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ABSTRACT

Distributed discrete event simulation techniques aim
at an acceleration of the execution of a self-contained
simulation model by the spatial decomposition of that
model and the concurrent simulation of the submod-
els by so called logical processes (LPs), each execut-
ing on a dedicated node of a (closed) multiprocessor
system. The dedication of parallel simulators to spe-
cific platforms and their adaptation to the respective
hardware and software intrinsics has widely preven-
tend an industrial and/or commercial success of such
high performance simulation methods.

In this work we propose the building of logical
process simulators that use the World Wide Web as
an execution platform. We have developed and im-
plemented a Java-based simulation engine along the
conservative Chandy/Misra/Bryant (CMB) synchro-
nization protocol, allowing for a platform indepen-
dent, scalable, and performance efficient distributed
simulation model execution. Our simulation engine
is open and general purpose in the sense that it can
be reused in various simulation domains by simply
“plugging in” different simulation models, and simu-
lation codes that, once written, can be executed any-
where (on the Internet). The potential performance
improvement of Web-based distributed simulation is
investigated in a sensitivity analysis conducted on a
hypothetical simulation model executed in a Java-
enabled workstation LAN. Even for very small sim-
ulation models, a speedup of about 3.5 could be at-
tained on a 4 processor (heterogeneous) host LAN.

1 INTRODUCTION

Over its more than 15 years of existence, the field of
parallel and distributed discrete event simulation has
developed a broad body of theory and methods af-
ter the pioneering works (Chandy, Misra 1979) and
(Jefferson 1985) (see Ferscha 1996 for a recent sur-
vey). Nevertheless, it has suffered from simulationists
and industrials being reserved on the potential gains
of these methods, considering the complexity of de-
velopment and implementation efforts. This failure
in generating general acceptance in simulation prac-
tice is one of the main reasons for a recent existen-
tial discussion on the chances of survival of parallel
and distributed simulation as reflected in a collection
of papers following Fujimoto’s position statement in
(Fujimoto 1993).

Only few attempts to escape from this pessimistic
image have appeared in the recent past, among which
the ones integrating parallel and distributed simula-
tion techniques into commercial/industrial simulators
in a transparent way (Nicol, Heidelberger 1995) are
the most succesful. We also believe that the trans-
parent use of high performance simulation techniques
is the key to success in simulation practice, but see
an even better chance for a breakthrough in the use
of the World Wide Web and mobile code as the en-
abling technology for distributed simulation. In this
sense, this paper is in the spirit of Nicol and Hei-
delberger: “As the mountain is not coming to the
Prophet, evidently the Prophet must go to the moun-
tain.” (Nicol, Heidelberger 1995), but attacks trans-
parency in a more consequent way.

In this work we first point out relevant issues of
“transparency” in heterogeneous environments, and
isolate Web technologies that – at the time being –
already provide key features for a transparent use of
the WWW as a distributed simulation platform. We
collect arguments as to why Java embodies key suc-
cess factors towards this goal. In Section 3 we ex-
plain the architecture of a Java enabled conservative
distributed simulation engine, its universal portabil-
ity, and its generality with respect to the execution of
different simulation models. Section 4 is devoted to a
case study. A Java thread implementing a conserva-
tive LP simulation engine is developed, and RMI is in-
volved for LP synchronization. Experiments demon-
strate that considerable simulation execution acceler-
ation can be achieved.
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2 TRANSPARENT DISTRIBUTED
SIMULATION ON THE WWW

The homogeneous and centralized parallel processing
systems which have been the subject of investiga-
tion in the context of parallel and distributed simu-
lation are nowadays widely being replaced by hetero-
geneous, distributed systems. Instead of an isolated
CPU pool in classical parallel processing systems, the
“network” itself appears as a high performance com-
puting platform, in which the collection of network
devices constitutes the pool of resources (CPUs, stor-
age, communication devices). As an example, today’s
WWW appears as a vast “pool” of such resources,
readily available (besides other things) for World
Wide Simulation (WWS). (Some thoughts on the
use of the Web for simulation are collected in Fish-
wick 1996.)

