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chine (CMM) is to be used in order to take several
measurements on the part surface, and these mea-
surements will be used to accept or reject the part.
A CMM is a computer controlled device that con-
sists of a programmable contact probe and a means
of positioning the probe in three-dimensional space
relative to the surface of a machined part. The ma-
chine will be used to take only a finite number of mea-
surements on the part surface, but a decision about
the acceptability of the entire part must be inferred
from this sample. Considering the one-dimensional
scenario where the number of measurements and their
locations are to be found along one cross section, it
may not be realistic to assume that the contours of all
parts satisfy some strong regularity property (such as
Lipschitz continuity). Therefore the set of measure-
ments produced by any algorithm may, for a partic-
ular part, fail to identify arbitrarily large deviations
from the tolerances. However, we can hope to design
an algorithm so that the difference between measured
and actual deviations is small on average.

In this paper we compare the average error of com-
posite non-adaptive Monte Carlo-based algorithms as
compared to composite deterministic algorithms. A
composite non-adaptive algorithm is one that main-
tains its form as the number of observations increases;
see Zhigljavsky (1991). If we denote the set of obser-
vations made by an algorithm up to time n by Tn =
{t1, t2, . . . , tn}, then we will call an algorithm com-
posite if Tn+1 ⊃ Tn. A consequence of compositeness
is that there is no need to determine in advance how
many observations are to be taken in order to con-
struct the observation set. In contrast, non-composite
algorithms do not adapt gracefully as the number of
observations changes. An example is the “uniform
grid” algorithm (non-composite) that takes equally
spaced observations; if a total of n observations are
to be made, they are placed at 1/n, 2/n, . . ., 1. How-
ever, if the number of observations is increased to
n+ 1, there is no way to add an observation point so
ABSTRACT

In this paper we compare the average performance
of Monte Carlo methods for global optimization with
non-adaptive deterministic alternatives. We analyze
the behavior of the algorithms under the assumption
of Wiener measure on the space of continuous func-
tions on the unit interval. In this setting we show that
the primary strength of the Monte Carlo methods
(compositeness) is outweighed by the primary weak-
ness (random gap size) when compared to efficient
deterministic methods.

1 INTRODUCTION

The purpose of this paper is to analyze and compare
the average performance of different non-adaptive al-
gorithms for approximating the global minimum of
one-dimensional real-valued functions defined on the
unit interval. The average performance of an algo-
rithm is defined as the expected difference between
the observed minimum value and the actual global
minimum. Brownian motion will be used as a prob-
abilistic model for the one-dimensional continuous
functions, and the objective function is to be taken as
one realization of a Brownian motion process. We use
an average-case framework, which can be thought of
as averaging the error over many independent realiza-
tions of the algorithm on different objective functions.
The concept of average optimality is more useful in
this setting than a worst case analysis where the er-
ror can be arbitrarily large unless stringent conditions
are placed on the set of objective functions, such as
convexity or Lipschitz continuity.

To motivate the idea of average optimality con-
sider the problem of verifying standard geometric tol-
erance specifications on a machined part, where the
functional requirements or assembly conditions re-
quire that the entire surface must lie within two en-
velopes of ideal shape. A Coordinate Measuring Ma-
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as to maintain a uniform grid.
In the next section we introduce the problem and

the terminology. In Section 3 we establish some back-
ground results concerning the distribution of the min-
imizer and path decomposition for Brownian motion.
In Section 4 we compare the average performance of
different Monte Carlo and deterministic algorithms.

2 NOTATION

Given the set of continuous real-valued functions de-
fined on the unit interval C([0, 1]), let X ∈ C([0, 1])
be the objective function to be minimized. Also, let
M = min{X(t); t ∈ [0, 1]} denote its global minimum,
and let T = inf{t ≤ 1 : X(t) = M} be the (first)
location where the minimum is attained. To approx-
imate M we assume that we are allowed to observe
the function X at n locations. Let t1, t2, . . . , tn be the
observation sites in [0, 1]. Our goal is to compare the
average performance of different algorithms based on
their average approximation error E(∆n), where

∆n = min
1≤i≤n

X(ti)−M.

Suppose that we have some prior knowledge about
the relative likelihood of various functions, and that
we can formalize this knowledge in a form of a prob-
ability measure µ on C([0, 1]). Consequently, we can
view any function X ∈ C([0, 1]) as a sample path of
a stochastic process. Hence,

E(∆n) =

∫
X∈C([0,1])

(
min

1≤i≤n
X(ti)−M

)
dµ(X).

