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ABSTRACT

We consider the effect of common random numbers
(CRNs) among simulated systems in two different
multinomial selection procedures; the classical proce-
dure BEM (Bechhofer, Elmaghraby, and Morse) and
procedure AVC (all vector comparisons). We examine
a simple two population scenario and demonstrate an-
alytically how CRNs affect the probability of correct
selection (PCS). In addition, various levels of posi-
tive correlation are induced to approximate the effect
of using CRNs with complex simulated systems. We
present analytical and simulation results to show the
effect correlation has on the probability of correct se-
lection (PCS) for each solution procedure. This paper
responds to Jim Wilson’s question raised at WSC’96
about how the use of CRNs affects multinomial selec-
tion procedures.

1 INTRODUCTION AND MOTIVATION

Motivating Example: As tactical war planning an-
alysts, we are directed to provide the Joint Task Force
Commander with the best plan to cripple the en-
emy’s command and control. “Best” means achieving
the highest level of cumulative damage expectancy
(CDE) against a selected set of targets given current
intelligence estimates of enemy defense capabilities
and available friendly forces. Using a theater-level
combat simulation model, our team prepares four in-
dependent attack plans and we simulate v replications
across all four plans. For each replication we compare
the CDE between each of the four plans. Since the
chosen plan can only be executed a single time, we
select as the best plan the one that has the largest
CDE in most of the replications.

In such a scenario, the argument can be raised
that CRNs should be used to test the different plans
under the same experimental conditions–where our
experimental conditions are the random variates used
to determine various system reliabilities, probabilities
of target damage, etc. When estimating the difference
in system performance, CRNs reduce the variance
of the estimator by inducing a positive correlation
among the individual system responses. In a multi-
nomial selection problem (MSP), we only care about
which system is best in each trial and not the mag-
nitude of the difference between the responses. Mata
(1993) shows the use of CRNs increases the PCS in
an empirical study, or in other words, sharpens the
comparison between some simple systems in an MSP.
We look at one of Mata’s examples and demonstrate
analytically how CRNs can increase the PCS with
BEM.

The use of CRNs introduces a dependency among
the systems, with the level of this dependency varying
with the complexity of the systems and how they are
modeled. We explore the effects of CRNs in MSPs
involving complex systems through inducing selected
levels of correlation among simple simulated systems.

The paper is organized as follows: We first pro-
vide a brief review of the MSP and two solution pro-
cedures, BEM and AVC. We then present analytical
results on the effects of CRNs working with a model
from Mata (1993) and with some simple modifica-
tions to this model. Empirical results are also given
for these examples. Finally, additional empirical re-
sults show the effects on PCS for both BEM and AVC
over a range of positive correlations.

2 BACKGROUND

We consider the general problem of selecting the best
of k ≥ 2 independent populations, π1, π2, . . . , πk, where
in our context “populations” is taken to mean simu-
lated systems. This is known as the MSP. Let Xi =
(X1i, X2i, . . . , Xki) represent a vector of independent
observations of some common performance measure
across all populations on the ith replication. For
each i, the best population is the population with
the largest Xji. The goal is to find the population
that is most likely to be the best performer among
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the populations, as opposed to identifying the best
average performer over the long run.

Let Yji = 1 if Xji > X`i, for ` = 1, 2, . . . , k, but
` 6= j; and let Yji = 0 otherwise. In other words,
Yji = 1 if Xji is the largest observation in Xi. In
case of a tie for the largest value, we randomly select
one of the tied populations as the best. Suppose that
there are v independent replications across all popula-
tions, and let Yj =

∑v
i=1 Yji represent the number of

times population j wins out of these v replications.
So
∑k
j=1 Yj = v and the k-variate discrete random

variable Y = (Y1, Y2, . . . , Yk) follows a multinomial
distribution with pj = Pr{πj wins}, j = 1, 2, . . . , k,

where 0 < pj < 1, j = 1, 2, . . . , k, and
∑k
j=1 pj = 1.

