sensory events, such as see-
ing fire. The reactive component records the sensa-
tion on the agent’s personal map of the environment,



Simulation of Multiple Time-Pressured Agents 403
which is consulted by the cognitive component when
it needs to know what is going on. Currently, sensing
is done by simply accessing relevant parts of the true,
“real world” map of the park. Thus, the agent always
sees accurately, within its limited field of view, which
is taken to be a circle of fixed radius around the agent.
The sole exception to the accuracy of the sensing is
by the watch-tower agent, which regularly scans its
very large field of view, but probabilistically sees only
a fraction of the cells. Therefore, it may miss a small
fire on the first or second scan, but eventually the fire
will be seen and reported. This adds a small amount
of realism to the simulation, at small cost. As with
communication, it would be possible to add sensor
error, at the cost of improving the agents’ sensing
abilities.

6 STATUS

The Mess and TCL components currently run in
any Common Lisp platform. These components make
up a simulation substrate, in the sense that they are
domain-independent, but domain simulations can be
built on top of them. All of Mess and TCL are imple-
mented in Common Lisp (Steele Jr. 1990). Events,
Event Streams, and other objects are defined us-
ing the Common Lisp Object System (Clos) (Keene
1989). These languages were chosen because Com-
mon Lisp is one of the primary languages used in
Artificial Intelligence research.

The Phoenix simulation system has been imple-
mented in Common Lisp and builds on the Mess

and TCL foundation. A graphical user interface is
available as well, implemented in Clim.

All of the above can be retrieved by anonymous
FTP from ftp.cs.umass.edu/pub/eksl.

Currently, Mess is implemented for sequential ex-
ecution on uniprocessor computers, and, therefore, so
is Phoenix. (The original Phoenix was implemented
using multiple threads on a uniprocessor, resulting in
events happening out of order by up to five simula-
tion minutes, since that was the “quantum” for pro-
cess swapping.) Mess does not currently implement
any mechanisms for parallel simulation.

7 EXPERIMENTAL FRAMES

Simulators like Phoenix allow for several kinds of
experiments on cognitive agents.

First, the elimination of CPU noise from the simu-
lator make it easier to run large experiments in which
the simulation runs might be distributed over a num-
ber of platforms, with varying CPUs, memory, num-
ber of users, and so forth. If the simulator relied on
CPU time, these other factors would have to be dealt
with. (In a pilot experiment with the first version
of Phoenix, statistical analysis of the data showed
that the machine a trial was run on was a significant
factor.) While these factors might be controlled or
eliminated in other ways, it makes experiments more
difficult to run and analyze.

Secondly, the elimination of CPU noise allows ex-
periments in which particular world states are repli-
cated many times. One use for such experiments
would be to test the importance or effectiveness of an
agent’s decisions in a given situation: replicating the
situation makes it possible to try different decisions
a significant number of times. A Phoenix experi-
menter might, for example, be interested in whether
the “indirect attack” fire-fighting method is superior
to the “direct attack” method, so the experimenter
can run pairs of trials in which the simulation is iden-
tical up to the moment when the agent chooses one
of these two plans. (For this reason, there is a mecha-
nism in Phoenix to force the selection of a particular
plan whenever it is a candidate.) Such experiments
would have the same advantage over the CPU-time
simulator that the matched-pairs t-test has over a t-
test between groups.

Finally, the TCL component allows fine-grained
control of the deliberation time of the agent. By using
high-level duration models, the experimenter can se-
lectively modify the thinking time of various aspects
of the agent. For example, what is the effect of se-
lectively slowing down an agent’s ability to predict
the growth of the fire? Can it compensate, say by
allowing more slack time in its plans? Can it switch
to different kinds of plans, ones that don’t require as
much prediction? The Phoenix agents are not cur-
rently capable of such reasoning, but may be able to
in the future.) This kind of experiment could help a
researcher concentrate on aspects of the agent’s cog-
nition that will best improve its performance.

8 CONCLUSION

The goals of the Phoenix project were to investi-
gate issues in Real-Time Artificial Intelligence; that
is, agents acting intelligently under time pressure.
Consequently, it was important to define a correspon-
dence between the amount of thinking that an agent
does and the passage of time in the simulation. The
initial implementation of Phoenix used CPU time
for that correspondence, but that suffered from prob-
lems of platform-dependence (the same simulation
would run differently on different machines), variabil-



404 Anderson
ity (simulations could not even be reliably replicated
on a single machine) and interference (adding code to
instrument the simulation would affect its behavior).
These problems are not only practical impediments
to debugging, but they prohibit, for example, exper-
iments in which simulation states are replicated.