A key problem towards the use of the WWW as
a platform for distributed simulation model execu-
tion is transparency, i.e. the problem of transparent
access to net resources. The enabling technologies
considered here for making the different kinds of het-
erogeneity transparent to users are the following:

• transparency of network heterogeneity:
Basic Web-technology has solved the problem of
interoperability of different networks based on
well-defined, standardized protocols like HTTP
and CGI. The HTTP protocol establishes a uni-
form information transport mechanism, whereas
CGI defines in a clear way the interface between
a Web-server and arbitrary programs executing
on the same physical machine. The hypertext
markup language HTML defines the syntax and
logical structure of arbitrary content, and re-
sources are referenced across heterogeneous net-
works by a global naming scheme, i.e. the Uni-
form Resource Locator (URL).

• transparency of platform and operating-system
heterogeneity: The Java virtual machine pro-
vides a uniform processing platform and is well
established due to its integration into standard
Web-browsers, available on all major hardware
platforms. The Java compiler translates class-
based object-oriented (Java) source code to an
intermediate machine-independent and platform-
independent byte-code, which is interpreted by
the Java virtual machine, a platform-neutral ar-
chitecture definition. Only the virtual machine
has to be ported to a specific platform and op-
erating system. In the context of simulation,
this has already influenced some exploitations:
Sequential discrete event simulation with Java
is investigated in (Buss, Stork 1996), the devel-
opment of a Java simulation library is reported
in (Nair, Miller, Zhang 1996).

• transparency of user-interface heterogeneity:
Along with the Java programming language, a
class library for API programming and user in-
terface programming (AWT) has emerged, sup-
porting standardized concepts for graphical in-
terfaces (GUIs). An additional and innovative
feature is the possibility of run-time linking, en-
abling dynamic retrieval of classes from the net
(e.g. loading applets embedded in HTML doc-
uments). Extensive reuse and the combination
of existing GUIs and software aims at cutting
down user interface development efforts, while
at the same time preserving cross-platform and
cross-operating system transparency.

Accomodating these basic needs for transparency,
contemporary Web technology provides an excellent
basis for Web based distributed simulation. More-
over, all this technology is right at hand today, at
almost any place in the world. By using Java tech-
nology for the realization of distributed simulations,
a universal portability (and platform independence)
of distributed simulations can be guaranteed. Fur-
ther chances for a breakthrough succcess can be seen
in the following key features of the Java technology:

• The utilization of simulation software resources
from anywhere in the Internet, from any ma-
chine and independent of the local operating
system (ease of access to world wide computing
resources).

• The utilization of simulation models from any-
where in the Internet. This feature highly pro-
motes simulation model reuse/sharing: (sub)
models (like simulation software) can be created
and posted to a Web site and used as “plug-ins”
in various different simulations.

• The estalishment of a world wide model / sim-
ulation software base according to the previous
features.

• The support for and simplification of simula-
tion code migration from one system node to
another, and the instantiation of local simula-
tion code on remote system nodes (e.g. remote
method invocation). This feature adds a new
dimension of dynamicity to contemporary sim-
ulation methods.

• The reuse of existing simulation code in a trans-
parent way, without any rewriting, without any
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Figure 1: Architecture of a Conservative Logical Process
recompilation (“write-once run-anywhere”). A
geographically dislocated code and model devel-
opment is supported, e.g. in “cells of expertise”.

• The scalability of distributed simulations: sim-
ulation code can be instantiated (remote method
invocation) to any desirable extent of multiplic-
ity, since physical execution devices (CPUs) are
available to an almost infinite extent.

• Among other simulation language candidates
(C, C++, etc.) Java is the only language that
is inherently “Internet-aware”, easy to learn,
modular, supports processes and process inter-
actions (multithreading), and eases the integra-
tion of simulations into intuitive, graphical and
animated user interfaces.

• Last, but not least, distributed simulations can
be performed at anytime from anywhere.

Having motivated simulation modeling and exe-
cution based on Web and Java technologies, we now
build a distributed simulation engine within this frame-
work, and exemplify the feasibility and enhanced qual-
ity of “world wide simulations.”

