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ABSTRACT

A methodology is presented which alows comparison
between models under different modeling paradigms.
Consider the following situation: Two models have been
constructed to study different aspects of the same system.
One model simulates a fleet of aircraft moving a given
combination of cargo and passengers from an onload
point to an offload point. A second model is an
optimization (linear programming) model, which for
given cargo and passenger requirements, optimizes
aircraft and route selection in order to minimize late- and
non-deliveries. The optimization model represents a
much more aggregated view of the airlift system than
does the simulation. The two models do not have
immediately comparable input or output structures,
which complicates a comparison of the two models
outputs. A methodology is developed to structure this
comparison.

Two models which compare favorably using this
methodology are considered covalid models. We define
the covalidity of models in the narrow sense as models
which perform similarly under approximately the same
input conditions. Structuraly different models which are
covalid (in the narrow sense) may hold the potentia to
be used in an iterative fashion to improve the input (and
thus, the output) of one another. Ultimately it is hoped
that we may, through such a series of innovations, effect
a convergence to valid representations of the real-world
situation. We define such a condition as covalidation in
the wide sense. Further, if one of the models has been
independently validated (in the traditional meaning),
then we may effect a validation by proxy of the other
model through this process.
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1 INTRODUCTION

Mathematical models provide representations of real-
world systems. These representations may take many
forms: simulation, optimization, or regression, to name a
few. Each requires a set of parameters and independent
variables as input, employs some set of rules and
relations, and returns a (set of) dependent variable(s) as
output. It is likely that a real-world system has more
than one model type which is used to characterize some
unique aspect of the system. For instance, a system
which consists of implementing a schedule of events of
variable duration could be modeled as a simulation in
order to determine the (distribution of) total time
required to run the schedule. Such amodel is descriptive
in nature and could be used to forecast resource or
personnel requirements.  Alternately, an optimization
model may be created in order to determine the shortest
length of time in which the schedule may be
implemented. This model optimizes some aspect of the
system and could be used to study policy changes, such
as improvement of the very schedule driving the
simulation model. Either model (or both) may be avalid
representation of the real-world system in question, and
each should give results appropriate for its respective
purpose.

In order for models to be useful, they must
accurately model the rea-world system. Model
validation is defined as “substantiating that the model,
within its domain of applicability, behaves with
satisfactory accuracy consistent with the study
objectives’ (Balci 1994). There are a myriad of
techniques available to assess the validity of simulation
models (see Balci 1994, Sargent 1996b, or Sargent
1996a for examples), and many of these techniques may
be applied to more general classes of models. These
techniques include both objective and subjective tests of
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models, assessing the validity of model assumptions,
model structure, behavior of model execution, and the
model’s output performance, among other tests.
Depending on the study, different aspects of model
validation may be of paramount importance. This effort
concentrates on models' output performances.

There is a large body of literature relating to
determining the output validity of a model for which
real-world data can be obtained (see Law and Kelton
1991, p. 314-322 or Balci 1994 for examples and further
references). The use of similarly structured models
(specifically, simulations) has been proposed to assist in
establishing model credibility (Diener, Hicks, and Long
1992). Often, the system being represented cannot be
sampled in order to make comparisons. In such acase, a
method of model output validation is not as obvious.

In this paper, we propose a method of covalidation,
possibly resulting in a validation by proxy, in which
dissimilarly structured models (e.g., optimization and
simulation) representing the same real-world system for
which output data are unattainable may be contrasted.

The rest of this paper is organized as follows. The
next section provides a background to the specific
application which generated the requirement for this
research. The following section introduces the surrogate
models used to test the developed methodology. The
next three sections present methods for model
covalidation. The first of these defines relevant terms.
The second describes an iterative technique designed to
exploit the crossflow of information between dissimilarly
structured models. The third section presents a marginal
analysis approach to model comparison. Following these
sections, the methodology is demonstrated using
surrogate test models. We conclude the paper with a
summary and recommendations for further research.