(1)
The Wiener measure on C([0, 1]) will be taken as

the probability distribution; i.e., X is taken to be a
sample path of a Brownian motion process. It is nat-
ural to use a Gaussian measure, such as the Wiener
measure, as a model for a random objective function
that has multiple local minima with positive prob-
ability (see Wasilkowski 1992). Brownian motion is
one of only a few non-trivial stochastic processes for
which the distribution of the minimum is even known.

Our comparison will rely on results concerning
processes and random variables associated with the 3-
dimensional Bessel process. The 3-dimensional Bessel
process is the diffusion process that is identical in law
to the modulus of a 3-dimensional Brownian motion.
A 3-dimensional Bessel bridge from (0, 0) to (t, y) is a
3-dimensional Bessel process starting from 0 at time 0
“conditioned to take the value y at time t”; see Revuz
and Yor (1991). Define a “two-sided Bessel process”
R by

R(t) =

{
R1(t) if t ≥ 0,
R2(−t) if t ≤ 0,

(2)
where R1 and R2 are two independent 3-dimensional
Bessel processes. A new a random variable W will
appear in the limit results we are going to present in
Section 3. This random variable is defined as

W = min
i=0,±1,±2,...

R(i+ U), (3)

where U is a uniformly distributed random variable
on the unit interval independent of R. Also, E(W ) =
−ζ(1/2)/

√
2π (see Asmussen et al. 1995), where ζ

is Riemann’s zeta function. Finally, we will use ⇒
to denote convergence in distribution; i.e., Xn ⇒ X
means that Ef(Xn) → Ef(X) as n → ∞ for all
bounded continuous functions f .

3 PROBABILITIES AND PATH DECOM-
POSITION

For the Brownian motion prior, let f(t; x, y) be the
density of the first time the process reaches the level
y given that X(0) = x. These densities are given by
(see Karlin and Taylor 1975)

f(t; x, y) =
| y − x |
√

2πt3
exp

(
−

(y − x)2

2t

)
. (4)

Theorem 1, proved in Imhof (1984), expresses the
joint density of M , T , and X(1), as the product of
first hitting time densities.

Theorem 1 For x ≥ y, 0 ≥ y, and 0 ≤ t ≤ 1,

P (M ∈ dy,X(1) ∈ dx, T ∈ dt)

= f(t; 0, y)f(1 − t; x, y) dy dx dt.

The marginal density ξ of T is the “arc-sine” density
as shown in Feller (1971)

P (T ∈ dt) = ξ(t) =
1

π
√
t(1− t)

, 0 < t < 1.  (5)

The following result is a special case of a general
result of Fitzsimmons, Pitman, and Yor (1992) that
decomposes the path of a diffusion at the minimum
(this result generalizes an earlier result of Williams
(1974)).

Theorem 2 Given (M = y, T = t, X(1) = x) (0 <
t < 1, y < x), the process {X(t+ u)− y}0≤u≤1−t is a
3-dimensional Bessel bridge from 0 at time 0 to x−y
at time 1 − t, independent of {X(t − u) − y}0≤u≤t,
which is a 3-dimensional Bessel bridge from 0 at time
0 to −y at time t.
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Let H be the cumulative density function of the
Beta(2/3, 2/3) distribution,

H(t) = I(2/3, 2/3, t)

= B(2/3, 2/3)−1

∫ t

s=0

ds

[s(1− s)]1/3
,

for 0 ≤ t ≤ 1, where B denotes the beta and I
the incomplete beta function. Let h(t) = H ′(t) =(
B(2/3, 2/3)[t(1− t)]1/3

)−1
denote the corresponding

probability density function. The following result,
which is proved in Al-Mharmah and Calvin (1997),
is used to determine the least upper bound and the
largest lower bound on the convergence of the se-
quence E(

√
n∆n) for a composite algorithm as shown

in the next section. The proof of this result relies on
both Theorem 1 and Theorem 2.

Theorem 3 Let {nk : k ≥ 1} be a sequence of inte-
gers such that

2k ≤ nk < 2k+1, k ≥ 1,

and
tnk → τ ∈ (0, 1)

as k→∞. Let

β(T ) =

{
1 if T ≥ τ ,
2 if T < τ .

