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ABSTRACT

We present a heuristic that provides a nonparametric
estimate of the mean-value function of a nonhomo-
geneous Poisson process having a long-term trend or
some cyclic effect(s) that may lack sinusoidal sym-
metry over the corresponding cycle(s). This heuristic
is a multiresolution-based method that allows one to
estimate the overall long-term trend of the process at
the lowest resolution and then add the details of the
process associated with progressively smaller periodic
components at progressively higher resolutions. In
addition, we present an algorithm for generating re-
alizations of nonhomogeneous Poisson processes with
the estimated mean-value function in simulation ex-
periments.

1 INTRODUCTION

In this paper we focus on arrival processes, and more
particularly, arrival processes that can be classified as
nonstationary point processes. These processes have
the characteristics that we are able to observe the
exact arrival time of each entity, and the arrival in-
tensity changes over time. Under certain assumptions
a nonstationary arrival process can be represented as
a nonhomogeneous Poisson process (NHPP) (Çinlar,
1975). Using NHPPs, we can accurately represent a
large class of arrival processes encountered in prac-
tice.

An NHPP {N(t) : t ≥ 0} given by

N(t) = # of arrivals in (0, t] for all t ≥ 0

is a generalization of the Poisson process in which
the instantaneous arrival rate λ(t) at time t is a non-
negative integrable function of time. The mean-value
function of the NHPP is defined by

µ(t) ≡ E[N(t)] for all t ≥ 0;

and the relationship between the rate function and
the mean-value function is

E[N(t)] =

∫ t

0

λ(z) dz for all t ≥ 0.

The probabilistic behavior of the NHPP is com-
pletely defined by the rate or mean-value functions.
The literature in this area discusses both paramet-
ric and nonparametric methods for estimating the
NHPP rate function. To model arrival processes hav-
ing several periodic effects or a long-term trend (or
both), Kuhl, Wilson, and Johnson (1997) utilized an
NHPP whose rate function is of the type (paramet-
ric form) exponential-polynomial-trigonometric with
multiple periodicities (EPTMP).

In this paper, we propose a heuristic to obtain a
nonparametric estimate of these types of processes.
In particular, this heuristic focuses on processes hav-
ing several nested cyclic effects so that each larger
cycle (period) includes an integral number of smaller
cycles; moreover, although successive cycles of a given
length may have different numbers of expected ar-
rivals due to (for example) a long-term trend, all cy-
cles of the same length are similar in the sense that
the same cumulative percentage of each cycle’s ex-
pected arrivals is achieved at the same relative po-
sition within the cycle. The benefits of this non-
parametric approach include the ability to more accu-
rately model asymmetric periodic components with-
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out (a) having to include a large number of trigono-
metric rate components (as is often required in some
parametric approaches); or (b) having to sample from
a lengthy historical record (as in trace-driven simula-
tion).

2 THE ESTIMATION PROCEDURE

We have developed the heuristic method below in
an attempt to represent the periodic behavior and
long-term trends exhibited by many nonhomogeneous
Poisson processes in such a way that the known ar-
rival patterns can be represented by fewer parameters
than are required by an EPTMP-type rate function.
This method can be applied to many arrival processes
for which the following two assumptions hold:

Assumption 1 There are p distinct cycle lengths
(periods)

b1 > b2 > . . . > bp

such that bi is an integral multiple of bi+1 for i =
1, 2, . . ., p − 1. Moreover, the time horizon (0, S] is
taken such that S is an integral multiple of b1.

Assumption 2 Within each cycle [(j − 1)bi, jbi) of
length bi (1 ≤ i ≤ p), the buildup over time
t = (j − 1)bi + s of the cumulative percent-
age [µ(t) − µ((j − 1)bi)] / [µ(jbi)− µ((j − 1)bi)] of
the cycle’s expected number of arrivals is described by
the same function Ri(s) of the time s that has elapsed
since the beginning of the cycle so that

Ri(s) ≡
µ((j − 1)bi + s)− µ((j − 1)bi)

µ(jbi)− µ((j − 1)bi)

for all s ∈ [0, bi) and for j = 1, 2, . . . .