2 MOTIVATION

The ultimate goal of this research is to contrast two large
scale models. One model is a large scale discrete event
simulation model which enjoys a relatively high level of
acceptance. The other is a large scale linear
programming model designed to optimize the same
general system modeled by the simulation. The
simulation model is used by the Air Mobility Command
(AMC) and is known as the Mobility Analysis Support
System (MASS). The Airlift Flow Module (AFM) is the
simulation core of MASS. It simulates the movement of
detailed cargo requirements through the airlift system
based on the availability of aircraft, air routes, and air
base infrastructure and resources.

The other model to be studied is a large scale
optimization model developed jointly by the Naval
Postgraduate School (NPS) and the RAND Corporation

known as the NPS/RAND Mobility Optimizer (NRMO)
(Morton, Rosenthal, and Weng 1996). NRMO models
the strategic airlift system as a multi-period, multi-
commodity network-based linear program (LP) with
many side constraints. Use of the model is intended to
provide insight into mobility problems such as fleet and
infrastructure adequacy, and the identification of system
bottlenecks.

NRMO’s minimization objective function is the
weighted sum of three sub-objectives. First, a large
relative weight is attached to the non-delivery of cargo.
Next in relative importance is minimizing the lateness of
cargo deliveries. Findly, athird, relatively small weight
is applied to minimizing the penalty for performing
certain undesirable actions (such as deadheading crews).
The weights applied to each sub-objective are subjective,
but are generally ordered in that the weight for non-
delivery is far greater than the weight for late delivery
which, in turn, is far greater than the weight of the
penalty.

The two models have many differences as well as
similarities. The similarity to be capitalized on in this
research is that both model strategic airlift and provide
certain common outputs, such as the amount of cargo
delivered. A major difference between the modelsis that
NRMO optimizes the airlift schedule while MASS
schedules flights based on the next availability of aircraft
and a prioritized list of routes. Also, MASS models
most event durations as random variables, while NRMO
only models a mean value. A third major difference is
that while MASS provides a detailed look at many
aspects of the airlift system, NRMO represents a much
more aggregated view of the airlift system.

The MASS simulation is currently in use by AMC
Studies and Analysis Flight (AMCSAF), and though a
formal validation has not occurred, its results are
generally accepted as valid. One obstacle to a
traditional, output-based validation of either model is
that there is no way to collect real-world data from a
strategic airlift system due to the infrequency of actual
large-scale conflicts. Desire by AMCSAF to have some
basis for the use of the NRMO optimization model has
provided a motive to compare and contrast the two
models.

3 TEST MODELS

As an investigation into the feasibility of the proposed
methodology, very small scale test models are devel oped
which are based on the MASS and NRMO models.
First, a small scale simulation is constructed which
models the movement of simple blocks of cargo with a
fleet of identical aircraft from a single onload point to
one of two offload points, after which aircraft recover to
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the onload point for further missions. The proportion of
movement to each offload is user defined.

A small LP is aso created which optimizes the
amount of cargo that can be moved across the same
airlift system as the simulation. Input into this model is
an estimate of the efficiency of ramp space usage, which
should account for the fact that ramp space may not be
optimally scheduled in practice. This LP outputs, along
with the total amount of cargo moved, the amount of
cargo moved to each offload, thereby implying an
optimal proportion of use for the two offload points.

Data used in these models are notional only and are
not intended to resemble any actual airlift system data.
Likewise, results obtained from these models are not
intended to mimic those of the MASS or NRMO models,
or those of any actual airlift scenario.

4 DEFINITIONS

First, a framework for covalidation is established. In
general, the covalidation of two (or more) models of
similar or dissimilar structure representing the same real-
world system is the process of comparing the models,
mindful of each individual model’s domain of
applicability, with the object of relative substantiation.
Covalidity can be thought of as a matter of degree.
Covalidity in the narrow sense is defined as a description
of models which perform similarly under approximately
the same input conditions. The extent to which models
may be covalid in the narrow sense further depends upon
the purpose of the models. For models with similar
purposes (but perhaps different levels of detail or
different modeling paradigms, such as two simulations of
the same system with different levels of aggregation), the
concept of narrow sense covalidity applies directly. For
models with dissimilar purposes (such as the comparison
between an optimization and a simulation), the definition
may imply the ability to effect a meaningful cross-flow
of information between the models.

In the case of dissimilar models, it is assumed that
certain outputs from one model may contain information
useful as input to the other model. If such a condition
exists, it is possible the models may be used iteratively to
enhance the performance of one another, resulting in a
type of output convergence. Demonstrating such an
iterative scheme is the secondary focus of this research.