Then √
2kβ(T )h(T ) ∆nk ⇒W (6)

as k→∞, where W is defined in equation (3), and

E (
√
nk∆nk) →

√
1 +H(τ)E(W )

B(2/3, 2/3)3/2

π

×
(

1−
(

1− 2−1/2
)
H(τ)

)
,

as k→∞.

4 ERROR ANALYSIS

In the case of Brownian motion, it is shown in Calvin
(1995) that if observations form a deterministic equi-
spaced grid, then the error is about 82% as large as if
the points are chosen at random uniformly over the
unit interval. However, if new observations are to be
added the uniformity of the deterministic grid will
not hold at all times. One might expect, for example,
that if the grid is such that 2k points are equi-spaced
to the left of 1/2 and k points are equi-spaced to
the right of 1/2, then choosing 3k points at random
uniformly over the interval might give a smaller error
on average.
Al-Mharmah and Calvin (1996) studied random-
ized non-adaptive algorithms, and found that the op-
timal distribution for placing points on the unit in-
terval is Beta(2/3, 2/3). The corresponding limiting
normalized mean error for this random algorithm is

E
(√
n∆n

)
→

1

π
√

2
B(2/3, 2/3)3/2 ≈ 0.6623, (7)

as n → ∞. This distribution gives a slightly bet-
ter convergence rate than choosing the sites accord-
ing to the distribution of the maximizer, which is the
arcsine distribution. Calvin (1996) showed that the
n quantiles of the Beta(2/3, 2/3) distribution (non-
composite algorithm) are optimal within the class of
deterministic non-adaptive algorithms. The average
normalized error for the deterministic version is about
82% of that for the random algorithm (with the num-
ber of observations n predetermined). The advantage
of the random algorithms is compositeness, and the
disadvantage is the random gaps (the largest gap in
uniformly distributed points is of order log(n)/n, and
because of length-biased sampling, the large gaps are
more likely to contain the minimizer).

Consider the simple composite deterministic algo-
rithm that chooses the following sequence of observa-
tion points (label the points as d1, d2, d3, . . .):

1,
1

2
,

1

4
,

3

4
,

1

8
,

3

8
,

5

8
,

7

8
,

1

16
, . . . .  (8)

(Recall that X(0) = 0, so that in effect we start off
with the observation at 0.) If the number of observa-
tions is a power of 2, then the points form an equi-
spaced grid, which one would expect to be efficient.
Otherwise, the grid has some intervals twice as wide
as others, which is clearly inefficient. The composite
algorithm that we describe here uses the images of the
above algorithm under a continuous transformation
of the unit interval. This corresponds to making the
points the quantiles of a beta distribution, which is
in a sense optimal, as shown in Calvin (1996). There-
fore, define an algorithm by t0 = 1 = H−1(1), and

tn = H−1 (dn) , n ≥ 1.  (9)

Thus the tn’s are the images under H−1 of the grid
points defined in equation (8). We will show that
this algorithm dominates the best random composite
algorithm in the limit.

The sequence E(
√
n∆n) does not converge in this

setting. However, we can determine its least upper
bound and greatest lower bound as shown in The-
orem 4. The proof of this theorem is found in Al-
Mharmah and Calvin (1997), which is based on the
limits of certain subsequences of E(

√
n∆n) shown in

Theorem 3.
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Theorem 4 Under the algorithm described in this
section,

lim sup
n→∞

E
(√
n∆n

)
= E(W )

B(2/3, 2/3)3/2

π

×
4
√

2− 2

3
√

2

√
2
√

2− 1

3
√

2− 3

≈ 0.5705,

and

lim inf
n→∞

E
(√
n∆n

)
= E(W )

B(2/3, 2/3)3/2

π
≈ 0.5457.

(10)

Therefore, as shown in the above theorem, a com-
posite deterministic algorithm has a better average
performance than the optimal random algorithm, see
equation (7).

5 CONCLUSIONS

As shown in Al-Mharmah and Calvin (1996), the best
performance among algorithms that choose observa-
tions independently from a fixed probability distri-
bution is obtained from the beta distribution with
parameters (2/3, 2/3). Comparing this result with
Theorem 4 shows that the deterministic composite
algorithm defined in equations (8) and (9) has a bet-
ter limiting performance in the sense that the lim sup
of the normalized mean error is approximately 0.5705,
considerably less than the limit in equation (7). In
this case, the benefit of deterministic gaps outweighs
the penalty of grid non-uniformity when n is not a
power of 2.
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