This method uses a monotonically increasing func-
tion to represent each periodic component and the
long-term trend. A type of multiresolution analysis
is performed similar to that of wavelet multiresolution
analysis. At the lowest resolution, Resolution 0, we
look at the overall arrival process which may contain
long-term trends over time. Then as we increase the
level of resolution, more detail is added. The levels
of resolution we consider are those that correspond
to the periodic components. If there are p periodic
components present, Resolution 1 will correspond to
the largest period b1 and Resolution p will correspond
to the smallest period bp.

For Resolution 0, we take

R0(t) ≡ µ(t)/µ(S) for all t ∈ (0, S];
and we estimate R0(t) by fitting an increasing func-

tion, R̂0(t), to the cumulative fraction of arrivals over

the time horizon (0, S]. (If no long-term trends exist,

a linear function will be fit to the cumulative fraction

of arrivals.) For Resolution i, i = 1, 2, . . . , p, we fit an

increasing function R̂i(s) to estimate the distribution

of the cumulative percentage Ri(s) of superimposed

arrivals for all s ∈ [0, bi), the full cycle associated with

Resolution i. That is, we will fit a curve to the cumu-

lative fraction of arrivals over the period. Note that

the fitted curve must have a value of 0 at the start of

the period and a value of 1.0 at the end of the period.

Also note that only fully observed periods should be

used when fitting the curve.

To estimate the mean-value function µ(t), we must

first estimate the functions Ri(s) for all s ∈ [0, bi)

and i = 0, 1, . . . , p (where b0 ≡ S). In stage i = 0, we

fit a monotonically increasing function R̂0(t) to the

points{
[jb1, N(jb1)/N(S)]T : j = 0, 1, . . . , S/b1

}
such that R̂0(0) = 0 and R̂0(S) = 1.

To estimate Ri(·) for stage i where 1 ≤ i ≤ p − 1,

we fit a monotonically increasing function R̂i(s) to

the points{
[jbi+1, Gi(jbi+1)]T : j = 0, 1, . . . , bi/bi+1

}
,

where

Gi(s) ≡

(S/bi)−1∑
`=0

N(`bi + s) −N(`bi)

N(S)
for s ∈ [0, bi)

is the cumulative percentage of arrivals observed up

to time s ∈ [0, bi), averaged over all observed cy-

cles of length bi; and we require that the function

R̂i(s) fitted for Resolution i must satisfy R̂i(0) = 0,

R̂i(bi) = 1.

To estimate Rp(·) for stage p, we let τ1, . . . , τN(S)

denote the observed N(S) arrival times and define

ηi = τi mod bp. Let η(1) < η(2) < . . . < η(N(S)) be

the corresponding ordered event times on the cycle

[0, bp) of the superimposed arrival process. Then we

fit a monotonically increasing function R̂p(s) to the

points {
[η(i), i/N(S)]T : i = 1, . . . , N(S)

}
such that R̂p(0) = 0 and R̂p(bp) = 1.

The final estimate µ̂(t) of the mean-value function

µ(t) is computed as follows:
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µ̂(t) = N(S)Q̂0(t) for t ∈ (0, S] (1)

where the Q̂i(t) for i = p, p − 1, . . . , 1, 0 are defined

iteratively as follows:

Q̂p(t) = R̂p (t− (jp,t − 1)bp) , (2)

and

Q̂i(t) = R̂i ((ji+1,t − 1)bi+1 − (ji,t − 1)bi) (3)

+ Q̂i+1(t)
[
R̂i (ji+1,tbi+1 − (ji,t − 1)bi)

− R̂i ((ji+1,t − 1)bi+1 − (ji,t − 1)bi)
]
,

and ji,t is the unique integer j such that

(j − 1)bi ≤ t < jbi.

Notice that for i = 0, 1, . . . , p − 1, Q̂i(t) repre-

sents a “refined” estimate of Ri(t mod bi) that de-

pends not only on R̂i(t mod bi) but also on Q̂j(t)

for j = i + 1, . . . , p. In particular, (3) shows that

each Q̂i(t) is the sum of two components: (a) the

estimated fraction of arrivals in the current cycle

[(ji,t − 1)bi, ji,tbi) of length bi that occur up to the

beginning time (ji+1,t − 1)bi+1 of the current cy-

cle [(ji+1,t − 1)bi+1, ji+1,tbi+1) of length bi+1; and

(b) the estimated fraction of arrivals in the current

cycle of length bi that also fall in the subinterval

[(ji+1,t−1)bi+1, t) of the current cycle of length bi+1.