Covalidity in the wide sense is defined as a
description of models which not only are covalid in the
narrow sense, but also which can be shown to be valid
representations of the real world system. Further, if one
of the models has been independently validated from the
perspective of its intended use, models that are covalid
relative to that model are considered valid by proxy.

5 INFORMATION CROSSFLOW

In dealing with dissmilarly structured models, the
differences between the models must be carefully
examined and exploited. Typically, dissimilarly
structured models not only have different input
(including both variable and parameter) sets, but could
also have different levels of aggregation, as well as
different capabilities in terms of modeling the actua
system. In order to make a reasonable assessment of the
models covalidity, however, each of these differences
must be examined.

Different levels of aggregation are common between
structurally different models. The MASS simulation
models the airlift system to a high level of fidelity
compared to the NRMO optimization model. When
comparing such models, the designed level of
aggregation should be maintained for each model. In
other words, the fidelity of models should not be
compromised for the sake of “fair comparison.”
Optimistic optimization results could prove to be the
result of unwarranted aggregation. For example, the
infinite divisibility of units of cargo in the optimization
could result in more cargo movement than is actualy
possible. By maintaining the appropriate levels of
fidelity in each model, the covalidation process may aso
provide information on the appropriateness of such
aggregation.

Whether to use the different modeling capabilities
which exist between models should be carefully
considered on a case by case basis before model
comparison is performed.  Generally, the “extra’
capabilities of one model compared to the other model
should be switched off, if possible. For example, since
NRMO can effectively model aerial refueling aircraft
operations while MASS cannot, the NRMO capability
should be turned off during the comparison. If thisis not
possible, arrangement of the input variables or
parameters should be such that the capability has no
effect.

An exception to this general rule occurs when
differences inherent in the modeling paradigms used
allow one model to adequately model a system aspect
while the other cannot. A simple example of this is that
NRMO does not model the variability inherent in many
airlift processes, relying instead on averages, while
MASS models the random distributions of such
variables. This difference in capabilities accounts for a
fundamental difference between the two models, one for
which comparisons in terms of covalidation are desired.

A difficult area is ensuring a rough parity in inputs
between the two model types. Even when a particular
input feeds both models, if the level of aggregation for
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this input is different between the two models, special
care must be taken to ensure equitable representation.

The real trick is to select outputs of one model
which will serve as inputs to the other. In generd, it is
not clear that finding such information to crossflow is
possible. However, since optimization models provide
the “best solution” while simulation models can provide
measures of system parameters, it seems reasonable that
information could be meaningfully exchanged between
these model types.

Here, an iterative method is employed in which
inputs may converge. The purpose of this iterative
scheme is to effect the crossflow of information between
the models. That is, one model’s output (or afunction of
that output) is supplied as input to the other model. For
instance, NRMO provides as output the optimal selection
of aircraft routes, while MASS accepts as input the
frequency of route usage. On the other hand, MASS
provides output which can be tranglated to the efficiency
of parking space use, an input parameter required by
NRMO. This iterative scheme is described in Figure 1.
Though the figure specifically represents the application
of simulation and optimization (e.g., MASS and NRMO,
respectively) iteration, its concept is clear enough for
genera application.

In Figure 1, the i subscript denotes the current
iteration. Each model has two input sets: X* (or X°) is
standard input for each model and X°° (or X*) is input
which can be derived from or modified in reaction to the
other model’s output (input from the optimization to the
simulation, or vice versa). For the first model execution,
some (subjective) nomina values are placed on the
inputs which, during later iterations, will be implied from
output of the other model. Likewise, certain output, Y*
(or Y©), is not used by the other model while Y= (or
Y °9) contains output which is utilized by the other model
(output from the simulation to be used as input to the
optimization or vice versd). The output subset that is
used by the other model is “filtered” appropriately to
make it usable as input for the other model. This
filtering can be redlized as a direct mathematical
relationship or reflected as changes in policy or by
adding model constraints.

Once every cycle, a check is made to determine if
the stopping criterion has been met. This criterion can
be that a model’'s input has converged. Alternatively,
iterations may indicate that a point of diminishing returns
has been reached with this process. Either way, the last
iteration inputs are deemed those which are as close as
possible, and they are used as the experimental design
center for the ensuing model comparison.

