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cludes Gelfand and Mitter (1989), Alrefaei and An-
dradóttir (1995), Fox and Heine (1995), and Gutjahr
and Pflug (1996) who consider using the simulated
annealing algorithm for solving discrete stochastic op-
timization problems.

Yan and Mukai (1992) have proposed a random
search method called the stochastic ruler method for
solving discrete stochastic optimization problems.
Their method requires an increasing number of obser-
vations of the objective function values per iteration
as the number of iterations grows. One of the diffi-
culties in using the original stochastic ruler method
is that its convergence is very sensitive to the rate at
which the number of observations per iteration in-
creases. To avoid this difficulty, Alrefaei and An-
dradóttir (1996, 1997a) have proposed a modifica-
tion of the stochastic ruler method that uses only
a fixed number of observations per iteration. This
method estimates the optimal solution using an ap-
proach that resembles the approach proposed by An-
dradóttir (1995, 1996); i.e., the number of visits the
algorithm makes to the different states is used to esti-
mate the optimal solution. Alrefaei and Andradóttir
(1996, 1997a) present numerical results suggesting
that their approach tends to perform better than the
original stochastic ruler algorithm of Yan and Mukai
(1992).

In this paper we propose two new variants of the
modified stochastic ruler method of Alrefaei and An-
dradóttir (1996, 1997a) that use the same mechanism
for moving around the state space, but they use dif-
ferent approaches for estimating the optimal solution.
The first method uses the number of visits the em-
bedded chain of the Markov chain generated by the
modified algorithm makes to the different states to
estimate the optimal solution, whereas, in the second
method, we let the state that has the best average es-
timated objective function value obtained from all the
previous observations of the objective function values
be the estimate of the optimal solution. This lat-
ter approach for estimating the optimal solution has
ABSTRACT

We present two new variants of the stochastic ruler
method for solving discrete stochastic optimization
problems. These two variants use the same mecha-
nism for moving around the state space as the modi-
fied stochastic ruler method we have proposed earlier.
However, the new variants use different approaches
for estimating the optimal solution. In particular,
the modified stochastic ruler method uses the num-
ber of visits to each state by the Markov chain gen-
erated by the algorithm to estimate the optimal solu-
tion. On the other hand, one of our new methods uses
the number of visits to each state by the embedded
chain of the Markov chain generated by the algorithm
to estimate the optimal solution, and our other new
method uses the feasible solution with the best av-
erage estimated objective function value to estimate
the optimal solution. Like our earlier modification
of the stochastic ruler method, these two new meth-
ods are guaranteed to converge almost surely to the
set of global optimal solutions. We present theoreti-
cal and numerical results that indicate that our new
approaches tend to lead to the set of global optimal
solutions faster.

1 INTRODUCTION

Optimizing a stochastic system over a discrete set
of decision parameters (discrete stochastic optimiza-
tion) is an important and active area of research.
If the number of decision parameters is small, then
methods of ranking and selection, and multiple com-
parisons procedures can be used to select the best
system with high probability. For more details, see
Bechhofer, Santner, and Goldsman (1995) and Hsu
(1996). Recently Norkin, Ermoliev, and Ruszczyński
(1997) and Norkin, Pflug, and Ruszczyński (1996)
have considered using a version of the Branch-and-
Bound method for solving discrete stochastic opti-
mization problems. Some other work in this area in-
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been suggested by Andradóttir (1997). We discuss
under what conditions these approaches converge al-
most surely and when they can be expected to accel-
erate the convergence to the set of global optimal so-
lutions. Finally, we provide numerical results for our
new methods and compare their performance with
that of the earlier modified stochastic ruler method.

This paper is organized as follows: In Section 2 we
give some background on the stochastic ruler method.
In Sections 3 and 4 we present our new variants of
the stochastic ruler method and discuss under what
conditions they are expected to accelerate the con-
vergence. In Section 5 we provide some numerical
results. Finally, in Section 6 we give some concluding
remarks.