With regard to (b), we see that

R̂i (ji+1,tbi+1 − (ji,t − 1)bi)

−R̂i ((ji+1,t − 1)bi+1 − (ji,t − 1)bi)

estimates the fraction of arrivals in the current cycle

of length bi that also fall in the current cycle of length

bi+1; and Q̂i+1(t) is in trun a “refined” estimate of

the fraction of arrivals in the current cycle of length

bi+1 that occur up to time t.

To illustrate how the estimate of the mean-value

function µ̂(t) is constructed, we will define the fol-

lowing notation. We will denote the mean-value func-

tion at Resolution ` by µ̂`(t). This will represent the

mean-value function containing the details associated

with resolutions up to Resolution ` and will exclude

the details associated with higher resolutions. This

amounts to setting p = ` in (1) such that

µ̂`(t) = N(S)Q̂0(t) for t ∈ (0, S] (4)
where the Q̂i(t) for i = `, ` − 1, . . . , 1, 0 are defined

iteratively as follows:

Q̂`(t) = R̂` (t − (j`,t − 1)b`) ,

and

Q̂i(t) = R̂i ((ji+1,t − 1)bi+1 − (ji,t − 1)bi)

+ Q̂i+1(t)
[
R̂i (ji+1,tbi+1 − (ji,t − 1)bi)

− R̂i ((ji+1,t − 1)bi+1 − (ji,t − 1)bi)
]
,

So, for ` = p, µ̂p(t) = µ̂(t). The following example

will illustrate this multiresolution fitting procedure.

3 AN EXAMPLE

We apply the above heuristic method to a realiza-
tion of an NHPP with a low long-term trend and two
periodic components. In terms of time units, the pe-
riodic components have periods of one week and one
day. The time interval we will consider (in days) is
(0, 35]. The underlying NHPP has the form of the
above heuristic, where the cumulative fraction of ar-
rivals for Resolutions 0, 1, and 2, respectively, have
the form

R0(s)=0.0258s+ 0.0000647s2, 0 < s ≤ 35,

R1(s)=0.2042s+ 0.04426s2

− 0.01772s3 + 0.001449s4, 0 < s ≤ 7,

R2(s)=1.1182s+ 0.7636s2− 0.8818s3, 0 < s ≤ 1.

The realization of this arrival process which we will fit
is shown in Figure 1. The data for this arrival process
was obtained using the variate generation method de-
scribed in Section 5.

To apply the heuristic method, we begin by fitting
curves at each resolution. Since this process contains
two periodic components, we will fit curves at: (a)
Resolution 0, corresponding to the long-term trend;
(b) Resolution 1, corresponding to the component
with a period of 1 week, so that b1 = 7 days; and (c)
Resolution 2, corresponding to the component with
a period of b2 = 1 day. For the construction of the
mean-value function, the points of importance at Res-
olution 0 are those that correspond to the cumulative
fraction of arrivals observed at the end of each Res-
olution 1 period. Therefore, in this example we fit a
curve to the observed cumulative fraction of arrivals
at the end of each week. This fitted function at Res-
olution 0, R̂0(s), is shown in Figure 2.

The next step in the heuristic method is to fit a
curve at Resolution 1 which is associated with a pe-
riod of 1 week. First, the cumulative fraction of ar-
rivals over each week are superimposed. Then, similar
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Figure 1: A Realization of the NHPP Having a Linear
Trend and Two Periodicities
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Figure 2: Fitted Function at Resolution 0, R̂0(s)
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Figure 3: Fitted Function at Resolution 1, R̂1(s)
0 0.5 1
Time (Days)

0

0.5

1

C
u

m
u

la
ti

ve
 F

ra
ct

io
n

 o
f 

A
rr

iv
al

s

    

Figure 4: Fitted Function at Resolution 2, R̂2(s)

to Resolution 0, the points of importance at Resolu-
tion 1 for constructing the mean-value function are
those that correspond to the cumulative fraction of
arrivals observed at the end of each period at Res-
olution 2. Therefore, in this example we fit a curve
over the period of 1 week to the observed cumulative
fraction of arrivals at the end of each day of the week.
This fitted function at Resolution 1, R̂1(s), is shown
in Figure 3.