Prior to developing the particulars of model
comparison, a summary of the steps taken to achieve a
crossflow of information is offered. First, the
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In the figure:
i istheiteration number
last isthe final iteration number
N implies a nominal value

Simulation input/output

XZisinput specific to simulation

X% =g(Y®9) isinput to smulation which is
derived from output of optimization

Y*is output of simulation

Y is output from simulation which isto be
used as input to optimization

Optimization input/output

X© isinput specific to optimization

X® = f(Y®) isinput to optimization which is
derived from output of simulation

Y is output of optimization

Y °is output from optimization which isto be
used as input to simulation

Figure 1: Iterative Scheme

input/output structures of the models are carefully
studied and appropriate adjustments are made due to the
differences in level of detail and capability. Next,
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input/output links are determined which will alow for a
potentially meaningful crossflow of information.
Finally, the information provided by these links is used
in an iterative fashion aimed at improving both models.
Convergence of these inputs should indicate a state
where the models, as closely as possible, represent the
same scenario.  Further, convergence in the model’'s
outputs provides the first indication that the models are
performing similarly. This is further examined in the
following section.

6 MARGINAL ANALYSIS

In order to determine the level of model correspondence,
a method of output comparison is required. Metamodels
constructed across a relatively small experimental design
of interesting and/or relevant input variables may
provide a convenient means of effecting this comparison.
Both models were exercised (during the iterative
scheme) at the same basic input settings. This setting
becomes the center point of an experimental design
aimed at estimating the local gradients of each model. A
comparison of these gradient estimates indicates whether
the models respond in a similar fashion to perturbations
in the selected inputs. However, complete agreement of
these estimates between metamodels is not necessary for
asserting that the models compare favorably.

A method is developed which alows comparison
between the relative closeness of the model outputs as
well as between estimates of gradients of the models
representing the sensitivity of a selected output to a set of
common inputs. Using this method, we are able to
investigate the relative predictive value of the
metamodels (through the output comparison) as well as
compare the metamodels abilities to provide a
description of the physical system (through comparison
of local gradients).

The next required task for model comparison is the
creation of an experimental design. The design for this
study is based on the desire to evaluate the sensitivities
of a single output to changes in key inputs. The choice
of design is dependent on the study. The number of
model executions to be performed is restricted by the
size of the models, the number of inputs to be varied, the
desired design resolution, and the number of replications
to be made at each design point (to reduce the output
variability of simulations) (Box and Draper 1987).

The result of the iterative scheme is two sets of
model inputs (to include parameters and variables), one
for each model, which correspond nearly as possible to
the inputs and outputs (as applicable) of the opposing
model. The resulting convergence of certain inputs is
valid only for the design point upon which the iterative
scheme was performed. Assuming that the resulting

inputs (whether variable, parameter, or logical rule) are
constant across any large experimental design is
incorrect in general. It is clear that at each design point
across the common experimental design the iterative
method may yield convergence to different sets of
specific model inputs, and so this iterative method would
require repeating at each point in a wider experimental
design. For instance, a large change in the number of
available aircraft (or any resource) may affect optimal
routing. For this reason, we assume that design points
are very close to one another and that the difference is
unimportant.

7 ILLUSTRATIVE EXAMPLE

In order to demonstrate the use of the proposed
methodology, an example is given using very small scale
test models which represent the MASS and NRMO
models. Data used in these small scale surrogates is
notional only and no inferences should be made from the
data or results to either the MASS and NRMO models or
to any actual airlift scenario.

The scenario posed is that 50 similar aircraft must
fly as many missions as possible to either of two airbases
(A and B) in 15 days. The airbases can handle 5 and 10
aircraft maximum on the ground (MOG) at a time,
respectively, and are different distances from the home
base. Sensitivities of both the number of aircraft and the
amount of available MOG are of interest here. In the
simulation (Baby MASS) the flight times to (and from)
each base and the ground time of the aircraft at bases A
and B are random variables, while the optimization
(Baby NRMO) assumes a mean value. (See Appendix
for a more detailed account of both the simulation and
optimization models.)