To provide noise-free integration of thinking agents,
the Mess and TCL components were implemented.
Mess integrates multiple thinking agents and envi-
ronmental processes (such as fire and weather) into
a extensible, object-oriented discrete-event simula-
tor and supports interactions among the activities of
the agents and world processes. TCL is targeted to
thinking agents and defines a platform-independent
mapping between amount of computation and sim-
ulation time. Furthermore, this mapping is under
user control in many ways, so that the duration of an
agent’s thinking (or aspects of that deliberation) can
itself become an experimental variable.

The time pressure in Phoenix comes not from arti-
ficial deadlines, but a necessary response to changing
conditions in a dynamic world. Consequently, sens-
ing, reacting, planning and communication are all es-
sential to a Phoenix agent. An agent must notice
and react to changes in the world, plan ways to deal
as team member with large problems for which in-
dividual reactions are insufficient, and communicate
those plans to other agents. Simulation testbeds are
the only effective way to implement, debug and test
such time-pressured agents, since they must be empir-
ically run and tested under controlled and repeatable
conditions.

ACKNOWLEDGMENTS

This work was supported by ARPA/Rome Labora-
tory under contract F30602-93-C-0100 and by NTT
Data Communications Systems Corporation. The
United States Government is authorized to repro-
duce and distribute reprints for governmental pur-
poses notwithstanding any copyright notice contained
herein.

REFERENCES

Allen, J., J. Hendler, and A. Tate (Eds.) 1990. Read-
ings in planning. Morgan Kaufmann.

Anderson, S. D. 1995. A simulation substrate for real-
time planning. Ph.D. thesis, University of Mas-
sachusetts at Amherst. Also available as Techni-
cal Report 95–80, Computer Science Department,
University of Massachusetts at Amherst.
Bratley, P., B. L. Fox, and L. E. Schrage. 1983. A
guide to simulation. Springer-Verlag.

Bratman, M., J. Israel, and M. Pollack. 1988. Plans
and resource-bounded practical reasoning. Com-
putational Intelligence 4: 349–355.

Cohen, P. R., M. L. Greenberg, D. M. Hart, and A. E.
Howe. 1989. Trial by fire: Understanding the de-
sign requirements for agents in complex environ-
ments. AI Magazine 10 (3): 32–48.

Gabriel, R. P. 1985. Performance and evaluation of
lisp systems. MIT Press.

Greenberg, M. L., and D. L. Westbrook. 1990. The
Phoenix testbed. Technical Report COINS TR
90–19, Computer and Information Science, Uni-
versity of Massachusetts at Amherst.

Keene, S. E. 1989. Object-oriented programming in
Common Lisp: A programmer’s guide to CLOS.
Addison-Wesley.

Rönngren, R., and R. Ayani. 1997. A comparative
study of parallel and sequential priority queue
algorithms. ACM Transactions on Modeling and
Computer Simulation 7 (2): 157–209.

Russell, S., and P. Norvig. 1995. Artificial intelli-
gence: A modern approach. Prentice Hall Series
in Artificial Intelligence. Prentice Hall. ISBN 0-
13-103805-2.

Stankovic, J. A. 1988. Misconceptions about real-time
computing: A serious problem for next-generation
systems. Computer 21 (10): 10–19.

Steele Jr., G. L. 1990. Common Lisp: The language
(second ed.). Digital Press.

AUTHOR BIOGRAPHY

SCOTT D. ANDERSON is an assistant profes-
sor in the Computer Science Department at Spelman
College. He received a B.S. in Computer Science and
a B.A. in English Language and Literature from Yale
University in 1983. He earned a M.S. and a Ph.D.
from the University of Massachusetts at Amherst.
His research interests is in the empirical evaluation
of planners in complex, time-pressured environments.
He is a member of the American Association for Ar-
tificial Intelligence (AAAI) and the Association for
Computing Machinery (ACM).


	SIMULATION OF MULTIPLE TIME-PRESSURED AGENTS
	ABSTRACT
	1 INTRODUCTION
	2 SUBSTRATE DESIGN
	3 ACTIVITIES AND INTERACTIONS
	4 THE DURATION OF DELIBERATION
	4.1 Duration Modeling
	4.2 Non-interfering Code
	4.3 Overhead

	5 PHOENIX
	5.1 Agents
	5.2 Communication
	5.3 Sensing

	6 STATUS
	7 EXPERIMENTAL FRAMES
	8 CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHY

	page1: 397
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