Bechhofer, Elmaghraby and Morse (1959) describe
a single-stage procedure for selecting the multinomial
event (population) which has the largest success prob-
ability. BEM requires the specification of P ∗ (where
1/k < P ∗ < 1), a minimum probability of correctly
identifying the population with the largest success
probability (i.e., the best population), and θ∗ (where
1 < θ∗ <∞), a minimum ratio of the largest success
probability to the second largest success probability.
The procedure consists of the following steps:

Procedure BEM

1. For given k and θ∗, find the minimum value of
v, denoted as v∗, that guarantees that the PCS
is at least P ∗.

2. Generate v∗ independent replications for each
population.

3. Compute Yj =
∑v∗

i=1 Yji, for j = 1, 2, . . ., k.

4. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(k) be the ranked sam-
ple counts from step 3. Select the population
associated with the largest count, Y(k), as the
best population. In case of a tie for the largest
count, randomly select one of the tied popula-
tions as the best.

To determine the appropriate v∗ in step 1, let
p[1] ≤ p[2] ≤ · · · ≤ p[k] denote the ranked success
probabilities for the k populations. Since only values
of the ratio θ = p[k]/p[k−1] greater than or equal to
θ∗ are of interest, we are indifferent between the best
and the next-best population for values of θ < θ∗. A
procedure of this type is referred to as an indifference-
zone approach. Select v∗ as the minimum number of
independent vector observations required to achieve
a probability of correct selection (PCS) greater than
or equal to P ∗ whenever θ ≥ θ∗. We refer to the PCS
with BEM as PCSbem.

Miller, Nelson, and Reilly (1997) introduced a method
shown to provide a PCS greater than or equal to
PCSbem (for specific small sample cases and asymp-
totically in general) using the same replications Xi, i =
1, 2, . . . , v. With BEM parameters k, P ∗, and θ∗, the
first step of BEM is used to find a value of v∗. Then
a total of (v∗)k pseudo-replications are formed by as-
sociating each Xji (j = 1, 2, . . . , k; i = 1, 2, . . . , v∗),
with all possible combinations of the remainingX`h (` =
1, 2, . . . , k; ` 6= j; h = 1, 2, . . ., v∗). Each such pseudo-
replication contains one observation from each pop-
ulation. Note that the (v∗)k pseudo-replications in-
clude the v∗ independent replications from which the
pseudo-replications are formed.

Procedure AVC

1. Given values for k, P ∗, and θ∗, use step 1 of
procedure BEM to determine a value for v∗.

2. Generate v∗ independent replications for each
population and construct the additional (v∗)k−
v∗ pseudo-replications possible with one value
from each of the populations.

3. Compute Zj as follows:

Zj =
v∗∑
a1=1

v∗∑
a2=1

· · ·
v∗∑
ak=1

k∏
`=1;` 6=j

φ(Xjaj , X`a`)

for j = 1, 2, . . ., k, where φ(Xji, X`i) is an indi-
cator function that takes the value 1 only if Xji
is larger than X`i.

4. Let Z(1) ≤ Z(2) ≤ · · · ≤ Z(k) be the ranked
sample counts from step 3. Select the popu-
lation associated with the largest count, Z(k),
as the best population. In case of a tie for the
largest count, randomly select one of the tied
populations as the best.

We refer to the PCS with AVC as PCSavc.

3 ANALYTICAL RESULTS

We restrict our analysis to k = 2 populations and con-
sider the model used for Example 1 in Mata (1993).
Let X represent an observation from π[2] (the best
population) and let O represent an observation from
π[1]. Let X ∼ exp(λ) and O ∼ U(0,a) where λ > 0
and a > 0. To calculate Pr{X > O} we have the
following expression conditioning on O:∫ a

0

e−λo
1

a
do =

1− e−λa

λa
. (1)

In a similar fashion to find Pr{O > X} we have∫ a

0

(1− e−λo)
1

a
do =

e−λa + λa − 1

λa
. (2)
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We then combine expressions from (1) and (2) to ob-
tain