2 THE STOCHASTIC RULER METHOD

Consider the following optimization problem

min
x∈S

f(x) = E[h(x, Yx)],ψ (1)

where f : S → IR, S is a discrete set, and it is as-
sumed to be finite throughout this paper, h is a de-
terministic, real-valued function, and Yx is a random
variable that depends on the parameter x ∈ S. Let
H(x) = h(x, Yx) for all x ∈ S, and let S∗ = {x∗ ∈
S : f(x∗) ≤ f(x), ∀x ∈ S} denote the set of global
optimal solutions to the optimization problem (1).

Yan and Mukai (1992) have proposed a method
called the stochastic ruler method for solving the op-
timization problem (1). In their method, Yan and
Mukai solve the following maximization problem

max
x∈S

P (x, a, b) = P{H(x) ≤ Θ(a, b)},ψ (2)

where the stochastic ruler Θ(a, b) is a uniform random
variable defined on the range (a, b) of the observed
objective function values. Yan and Mukai show that
a solution of the maximization problem (2) is also a
solution to the original minimization problem (1) un-
der certain conditions. The stochastic ruler method
involves comparing the observed objective function
values H(x), where x ∈ S, with observations of the
stochastic ruler Θ(a, b). The maximum number of
such comparisons in iteration k of the algorithm is
Mk, where Mk → ∞ as k → ∞. One of the diffi-
culties in implementing the stochastic ruler method
is that its convergence depends on the rate at which
the sequence {Mk} is increased. If the sequence {Mk}
is increased rapidly, then the algorithm may end up
at a local solution; on the other hand, if the sequence
{Mk} is increased slowly, then the algorithm tends
to take a long time to converge. Alrefaei and An-
dradóttir (1996, 1997a) propose a modification of the
stochastic ruler method that uses at most M compar-
isons per iteration, where M > 0 is a constant inte-
ger. Moreover, their method uses a different approach
for estimating the optimal solution than the original
stochastic ruler method of Yan and Mukai (1992);
this approach resembles the approach proposed by
Andradóttir (1995, 1996) that uses the state that is
visited most often by the algorithm as the estimate
of the optimal solution.

We need the following definitions and assump-
tions:

Definition 1 For each x ∈ S, there exists a subset
N(x) of S \ {x} which is called the set of neighbors
of x.

Assumption 1 For any x, x′ ∈ S, x′ is reachable
from x; i.e., there exists a finite sequence {ni}li=0 for
some l, such that xn0 = x, xnl = x′, and xni+1 ∈
N(xni), i = 0, 1, 2, . . ., l− 1.

Definition 2 A function R : S × S → [0, 1] is said
to be a transition probability for S and N if

1. R(x, x′) > 0⇔ x′ ∈ N(x), and

2.
∑
x′∈S R(x, x′) = 1.

Assumption 2 Let

R(x, x′) =
R′(x, x′)

D(x)
,ψ (3)

where R′ : S×S → IR is a function such that R′(x, x′)
> 0 ⇔ x′ ∈ N(x) and D : S → IR is defined by
D(x) =

∑
x′∈S R

′(x, x′), ∀x ∈ S. Then we assume
that

1. x′ ∈ N(x)⇔ x ∈ N(x′), and

2. R′(x, x′) = R′(x′, x), ∀x, x′ ∈ S.

Assumption 3 The parameters a, b ∈ IR satisfy

1. if P (x, a, b) ≥ P (x′, a, b), then f(x) ≤ f(x′),
and

2. 0 < P (x, a, b) < 1, for all x ∈ S.

Note that Assumption 3 implies that a solution to
the optimization problem (2) is also a solution to
the optimization problem (1). Yan and Mukai (1992)
show that parameters a, b satisfying Assumption 3
exist when E{H(x)2} <∞ for all x ∈ S.

Now we state the modified stochastic ruler al-
gorithm of Alrefaei and Andradóttir (1996, 1997a).
Note that for all x ∈ S and k ∈ IN, Vk(x) is the
number of times that the Markov chain {Xk} has
visited state x in the first k iterations, and X∗k is the
state that maximizes the value of Vk(x)/D(x), where
x ∈ S.
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Algorithm 1

Step 0: Select a starting point X0 ∈ S. Let V0(X0) =
1, and V0(x) = 0, for all x ∈ S, x 6= X0. Let
k = 0 and X∗k = X0.