The simulation accepts as input aratio for the use of
the two bases, while the optimization yields optimal
values for thisratio. Similarly, sinceit is not possiblein
practice to perfectly schedule the ground spaces
available at the bases (as an optimization model would),
the optimization accepts as input a MOG efficiency
factor. The simulation may yield a practical maximum
number of aircraft that can be serviced at a base from
which a better estimate for MOG efficiency may be
derived. The iterative scheme uses this information to
attempt convergence to some “optima” ratio of base
visitation and MOG efficiency.

Table 1 shows the results of the iterative scheme
with 10 runs being made at each iteration (for the
simulation). A fifty-fifty split was used as the nominal
ratio of aircraft sent to each base, and 1.0 was used asthe
gtarting MOG efficiency. When the simulation results
indicated a bottleneck at a base, a MOG efficiency was
calculated based on the number of aircraft that were
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actually able to be serviced at the base and the amount of
time the aircraft had to be serviced at the base (see
Appendix). For a Baby NRMO run, the number of
planes routed to each base are determined. Thisratio is
used as direct input for the subsequent Baby MASS run
(see Appendix).

Table 1: Iterative Scheme for Test Models

Baby MASS Baby NRMO

i| A B |Totd | A B | Totd
05 | 05 | €% |ef.>] 10
1| 84 | 914 [ 1754 520 | 1400 | 1920
0.286 | 0.714 | « % | eff. > | 0.938
2| 507 | 129 [179.7| s6.8 | 131.3 | 1882
0.318 | 0.682 | « % | eff. > | 0.926
3] 571 [ 1273 | 184.4 | 57.8 | 1296 | 187.4
0.324 | 0676 | « % | eff. > | 0.898
4] 573 [ 1234 | 180.7 | 60.0 | 125.6 | 185.6
0.340 | 0.660 | < % | eff. > | 0.876
5| 50.7 | 1204 | 180.1 | 61.7 | 122.6 | 184.3
0.352 | 0.648 | « % | eff. > | 0.888
6| 62.6 | 1221 [ 184.7| 60.7 | 124.3 | 1851
0.345 | 0.655 | < % | eff. > | 0.902
7| 62.2 | 124 | 1862 5907 | 126.2 | 185.9
0.337 | 0.663 | « % | eff. > | 0.901
8| 60.3 | 1239 [ 1842 50.7 | 126.2 | 185.9
0.338 | 0.662 | « % | eff. > | 0.901
o] 60.3 | 1239 | 1842 507 | 126.2 | 185.9

As seenin Table 1, a stopping criterion is met since
the Baby NRMO results converge in the 9" iteration.
The input convergence is shown graphically in Figure 2.
The final output values indicate that an average of 184.2
missions are flown in Baby MASS (with standard error
of 2.21) and 185.9 missions are flown in Baby NRMO,
and the comparison of these output values across the
iterations is shown in Figure 3. The converged flying
ratios and MOG efficiency are then used during the
experimental design, for gradient estimation.

The metamodels were created using the number of
aircraft and the amount of MOG a base B as
independent variables perturbed over a 2° plus center
point experimental design. (MOG at base B was
selected since base B proved to be a system bottleneck.)
The number of planes was varied plus and minus 10
percent (to 55 and 45 planes, respectively) and the MOG
at base B was varied by plus and minus 1 unit of MOG
(to 6 and 4 MOG units, respectively). The number of
missions flown is the dependent variable.

g —0—©—9o
08 MOG eff.
0.7
0.6 Base A
0.5
0.4
0.3 Base B
0.2

0.1

base ratios, MOG efficiency

1 2 3 4 5 6 7 8 9 10

iteration

Figure 2: Base Ratio, MOG Efficiency Convergence

195

190 ‘\\ Baby NRMO

185

Missions Flown

180
Baby MASS

17512345678910

iteration
Figure 3: Thruput Improvement

The regression results are summarized in Table 2.
Note that for the Baby NRMO model, the only error
possible would come from specification bias. Since
there is no error in Baby NRMO'’s metamodel, it is clear
that none of the design points are outside the critical
region found at the design’s center, i.e., the optimal basis
did not change at any design point. The metamodels are
also shown graphically in Figure 4 and 5.