θ =
Pr{X > O}

Pr{O > X}
=

1− e−λa

e−λa + λa− 1
. (3)

Using θ = 1.3 to match Mata (1993), we set λ = 1.0
and solve (3) for a to arrive at a = 1.2747. We use
these parameter values in our simulation runs of this
model.
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Figure 1: F (t) for Best Exponential with Uniform at
θ = 1.3

Figure 1 shows the cumulative density functions
(CDFs), denoted as F (t), for the exponential and uni-
form populations of Example 1 from Mata (1993).
By construction, these CDFs provide us with the de-
sired values for Pr{X > O} (0.5652) and Pr{O > X}
(0.4348) to yield θ = 1.3. Generating random vari-
ates from each distribution using an inverse transform
with independent random number streams, we ob-
serve our simulated PCSbem results match standard
table values for θ = 1.3 (Bechhofer, 1959).

A closer look at Figure 1 illustrates what happens
when using CRNs. Note that the two CDFs cross
at approximately F (t) = 0.4, with the exponential
CDF larger for values of F (t) less than this point, and
the uniform CDF larger for values above this point.
Generating random variates from each distribution
using an inverse transform and CRNs, approximately
60% of the time (for any random number > 0.4) the
resulting exponential variate will be larger than the
uniform variate. So by using CRNs we have increased
Pr{X > O} and decreased Pr{O > X}. The “block-
ing effect” offered by CRNs has provided greater clar-
ification of the selection problem. In other words,
CRNs has increased our θ from 1.3 to .6/.4 = 1.5.
We use this new θ value to compare standard PCSbem

at θ = 1.5 with simulation results at θ = 1.3 using
CRNs in the following section.
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Figure 2: F (t) for Best Uniform with Exponential at
θ = 1.3

For another example, we use an exponential and
a uniform population, but this time model the uni-
form population as best. We again set λ = 1.0 and
θ = 1.3 and solve for a, yielding a = 1.9836. Simu-
lation results for PCSbem using independent random
number streams match standard tables at θ = 1.3. In
estimating the effect of CRNs in this scenario from
Figure 2, we observe that approximately 79% of the
time the resulting uniform variate will be larger than
the exponential variate. Here our θ increases from 1.3
to about 3.76. We compare simulation results in the
following section with standard BEM values to verify
this predicted increase in θ.

As a final illustration of the effect of CRNs, con-
sider the populations used in the first example above
but reduce θ to 1.2. Again setting λ = 1.0 and solving
for a, we obtain a = 1.3653. In plotting the CDFs we
see the same relationship as in Figure 1, except the
point where the CDFs cross is now approximately
F (t) = 0.4825, which gives us θ = 0.5175/0.4825 ≈
1.07. So for this model the use of CRNs has reduced
θ, which in turn will reduce PCSbem. As with our
previous examples, we compare simulation results in
the following section to verify this decrease in θ.

The most important observation to make from
the above examples, is that the use of CRNs does
not invalidate any of the assumptions necessary for
the MSP. We still have independence between repli-
cations and the probability that population j wins,
pj , j = 1, 2, is the same on every replication. How-
ever, the values of the pjs are changed through the use
of CRNs. For the examples used here, the resulting
changes can either increase or decrease θ, resulting in
an increase or decrease respectively in PCSbem for a
given v.

At this time we have not come up with an ap-
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proach to examine the effect on PCSavc analytically.
Intuitively, we expect a similar change in PCSavc for
the above examples since the same v independent
replications are included in the vk pseudo-replications.
However, as v gets even moderately large, the remain-
ing vk−v pseudo-replications without CRNs will sig-
nificantly outnumber the v replications with CRNs,
diluting any apparent effect derived from CRNs.

It is also important to note that the output of our
simulation is exactly defined by the CDFs used for our
random variate generation. Therefore, the full effect
of CRNs is translated into our model results. Clearly,
with even the most simple simulated systems, the ef-
fect of CRNs will be filtered by other interactions in
the model.