Step 1: Given Xk = x, choose a candidate Zk from
N(x) with probability distribution

P {Zk = z|Xk = x} =
R′(x, z)

D(x)
,

where z ∈ N(x), and R′(x, z) and D(x) are de-
fined in equation (3).

Step 2: Given Zk = z, draw a sample h(z) from
H(z). Then draw a sample θ from Θ(a, b). If
h(z) > θ, then let Xk+1 = Xk and go to Step
3. Otherwise, draw another sample h(z) from
H(z) and draw another sample θ from Θ(a, b)
that are independent of the previous samples. If
h(z) > θ, then let Xk+1 = Xk and go to Step
3. Otherwise, continue to draw and compare M
times. If all M tests, h(z) > θ, fail, then accept
the candidate Zk and set Xk+1 = Zk = z.

Step 3: Let k = k + 1, Vk(Xk) = Vk−1(Xk) + 1, and
Vk(x) = Vk−1(x), for all x ∈ S, x 6= Xk. If

Vk(Xk)

D(Xk)
>
Vk(X∗k−1)

D(X∗k−1)
,

then let X∗k = Xk; otherwise let X∗k = X∗k−1.
Go to Step 1.

Under Assumptions 1 through 3, Alrefaei and An-
dradóttir (1997a) show that the sequence {X∗k} gen-
erated by Algorithm 1 converges almost surely to the
set S∗.

In some cases Algorithm 1 may spend a lot of time
at a bad state x, especially if the neighboring states
x′ ∈ N(x) are also bad. This is because moving from
a state x to a state x′ does not depend on the dis-
tribution of H(x), but only on that of H(x′). This
means that the state x could remain an estimate of
the optimal solution for a long time. To avoid this,
we propose two methods in Sections 3 and 4 that are
expected to accelerate the convergence of the algo-
rithm.

3 THE EMBEDDED CHAIN APPROACH

This approach involves modifying Algorithm 1 by fo-
cusing on the embedded chain of the Markov chain
{Xk} generated by Algorithm 1. In this approach,
instead of counting how many visits the Markov chain
{Xk}makes to each state, including the time it spends
at that state before moving to another state, we just
count how many times this Markov chain {Xk} en-
ters each state without counting the time it spends
at that state. This yields the following algorithm:

Algorithm 2

Step 0: Identical to Step 0 of Algorithm 1.

Step 1: Identical to Step 1 of Algorithm 1.

Step 2: Identical to Step 2 of Algorithm 1.

Step 3: Let k = k+1. If Xk = Zk−1, then let Vk(Xk)
= Vk−1(Xk) + 1; otherwise let Vk(Xk) =
Vk−1(Xk). Let Vk(x) = Vk−1(x), for all x ∈ S,
x 6= Xk. If

Vk(Xk)

D(Xk)
>
Vk(X∗k−1)

D(X∗k−1)
,

then let X∗k = Xk; otherwise let X∗k = X∗k−1.
Go to Step 1.

For all x ∈ S, define

u(x) =
∑

z∈N(x)

R′(x, z) [P (z, a, b)]
M
,ψ (4)

where R′(x, z) is given in equation (3) and P (z, a, b)
is defined in equation (2). The following two theo-
rems have been proved by Alrefaei and Andradóttir
(1997b). Note that the notation |A| refers to the num-
ber of elements in the set A.

Theorem 1
Suppose that Assumption 3 holds. If for all x, y ∈
S, x 6= y, N(x) = S \ {x} and R′(x, y) = 1/(|S| −
1), then the sequence {X∗k} generated by Algorithm 2
converges almost surely to the set S∗.

Theorem 2
Suppose that Assumptions 1 through 3 hold, and that
at least for one global optimal solution x∗ ∈ S∗, we
have

u(x∗)

D(x∗)
≥

u(x)

D(x)
, ∀x ∈ S, ψ (5)

where D(·) is defined in equation (3) and u(·) is de-
fined in equation (4). Then the sequence {X∗k} gen-
erated by Algorithm 2 converges almost surely to the
set S∗.