3 A JAVA BASED, CONSERVATIVE
DISTRIBUTED DISCRETE EVENT
SIMULATION ENGINE

An object oriented distributed discrete event simula-
tion engine using the Chandy-Misra-Bryant (CMB)
protocol (Chandy, Misra 1979), (Bryant 1984) and
the Java RMI (remote method invocation) system
is developed in this section. In order to accelerate
the execution of a self-contained simulation model,
the CMB approach to distributed simulation decom-
poses the model into spatial submodels, each of which
is executed by so called logical processes (LPs). To
preserve intra-LP event causality during simulation,
CMB protocols (as opposed to Time Warp protocols)
execute in each LP events that occur in the respec-
tive submodel in nondecreasing order of their occur-
rence timestamp, thus strictly preventing the possi-
bility of any event causality violation across LPs. For
this, CMB protocols rely on the detection of when it
is (causally) safe to process an event (i.e. detect so
called lookahead). A deadlock management mecha-
nism is necessary to either avoid deadlocks (due to
cyclic waiting conditions for messages able to make
‘unsafe’ events safe), or detect and recover from dead-
locks. In distributed system implementations of CMB
protocols deadlock management is usually based on
message exchanges. The architecture of a CMB LP
must thus cover three different functionalities: (i) an
input-sided communication interface taking care of
arriving messages (input buffer, IB) (ii) a simulation
engine that (under the control of the input communi-
cation interface) advances local simulation time LVT
by executing events scheduled in the event list EVL
and adjusting the local state variable vector S respec-
tively, and (iii) an output-sided communication in-
terface involved in propagating the effects of the lo-
cal execution in the form of events to remote LPs as
messages. (See e.g. Ferscha 1996 for a very detailed
explanation of the architecture of a CMB simulator).

In our Java implementation of an LP adhering to
CMB, the architecture is viewed as containing two
parts (Figure 1): the input interface (IBs) managed
by the Java class LPS , and the simulation engine and
output interface as managed by the Java class LPC .
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Each LPC [i] executing an LPi accesses a dedicated
simulation submodel (or spatial region of the simula-
tion task) R. The Put-method of the LPS class inserts
arriving messages in the corresponding IB and can
be invoked from every LPC [j] (j 6= i) involved in the
federated simulation, whereas the Get-method can be
invoked only locally from LPS [i], i.e. at LPi. In this
way, LPCs can send messages to all LPS IBs, but will
receive messages only from its own (local) IBs. Ev-
ery LPC can request the smallest time stamp of all
IBs of its LPS , compute the minimum timestamp of
messages and determine the time horizon (local vir-
tual time horizon, LVTH) up until which it is safe
to execute events from the local EVL. Within the
time frame of LVT and LVTH events are processed,
yielding new states. If the respective new state en-
ables new events occurring in the local future, these
are then scheduled in the EVL. Conversely, if sched-
uled events have become disabled, they are removed
from EVL. Outgoing messages are deposited in the
local output buffers (OB[i]) together with nullmes-
sages which encode the local lookahead. (Note that a
sender-initiated nullmessage policy is used here.) Af-
ter executing all the safe events, the whole contents
of the local output buffer is sent to the input buffers
of the corresponding recipient.

Each LPC executes in its own Java thread, “yield-
ing” control to another LPC after one simulation cy-
cle. Via this direct scheduling of LPs, the whole simu-
lation is made independent of proprietary scheduling
strategies encoded in the different Java virtual ma-
chines. The thread based implementation, allows in
a natural way, for a model with n LPs to be simulated
in a distributed environment with m hosts, as well as
even on a single host without any source code modifi-
cation. Thus a highest possible degree of portability,
partitioning and load balancing options are preserved
in this way. Figure 3 describes the Java thread that
implements a simulation engine SE.

The interconnection of multiple LPs is illustrated
in Figure 2. As far as the topology of LP intercon-
nections is concerned, only the connections necessary
for the particular simulation model are instantiated
at runtime. A link between LPC [0] and LPS [1] will
therefore only exist if in the submodel R[0] prescribes
potential causal effects onto R[1] or vice versa, i.e.
R[0] and R[1] will have to exchange messages. (Con-
sequently, and what appears as a particular advan-
tage of the object oriented implementation strategy,
the possibility for dynamic LP topologies arives.)

The reason for separating LPS and LPC in the
implementation is portability to different simulation
strategies. In its current form, LPC implements a
CMB protocol which could easily be replaced by a
Time Warp simulation engine. The input interface
LPS could be reused for such a new simulator with-
out modification. Even seamlessly switching among
different LPC implementations at runtime appears
possible, at least from an implementation viewpoint.
Furthermore, the same modularity arguments hold
for the isolation of the simulation submodel R: sub-
models can be replaced by simply “plugging in” a new
model class.