In the following section, we explore what effect
CRNs might have on more complex systems, by in-
ducing a range of correlations between our simple sys-
tem outputs to approximate various levels of filtering
the effect of CRNs.

4 EMPIRICAL RESULTS

Mirroring our analytical discussion we focus on k = 2
populations, and initially present results with X ∼
exp(1) andO ∼ U(0,1.2747). As a first step, we calcu-
late PCSbem and PCSavc with and without CRNs. All
simulation results are for 100,000 macro-replications
yielding PCS values with standard errors of approxi-
mately 0.0015. We use a maximum v of 27 to coincide
with Mata’s study (Mata, 1993). Our results are pre-
sented in Table 1 and clearly show an increase in both
PCSbem and PCSavc with CRNs.

It is important to note here that the PCSbem re-
sults without CRNs correspond to Mata as well as
with standard BEM tables (Bechhoffer, 1995). How-
ever, the PCSbem values using CRNs are significantly
different from Mata’s results. Specifically, Mata re-
ports a simulated PCSbem = 1 at v = 27, while our
simulated results show PCSbem = 0.86.

Our simulation results are supported by our an-
alytical results. In fact our simulated results using
CRNs at θ = 1.3 are nearly identical (average abso-
lute difference of 0.005) to the exact values at θ = 1.5
for v = 1, 2, . . . , 27 (Bechhofer, 1959). A similar com-
parison of simulated results using CRNs at θ = 1.2
with exact values at θ = 1.07 (generated using a
FORTRAN code provided by Goldsman 1995), yield
an average absolute difference of 0.004. Finally from
our model with the uniform population as best, our
simulated PCSbem values at θ = 1.3 using CRNs have
an average absolute difference of 0.0008 with the ex-
act PCSbem values at θ = 1.5 for v = 1, 2, . . . , 27.
These simulation results all support our predicted
changes in θ with CRNs. In addition, the very small
difference between the PCS values over a range of
v also supports our conclusion that we still have an
MSP.

Table 1: PCSbem and PCSavc With and Without
CRNs

PCSbem PCSavc

v No CRN CRN No CRN CRN
1 0.5657 0.6004 0.5658 0.6004
3 0.5995 0.6509 0.6085 0.6505
5 0.6229 0.6859 0.6326 0.7160
7 0.6424 0.7150 0.6530 0.7761
9 0.6579 0.7400 0.6714 0.8232
11 0.6718 0.7604 0.6875 0.8613
13 0.6855 0.7766 0.7009 0.8911
15 0.6982 0.7937 0.7145 0.9144
17 0.7110 0.8068 0.7256 0.9332
19 0.7218 0.8198 0.7371 0.9472
21 0.7315 0.8321 0.7475 0.9578
23 0.7401 0.8435 0.7574 0.9666
25 0.7476 0.8533 0.7665 0.9736
27 0.7567 0.8617 0.7756 0.9787

To consider the effect of CRNs on more complex
systems, we use our two populations from above and
induce correlation levels of 0.2, 0.4, 0.6, and 0.8. In
order to generate an exponential and a uniform vari-
ate with the desired correlation, we start with a multi-
variate normal random variate with the desired corre-
lation using a FORTRAN subroutine from Dagpunar
(1988). We then use a numerical approximation to
obtain the value of the normal CDF for each vari-
ate, and use these values as correlated uniform ran-
dom numbers to generate the exponential and uni-
form random variates. Table 2 shows the input cor-
relations to the multivariate normal generator and the
resulting sample correlations for the random numbers
and for the exponential and uniform random variates.
Note there is a separate column for the sample corre-
lation for the random variates depending on whether
the exponential or uniform population was modeled
as best (also indicates which was the first of the two
random variates generated). The sample correlations
were computed using the first 100 macro-replications
of the 27 random numbers/variates generated (2700
total observations for each population).