Finally, we fit a curve to Resolution 2 which is as-
sociated with the smallest period of 1 day. First, the
cumulative number of arrivals over each day are su-
perimposed. Then, a function is fit to these points
over a period of one day. The resulting fitted func-
tion for Resolution 2, R̂2(s), is shown in Figure 4.

After fitting curves at each resolution, we construct
the estimated mean-value function. This procedure
is presented graphically in Figures 5–7. To show how
the mean-value function is constructed, we will use
the notation for the mean-value function at Resolu-
tion ` along with a graphical representation of the
procedure at each step. For clarity, these Figures 5–
7 only show the first 14 days of the 35-day interval.
The process of constructing the mean-value function
begins by calculating the mean-value function at Res-
olution 0, µ̂0(t), for t ∈ (0, 35]. That is, we scale the
Resolution 0 curve (fit to the cumulative fraction of
arrivals over (0, 35]) by N(S) (the estimate of the
expected number of arrivals in (0, 35]). That is, we
calculate

µ̂0(t) = N(S)Q̂0(t) = N(S)R̂0(t), t ∈ (0, 35].

The resulting fitted mean-value function at Resolu-
tion 0 is shown in Figure 5.

The next step is to add the details of the weekly
periodic component to the mean-value function. This
is done by calculating µ̂1(t), t ∈ (0, 35]. Over each
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Figure 5: Fitted Mean-Value Function at Resolution
0, µ̂0(t)
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Figure 6: Fitted Mean-Value Function at Resolution
1, µ̂1(t) (Solid Line) Superimposed on µ̂0(t) (Dashed
Line)
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Figure 7: Fitted Mean-Value Function at Resolution
2, µ̂2(t) (Solid Line) Superimposed on µ̂1(t) (Dashed
Line)
week, the fitted Resolution 1 curve is scaled by the
expected number of arrivals in that week. Here, for
the first week from equation (4) we have

µ̂1(t) = N(S)Q̂0(t)

= N(S)R̂0(7)Q̂1(t)

= N(S)R̂0(7)R̂1(t), t ∈ (0, 7].

In a similar manner using equation (4), we calculate
the mean-value function at Resolution 1 for the sub-
sequent weeks. The resulting mean-value function at
Resolution 1 is shown in Figure 6.

Finally, we add the details of the daily periodic
component to the mean-value function. To do this,
we calculate µ̂2(t), t ∈ (0, 35], the mean-value func-
tion at Resolution 2. Over each week, the fitted Res-
olution 2 curve is scaled by the expected number of
arrivals in that day. Here, for the first day from equa-
tion (4) we have

µ̂2(t) = N(S)Q̂0(t)

= N(S)R̂0(7)Q̂1(t)

= N(S)R̂0(7)R̂1(1)Q̂2(t)

= N(S)R̂0(7)R̂1(1)R̂2(t), t ∈ (0, 1].

In a similar manner using equation (4), we calculate
the mean-value function at Resolution 2 for the sub-
sequent days. The resulting mean-value function at
Resolution 2 is shown in Figure 7. Since only two
periodicities are present in the process, the final es-
timate of the mean-value function µ̂(t) is the Res-
olution 2 estimate µ̂2(t). Figure 8 shows the fitted
mean-value function plotted against the observed cu-
mulative number of arrivals. 0 To illustrate the abil-
ity of this multiresolution procedure to estimate the
underlying mean-value function, µ(t), at time t, for
t ∈ (0, S], from one realization of the process, we
generated 100 replications of the NHPP and fit each
realization using the procedure. We then constructed
a 90% tolerance interval for µ(t), t ∈ (0, 35], which
is plotted in Figure 9. From a visual inspection, the
tolerance interval shows that the multiresolution pro-
cedure is capable of accurately obtaining an estimate
of the underlying mean-value function from one real-
ization of the process.