Table 2: Comparison of Test Models

[ Baby MASS [Baby NRMO| Difference
[Mean 177.5 185.9 8.4
Planes 12.7 13.0 3
IMOG at B 13.7 11.2 -25
Interaction 3.6 0 -3.6
coeff. std. err. 1.81 0 1.81
SSR 14418 11755 766
SSE 4159 0 4158
SST 18576 11755 4924
F 53.2 ¥ 2.8
R’ 0.776 1 0.155
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Figure 4. Baby MASS Metamodel

50— 50
25 Aircraft
0 e 45
MOG

Figure 5: Baby NRMO Metamodel

The third column in Table 2 is formed by
performing a regression of the differences between the
Baby NRMO and the Baby MASS data. The relative
insignificance of the overall comparison model
(marginally significant at a = 0.05) implies the similarity
between the two models, with most of the difference
reflected in the interaction term. However, the relatively
large difference in mean values between the two models
(compared to the center point arrived at through the
iterative scheme) is a result of the Baby MASS model
being evaluated across a relatively wide experimental
region. The appropriate ratios of base A to B could be
re-iterated at each design point or the design space could
be narrowed in order to minimize this difference.
Obvioudy, however, thisis impractical in the case of the
MOG at B factor, since the range is plus and minus one

MOG unit, which cannot be fractionalized in the
simulation.

8 CONCLUSIONSAND FUTURE RESEARCH

We have demonstrated a method which forms
comparisons between models under different modeling
paradigms. We have aso introduced the notion of
covalidity as two models which compare favorably using
this methodology.

An insight taken from this research is the importance
of not assuming that model starting conditions are static
across wide experimental regions. In order to take
advantage of our method of marginal analysis, keeping a
narrow experimental region is vital since the input
conditions arrived at in the iterative scheme likely have a
narrow band of usefulness.

Further research is being conducted in this area,
specifically the application of these covalidation methods
to the actual MASS and NRMO models.

APPENDIX A

Figure 6 shows the basic network used in the test models.
In the network for the base case (center of experimental
design), 50 aircraft are sent from Home to either A or B.
At A or B, the aircraft are unloaded and serviced, and
they return to Home. Scenarios for both the simulation
and the optimization cover 15 days. The flight and
service time distributions shown are used in the
simulation, but the optimization formulation only reflects
the mean times.

N(2.25,.225) o A
Ratioto A =0.5

Home |«

Pyl

2

= exp(.5)
% MOG=10

(GeT'sz’ TN

S0

exp(.5)
MOG=5

Figure 6: Test Model Network
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The optimization formulation is shown below. The
basic formulation maximizes the number of missions
flown. Constraints are added which limit the number of
planes utilized each day to 50 and the number of planes
serviced by a base to some fraction (MOG efficiency) of
the available MOG for the base. Not shown is an
additional constraint which accounts for the amount of
time required for theinitial aircraft to reach the bases.

maximize thruput = é é X(b,t)
t b

subject to:

a A X(b, flying(t)) £ plane" t
b flying(t)
X(b,t) £ MOGeff © MOG(b)" b,t

X(b,t)3 0

where

bisbase A or B

tisday 1 through 15

X isnumber of missions arriving at b during t

flying is a vector which accounts for the flight
days during amission to b arriving at t

plane istotal number of aircraft available

MOG is the maximum number of aircraft
simultaneoudly serviceable by b

MOGeff is a measure of how efficiently MOG
can be used if b is bottlenecked

The equations which derive the input of one test
model from the output of the other are specified below.
The equation which filters Baby MASS output into Baby
NRMO input calculates the fraction of MOG which the
simulation could actually use at a base, given that the
base was bottlenecked throughout the simulation.

# missions
# days
= MOGeff missions/ MOG

MOG eff.= . avail. MOG / day

The equation which filters Baby NRMO output to
Baby MASS input determines the ratio a which the
Baby NRMO optimization flies missions to each base (A
and B). Asafunction of total thruput to a base over the
entire fifteen day scenario, the number of missions flown
per day is determined by how many days to which each
base is flown. In this scenario, base A was flown to on
13 of the days, and base B was flown to on 14 days.

A _Tota to A/# daysflownto A
B Total to B/# daysflownto B
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