As expected, the use of independent random num-
ber streams provides a lower bound on both PCS val-
ues for each case (exponential as best or uniform as
best) over the range of correlations induced. Fig-
ures 3–6 illustrate increasing PCSavc and PCSbem with
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Table 2: Input Correlations and Resulting Sample
Correlations

Random Random
Random Variates Variates

Input Numbers Exp Best Unif Best
ρ ρ̂ ρ̂ ρ̂

0.0 0.013 0.024 -0.011
0.2 0.206 0.202 0.172
0.4 0.396 0.373 0.358
0.6 0.588 0.539 0.538
0.8 0.788 0.703 0.707

CRN 1.000 0.863 0.863

increasing correlation. When the uniform population
is modeled as best, the PCS values using CRNs pro-
vide an upper bound on the other PCS values. When
the exponential population is modeled as best, the
PCSbem values using CRNs do not provide a similar
upper bound, but instead fall between the PCSbem

values using input correlations of 0.4 and 0.6. This
may be explained in part by looking back at Fig-
ure 1. Notice how close the two CDFs are together
for random numbers less than 0.4. It is in this region
where the uniform population will always win under
CRNs. But in this same region using highly corre-
lated random numbers (roughly greater than 0.6), the
uniform population is no longer guaranteed to win. In
some cases where both random numbers are less than
0.4 and the larger of the pair is used to generate the
exponential variate, the exponential population may
pick up an additional win. These additional wins in-
crease the PCSbem values at correlations such as 0.6
and 0.8 beyond the PCSbem values using CRNs. The
PCSavc values under CRNs also fail to provide an up-
per bound for values of v ≤ 5. For values of v = 6 and
beyond, the PCSavc under CRNs does bound PCSavc

at all induced correlations.
PCSavc values behave as predicted when the uni-

form population is modeled as best at all induced cor-
relations and with CRNs. This means we see less of
an increase in PCSavc with increasing correlation than
we see in the corresponding PCSbem values. However,
when the exponential population is modeled as best,
PCSavc values appear to benefit more from the use
of CRNs and from increased correlation. Explaining
this behavior is an area of future research.
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Figure 3: Correlation Effect on PCSbem with Best
Population Exponential at θ = 1.3
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Figure 4: Correlation Effect on PCSavc with Best
Population Exponential at θ = 1.3

5 CONCLUDING REMARKS

In this paper we have examined both analytically and
empirically the effect of CRNs in some simple two
population MSPs. The models used for our popu-
lations allowed us to represent the simulation out-
put from each of our populations as CDFs. We were
then able to directly quantify the effect of CRNs on
PCSbem values. For our examples we showed that the
use of CRNs does not invalidate any required condi-
tions for an MSP, and we were able to quantify the
resulting change in PCSbem through the changes in
θ. We saw some similar changes in PCSavc, but the
results are far from predictable at this point in time.
The AVC results are included to provide a compar-
ison with the BEM results. Additional research is
needed to understand how CRNs affect PCSavc. The
significant variation in the magnitude as well as the
direction of the change in θ among our examples, il-
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Figure 5: Correlation Effect on PCSbem with Best
Population Uniform at θ = 1.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30

PCSavc

v

ρ = .8

ρ = .6

ρ = .4

ρ = .2

Figure 6: Correlation Effect on PCSavc with Best
Population Uniform at θ = 1.3

lustrates that the effect of CRNs on an MSP is sensi-
tive to the underlying distributions of the individual
systems. This observation is significant since without
the use of CRNs, BEM results for a given v depend
only on the individual pjs. However, AVC results do
show a weak distributional dependence on the under-
lying performance measures (Miller et al. 1997).

In attempting to examine the effect of CRNs on
MSPs involving more complex systems, we induced
various levels of correlation among the populations
used in our first two examples. Our results in gen-
eral showed an increase in PCSbem and PCSavc val-
ues with increasing correlation. However, our results
also demonstrate that for our simple systems, the ef-
fect of CRNs in an MSP cannot be accurately cap-
tured through induced correlation in the system in-
puts. Even when matching our induced level of corre-
lation in the system inputs with the resulting sample
correlation in the system outputs with CRNs, we ob-
tained significantly different results.
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