4 CASE STUDY

In the following case study we investigate the perfor-
mance sensitivity of the simulation engine with re-
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public void SE(){
MyEvent eh, e;
e = new MyEvent();
LVT = 0.0;
// create initial state
model.initialMessages(Buffer);
while (LVT < EndTime){

// determine local virtual time horizon
LVTH=Buffer.getIN();
// test for scheduled, safe events
if ((EVL.EVLsize()>0)

&& (EVL.ts() <LVTH))
// choose next internal event
// and remove from EVL
e = EVL.remove first();

else
// choose next external event
// and remove from respective IB
e = Buffer.remove first();

// execute event and advance LVT
LVT = e.ts();
if (!e.Null()){ // e is not a nullmessage

model.modify by event(e, coMyID);
// generate new events, insert in EVL
model.new Events(EVL, coMyID);
// remove preempted events from EVL
model.remove Events(EVL, coMyID);
// outgoing messages to buffer OB[i]
model.send Events(Buffer, coMyID);

}
//compute lookahead
Buffer.lookahead(LVT,

model.lookahead(coMyID));
//sendout buffer contents
Buffer.send();
//deschedule thread
yield();

}// endtime reached
model.SimInfo();
Buffer.On Exit();
this.stop();

}

Figure 3: Simulation Engine Thread
spect to the number of LP threads assigned to a par-
ticular Java virtual machine, different workloads in
the various LPs, the degree of locality of causal ef-
fects, and the amount of lookahead imposed by one
LP on another. Specifically, the variation of the fol-
lowing factors influencing performance are of interest:

• Heterogeneous Host
The use of hosts with different performance pro-
files is of interest because this is most probably
the situation in a WWS. We therefore inten-
tionally involve a set of four hosts as follows: H1
and H2 (Sparc 5), which are approximately half
as fast as H3 (Sparc 20), and H4 (UltraSparc),
which is about 3.5 times faster than H1. A dis-
tributed simulation involving 4 LPs is executed
on all combinations of these hosts.

• Initial Load Assignment
The larger the number of events preliminarily
assigned to a region R, the larger the model
parallelism, i.e., the number of possible concur-
rent event executions. However, as the number
of events in one region increases, so does the
overhead to be managed by the simulation en-
gine, yielding a CPU load increase. We assign
almost similar loads (Initial Events) to the LPs
as annotated in Figure 4.

• Interaction among LPs
To study performance effects of varying degrees
of “locality” in the distributed simulation, we
define two different simulation models (Figure 4).
In the first case, referred to as Model 1 (Fig-
ure 4, left), LPs are linked in a circular way,
i.e. event executions in one LP can have causal-
ity effects on a single successor LP. The second
case, referred to as Model 2 (Figure 4, right),
covers the more general situation in which local
simulation can affect any remote LP.

• Lookahead
The performace of CMB is highly reliant on
lookahead information. In general, the more
lookahead information that can be extracted
from the simulation model, the higher LVTH in
remote LPs enabling them to execute a higher
number of events without interference from the
outside. We assume the lookahead of an LPC [i]
imposed to another LPC [j] as being a random
variate X following a truncated normal distri-
bution lai−j = N(lX , uX , µX , σX), where lX
and uX are the lower and upper bounds of pos-
sible instancies, and lX ≤ µX ≤ uX and σX are
the respective mean and variation. For simplic-
ity we assume the same lookahead is imposed
on every adjacent LP.
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Figure 4: Ring of LPs (Model 1) and Full LP Interconnect (Model 2)
• Event Grain Size
For the CMB protocol it is not necessarily a fast
CPU (by itself) that gives good overall perfor-
mance, nor is it solely the use of high speed com-
munication devices but rather the fitting of the
balance of the communication and computation
speed to the event structure underlying in the
simulation model. In our investigations we con-
trol this parameter indirectly via the grain size
of events: the CPU time needed to execute one
event is assumed to be uniformly distributed
over the interval [50ms, 100ms].

• Message Population
The workload in the particular simulation mod-
els is designed to keep the message population
constant, i.e. each event consumes one message
and generates a new one. This is not a limita-
tion by the simulator, shall make performance
effects in our experiments more transparent.