4 AN APPLICATION

In a project sponsored by the United Network for
Organ Sharing, Pritsker et al. (1995) applied NH-
PPs with EPTMP-type rate functions (Kuhl, Wil-
son, and Johnson, 1997) to model the arrival of liver-
transplant patients to transplant centers. In this
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example, we apply our heuristic method to the ar-
rival process of liver transplant patients to Transplant
Center 11 during 1992. The smoothed periodogram
of the arrival process indicates two fundamental pe-
riodic components with periods of one day and one
week. Over the year 1992, there does not appear to
be any significant long-term tend. Figures 10 and 11
are histograms of the arrivals of patients by hour-of-
the-day and by the day-of-the-week, respectively.
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Figure 8: Fitted Mean-Value Function, µ̂(t) (Smooth
Curve) Superimposed on Observed Cumulative Num-
ber of Arrivals (Step Function)
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Figure 9: 90% Tolerance Interval for µ(t), t ∈ (0, 35]

Applying the above method, three resolutions will
be required. At Resolution 0, a smooth curve is fit
to the cumulative number of arrivals over the inter-
val (0, 366]. Since no significant long-term trend is
present over this interval, the Resolution 0 curve is a
linear function of time and the expected number of ar-
rivals in (0, 366] is estimated by the observed number
of arrivals N(366) = 172. Thus the fitted mean-value
function at Resolution 0 is

µ̂0(t) =
172

366
t for 0 ≤ t ≤ S = 366. (5)

Figure 12 shows the fitted mean-value function at
Resolution 0.

The Resolution 1 curve is fit to the cumulative frac-
tion of arrivals over the period of one week. Fitting
a curve to the cumulative fraction of arrivals is the
same as fitting a cumulative distribution function to
observed data. For this example, a Bézier curve was
fit to the cumulative fraction of arrivals at the end of
each day. Since the fraction of arrivals occurring each
day are the only values needed, the cumulative frac-
tion of arrivals at the end of each day are the only
points considered in fitting this curve. The Bézier
curve was fit using the software package Prime (Wag-
ner and Wilson 1996), designed for fitting distribution
functions. The Bézier curve was manually fit using
nine control points (so that the fitted Bézier function
was a ninth-degree polynomial). Figure 13 shows the
Resolution 1 Bézier curve fit to the cumulative frac-
tion of arrivals at the end of each day.

The Resolution 2 curve is fit to the cumulative frac-
tion of arrivals over the period of one day. Utiliz-
ing Prime, we fitted a Bézier curve with ten control
points (that is, a tenth-degree polynomial) to the cu-
mulative fraction of arrivals using the method of least
squares. The Resolution 2 curve is shown in Figure
14.

Given the curves of Resolutions 0, 1, and 2, the
mean-value function can be calculated as described
above. Figure 15 shows the fitted mean-value func-
tion. Since no long-term trend is contained in this
model, the arrival rate over each week is the same.
The arrival rate over each week is obtained by tak-
ing the derivative of the mean-value function. In this
case, the mean-value function is just a constant mul-
tiplier of the Resolution 2 Bézier curve for each day
of the week. Therefore, for each day of the week, the
rate function is the constant multiplied by the deriva-
tive of the Resolution 2 Bézier curve. Figure 17 shows
the rate function for each week of the interval (0, 366].
To give some indication of the ability of this heuristic
method in comparison to other methods, the same
data was fit using an EPTMP rate function. Fig-
ures 16 and 18 show the EPTMP mean-value func-
tion and rate function, respectively. As can be seen
from the graphs of the rate functions, the heuristic
method offers more flexibility in modeling asymmet-
ric and multimodal behavior we see in the histograms
of the arrivals by the day of the week and hour of the
day.
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Figure 10: Histogram of the Number of Arrivals to
Transplant Center 11 by Hour of the Day during 1992
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Figure 11: Histogram of the Number of Arrivals to
Transplant Center 11 by Day of the Week during 1992
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Figure 12: Fitted Mean-Value Function µ̂(·) at Res-
olution 0 versus the Cumulative Number of Arrivals
over the Interval (0, 366]
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Figure 13: Resolution 1 Function R̂1(·) Fitted to the
Cumulative Fraction of Arrivals at the End of Each
Day of the Week
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Figure 14: Resolution 2 Curve versus the Cumulative
Fraction of Arrivals over the Period of One Day
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Figure 15: Fitted Mean-Value Function Using Heuris-
tic Method
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Figure 16: Fitted EPTMP Mean-Value Function
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Figure 17: Fitted Weekly Rate Function Using
Heuristic Method
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Figure 18: Fitted Weekly EPTMP Rate Function
5 VARIATE GENERATION