Suppose that π is the stationary distribution for the
Markov chain {Xk} generated by Algorithms 1 and
2 and that π′ is the stationary distribution of the
embedded chain of the Markov chain {Xk}. (Alrefaei
and Andradóttir (1997a, 1997b) have shown that π
and π′ exist.) Then the following proposition was
proved by Alrefaei and Andradóttir (1997b).
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Proposition 3

1. Suppose that Assumption 3 holds and that for
all x, y ∈ S, x 6= y, N(x) = S\{x} and R′(x, y) =
1/(|S| − 1). Then π′x∗ < πx∗ for all x∗ ∈ S∗.

2. Suppose that Assumptions 1 through 3 and equa-
tion (5) hold. Then π′x∗ ≥ πx∗ for the global op-
timal solution x∗ ∈ S∗ satisfying equation (5).

Alrefaei and Andradóttir (1997a, 1997b) show that
Algorithms 1 and 2 are in fact maximizing πx/D(x)
and π′x/D(x), respectively. So if π′x∗ > πx∗ then Al-
gorithm 2 would be expected to perform better than
Algorithm 1; the reverse is true when π′x∗←< πx∗ .
Therefore, by Proposition 3, Algorithm 2 is expected
to perform better than Algorithm 1 under the con-
ditions of Theorem 2, but not under those of Theo-
rem 1.

4 THE BEST AVERAGE ESTIMATE AP-
PROACH

In this approach, we use the state that has the best
(lowest since we are minimizing) average estimated
objective function value as the estimate of the optimal
solution. This approach for estimating the global op-
timal solution was originally proposed by Andradóttir
(1997). We have the following algorithm:

Algorithm 3

Step 0: Select a starting point X0 ∈ S. For all x ∈
S, let A0(x) = 0 and C0(x) = 0. Let k = 0 and
X∗k = X0.

Step 1: Identical to Step 1 of Algorithm 1.

Step 2: Given Zk = z, draw a sample h(z) from
H(z), and let Ak(z) = Ak(z)+h(z) and Ck(z) =
Ck(z) + 1. Then draw a sample θ from Θ(a, b).
If h(z) > θ, then let Xk+1 = Xk and go to Step
3. Otherwise, draw another sample h(z) from
H(z) that is independent of the previous sam-
ples and update Ak(z) and Ck(z) as before, and
draw another sample θ from Θ(a, b) that is in-
dependent of the previous samples. If h(z) > θ,
then let Xk+1 = Xk and go to Step 3. Other-
wise, continue to draw and compare M times,
each time updating Ak(z) and Ck(z) as before.
If all M tests, h(z) > θ, fail, then accept the
candidate Zk and set Xk+1 = Zk = z.

Step 3: Select X∗k ∈ arg minx∈S Ak(x)/Ck(x). Let
k = k + 1, and for all x ∈ S, let Ak(x) =
Ak−1(x) and Ck(x) = Ck−1(x). Go to Step 1.
The following theorem has been proved by Alre-
faei and Andradóttir (1997b).

Theorem 4
Under Assumptions 1 through 3, the sequence {Xk}
generated by Algorithm 3 converges almost surely to
the set S∗.

Theorem 5 in Alrefaei and Andradóttir (1997a)
shows that the Markov chain {Xk} generated by Al-
gorithms 1, 2, and 3 is attracted to good states (states
that have small objective function values) in the sense
that the expected number of visits the Markov chain
{Xk}makes to good states is larger than the expected
number of visits to bad states (states that have large
objective function values). This means that good es-
timates of the objective function values at good states
will be obtained quickly, suggesting that Algorithm 3
may converge rapidly to the set of global optimal so-
lutions. Numerical results supporting this intuition
on a particular example are presented in Section 5.

5 NUMERICAL APPLICATION

In this section, we present empirical results obtained
by applying Algorithms 1, 2, and 3 to solve the fol-
lowing discrete stochastic optimization problem:

min
x∈S

f(x) = E[W (x)],

where S = {1, . . . , 50}, Wi(x) is the system time of

customer i for all x ∈ S, and W (x) = 1
200

∑200
i=1Wi(x)

is the average system time per customer of the first
200 customers in an M/M/1 queue with fixed arrival
rate λ = 1 and service rate µ(x), ∀x ∈ S. Figure 1
shows the estimated values of f(x) = E[W (x)] for all
x ∈ S obtained from separate long simulation runs.