• Message fan out
For a generated message, the destination LP
is chosen randomly depending on the available
output connections.

• Local Virtual Time Progression
For the control of the progression of simulation
time in one simulation step, we associate the
respective LVT increments with events. When-
ever an event is executed, LVT is progressed
(LVT = e.ts(); in Figure 3) by a random incre-
ment again following a truncated normal distri-
bution ∆LV TC = N(lC , uC, µC, σC). (For the
two models under investigation ∆LV TC is no-
tated in Figure 4 as quartuples N( , , , ).)

The first LP configuration is Model 1 in Figure
4 (left). 4 LPs are interconnected in a ring topology,
each executing about the same initial load at a [50ms,
100ms] event granularity. Figure 5 summarizes av-
eraged execution times for the model being mapped
to a single, two and four nodes out of H1, H2, H3
and H4. In the case where all LPs are simulated on
the same host we obtain average execution times be-
tween 314.3 sec (H1,H2) and 89.4 sec (H4) depending
on the type of host used. In the cases where 2 hosts
share the simulation model (2 LPs are executed on
one host) we obtain results between 140.0 sec with
the 2 slow host (H1,H2), 99.8 sec if a combination of
a slow host and a fast host (H1,H4) are used, and 48.5
sec if the two faster hosts (H3,H4) are involved. In
the full exploitation of model parallelism (each node
executes one LP), an execution time of 54.9 sec can
be achieved. Clearly, in this case, the two slow ma-
chines (H1, H2) throttle the performance of the two
others.

Figure 5 (right) shows the speedup range gained
by the distributed simulation of the model, based
on a sequential execution on host H1 or H2 (case
“slow”), on host H3 (case “medium”) and host H4
(case “fast”). It is seen from these results, that in a
heterogeneous environment, depending on the choice
of the host system and the LP-to-processor mapping,
speedup in the range of 1.62 and 5.84 can be achieved;
slight slowdowns are possible as indicated by the vari-
ation bars in cases where two processor are used.

The LP configuration in Model 2 (Figure 4 (right))
represents the case of a communication bound dis-
tributed simulation. A fully interconnected graph of
LPs is assumed, with an equally likely message fanout
from one LP to all of its neighbors. The count of ini-
tial messages and the LVT advancement is the same
as in the previous example. Through the necessity
of sending more null messages, the execution time
approximately doubles. If all LPs are simulated on
one host we obtain execution times between 694.2 sec
(H1,H2) and 191.1 sec (H4), and again the host com-
bination H3 and H4 (73.5 sec) is much faster than the
combination where all 4 hosts are involved (Figure 6
(left)). The speedup range as presented in Figure 6
(right), however, asserts robustness of the distributed
simulation against heavy communication.
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5 CONCLUSIONS

World-wide distributed simulation is closer than ex-
pected! In a systematic collection of arguments,
this paper has demonstrated that contemporary Web
technology provides an excellent basis for Web based
distributed simulation. Moreover, using the Java
technology for the realization of distributed simula-
tors, a universal portability (and platform indepen-
dence), modularity, simulation software and model
reuse, as well as its use from anywhere at anytime
can be guaranteed, thus representing the chance of
a breakthrough commercial and industrial success of
general purpose distributed simulation.

The feasibility and “value-added” of world wide
simulations is exemplified with the development of
an object oriented distributed discrete event simula-
tion engine based on the conservative Chandy-Misra-
Bryant (CMB) protocol, using the mutlithreading
features of Java together with the RMI (remote
method invocation) system. The performance of
this distributed simulator is investigated in a hetero-
geneous environment of Java-enabled workstations.
Even with a set of four heterogenous hosts, an aver-
age speedup of 3.5 could be attained.

Having identified a consistent set of parameters
determining the performance of a distributed simu-
lator, we are now studying the performance sensitiv-
ity of those. Further experiments will compare the
issues of imbalanced initial LP loads, the variation
of event grain size, heterogeneous lookahead and vir-
tual time progressions, as well as optimizations of the
CMB protocol reducing the number of nullmessages.
Finally, we will demonstrate the ease of submodel re-
placements and the integration of the Time Warp syn-
chronization protocol.
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