We propose to use the method of inversion to gen-
erate realizations of the fitted NHPP. The following
discussion is in terms of the theoretical NHPP. To
generate variates from an estimated NHPP, replace
the theoretical values with their corresponding esti-
mates from the preceding discussion. For an NHPP
having rate function λ(t), t ∈ [0, S], the cumulative
distribution function of the next event time τi condi-
tioned on the observed value τi−1 = ti−1 of the last
event time is given by

Fτi|τi−1
(t|ti−1) ≡ Pr{τi ≤ t|τi−1 = ti−1}

=

{
1− exp

[
−
∫ t
ti−1

λ(z) dz
]
, if t ≥ ti−1,

0, otherwise.

Thus to sample τi by inversion given τi−1 = ti−1,
generate a random number Ui from the uniform dis-
tribution on the unit interval (0, 1) and compute

τi = F−1
τi|τi−1

(Ui|ti−1).

This amounts to solving for τi in the equation∫ τi

τi−1

λ(z) dz = − ln(1− Ui).

Taking ∆ = − ln(1 − Ui), we have

∆ =

∫ τi

τi−1

λ(z) dz = µ(τi) − µ(τi−1).

If τi−1 and τi are in the jth cycle of Resolution p,
where j is an integer such that (j − 1)bp ≤ τi−1, τi <
jbp, then we have

∆ = cj[Rp(τi − (j − 1)bp)− ρi−1] , (6)

where cj ≡ µ(jbp) − µ((j − 1)bp) and where ρi−1 ≡
Rp(τi−1 − (j − 1)bp). Solving for τi in (6), we have

τi = (j − 1)bp +R−1
p (ρi−1 + ∆/cj).

Now τi−1 and τi are in the same Resolution-p cycle[
(j − 1)bp, jbp

)
if and only if

∆ < cj(1− ρi−1) . (7)

If condition (7) is not satisfied, then the Resolution-p
cycle containing τi has index

k(i) = max

` : cj(1− ρi−1) +
`−1∑
r=j+1

cr < ∆

 ;
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and then τi is computed from

τi = [k(i)−1]bp+R
−1
p


∆− cj(1− ρi−1) −

k(i)−1∑
r=j+1

cr

ck(i)

 .

This inversion procedure is implemented in the fol-
lowing algorithm to generate a series of events on the
interval (0, S].

1. Initialize i← 1, j ← 0, and ρ← 0.

2. Generate Ui ∼ Uniform(0, 1) and take ρ′ ← ρ,
∆← − ln(1− Ui).

3. Take j ← j + 1 and calculate

Q← ∆− cj(1 − ρ
′) (8)

4. If Q ≤ 0, then go to step 7; otherwise, take

∆← ∆− cj(1− ρ
′).

5. If ρ′ > 0, then take ρ′ ← 0.

6. Go to step 3.

7. Calculate the next event time,

τi ← (j − 1)bp + R−1
p (ρ′ + ∆/cj) . (9)

8. If τi > S, discard τi and stop; otherwise, take
i← i+ 1, ρ← ρ′ + ∆/cj, and go to step 2.

6 CONCLUSION

This heuristic provides a nonparametric estimate of
the mean-value function of an NHPP having period-
icities or long-term trends. Through this procedure
we are able to model asymmetric periodic behavior
without having to store all of the observed data. Cur-
rently, we are working on establishing the theoretical
properties of this procedure as well as its capabilities
and limitations in practice.
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