For each x ∈ S and i ∈ IN, let Si(x) be the service
time of customer i and let Ti be the inter-arrival time
between customers i − 1 and i. Assume that T0 = 0
and W0(x) = 0 for all x ∈ S. Then we use the follow-
ing recursive formula to generate the system time of
customer i :

Wi(x) = max{Si(x),Wi−1(x) + Si(x)− Ti}.

We apply Algorithms 1, 2, and 3 using two differ-
ent neighborhood structures. The first neighborhood
structure is given by

N1(x) =

 {2} ← if x = 1,
{x± 1} if 2 ≤ x ≤ 49,
{49}← if x = 50.

(6)

For this neighborhood structure, for all x ∈ S, we
take R′1(x, x′) = 1 for all x′ ∈ N1(x), R′1(x, x′) = 0
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Figure 1: The estimated objective function values
f(x) = E[W (x)] for all x ∈ S.

for all x ∈ S \ N1(x), and D1(x) = |N1(x)|. The
second neighborhood structure is given by

N2(x) = S \ {x}, ∀x ∈ S. ψ (7)

For this neighborhood structure we take R2(x, x′) =
R′2(x, x′) = 1/(|S| − 1) for all x, x′ ∈ S, x 6= x′,
and R2(x, x) = R′2(x, x) = 0 for all x ∈ S (so that
D2(x) = 1 for all x ∈ S). Note that Proposition 3 im-
plies that Algorithm 2 is expected to perform better
than Algorithm 1 when the first neighborhood struc-
ture N1 given in equation (6) is used. The reverse
is true when the second neighborhood structure N2

given in equation (7) is used. We let M = 2, a = 0.5,
and b = 2.5. We always select the initial state ran-
domly and we run the program for 100 replications.

Figure 2 shows the average performance of the
three algorithms over 100 replications when the first
neighborhood structure N1 given in equation (6) is
used. The x-axis shows the number of customers that
have been used in our simulations for estimating the
objective function values and the y-axis shows the
average estimated optimal objective function values
over the 100 replications. It is clear from this fig-
ure that the performance of Algorithm 3 is superior
to the performance of the other two algorithms. It is
also clear that the performance of Algorithm 2 is bet-
ter than the performance of Algorithm 1 as expected
since the structure of this problem using the neigh-
borhood structure N1 satisfies equation (5). Figure
3 shows the results when the second neighborhood
structure N2 given in equation (7) is used. Again,
we note that the performance of Algorithm 3 is supe-
rior to the performance of the other two algorithms.
However, there is no significant difference between
Algorithms 1 and 2 in this setting. This is because
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Figure 2: Performance of Algorithms 1, 2, and 3 us-
ing the neighborhood structure N1. The estimated
objective function value at the global optimal solu-
tion is f̂∗ = 0.6717.

equation (5) is not satisfied when the neighborhood
structure N2 is used.
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Figure 3: Performance of Algorithms 1, 2, and 3 us-
ing the neighborhood structure N2. The estimated
objective function value at the global optimal solu-
tion is f̂∗ = 0.6717.

6 CONCLUSION

In this paper, we have proposed two new variants
of the modified stochastic ruler method of Alrefaei
and Andradóttir (1996, 1997a). The first variant
uses the number of visits the embedded chain of the
Markov chain generated by the modified stochastic
ruler method makes to the different states to estimate
the optimal solution, whereas the second variant uses
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an approach that has been proposed by Andradóttir
(1997) that uses the state with the best average es-
timated objective function value as estimate of the
optimal solution. Our methods are guaranteed to
converge almost surely to the set of global optimal
solutions under mild assumptions. From our numeri-
cal results, we conclude that in comparison with the
other two variants of the stochastic ruler method, the
variant that uses the state with the best average es-
timated objective function value as estimate of the
optimal solution shows the best performance.
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