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ABSTRACT

A comprehensive method for simulation of bivariate
extremes is introduced and a generalisation of it to
multivariate extremes is outlined.

1 INTRODUCTION

The last decade has seen development of several mod-
els for multivariate extremes based on extreme value
theory (Coles and Tawn 1991, 1994; Joe, Smith and
Weissman 1992; Smith, Tawn and Coles 1993; Led-
ford and Tawn 1996). These models have attracted
a great deal of attention particularly in the area of
environmental extremes. Simulation of multivariate
extremes is useful to study not only the statistical
properties of these models but also the properties of
complex processes such as environmental processes
whose inputs might be modelled as multivariate ex-
tremes (Anderson and Nadarajah 1993; Dixon and
Tawn 1994). Simulation of univariate extremes is
straightforward since for all distributions in the uni-
variate theory the inversion method can be applied
(see e.g. Ripley 1987). However in relation to simu-
lation of multivariate extremes there has been little
work so far — the only work known to the author is by
Shi, Smith and Coles (1993) who describe a method
for simulation from a special class of bivariate ex-
treme value distributions. The aim of this paper is
to develop a comprehensive method for simulation of
multivariate extremes.

Section 2 details a method for simulation of bivari-
ate extremes. We first model bivariate extremes by
use of bivariate extreme value theory (Section 2.1)
and then show that the simulation of them can be
performed by two independent steps (Sections 2.2 and
2.3), each simulating a univariate transform of the
extremes. We also illustrate the performance of the
simulation method for a special class of extreme value
distributions (Section 2.4). Section 3 outlines a gen-
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eralisation of the method of Section 2 for multivariate
extremes.

2- SIMULATION OF BIVARIATE
EXTREMES

2.1- The Model

Let (X,Y) denote a random vector with both X and
Y having the unit Fréchet distribution, i.e. Pr(X <
z) = Pr(Y < z) = e ¥/ 2 > 0. Other distribu-
tions for the margins X and Y can be generated by
appropriate univariate simulation techniques. Also
let P(X,Y)=(R,W)=(X+Y,X/(X+Y)) be the
radial-angular transformation of (X,Y’) where R and
W are the radial and angular transforms respectively.
Then we say under certain regularity conditions in bi-
variate extreme value theory (Galambos 1978, Chap-
ter 5; Resnick 1987, Chapter 5) that (X,Y") takes ex-
treme values in a region A C R2\{(0,0)} sufficiently
away from the origin if

Pr((X,Y) € A) = /P " r2drH.(dw) (1)

where H, is a finite non—negative measure on [0, 1]
constrained to have unit means (i.e. f[o,l] wH,(dw) =
f[O,l](l — w)H,(dw) = 1) and thus a total mass of
2. This section develops a method for simulation of
extreme values of (X,Y) by using (1) as the model
for them.

Take A = Ag = {(z,y) : z+y > ro,z > 0,y > 0}
with 7o chosen sufficiently large that (1) holds. We
wish to simulate extreme values of (X,Y") from Ay,
see below for how simulation from other forms of A
can be performed. It follows from (1) that the con-
ditional probability density function of (R, W) over

P(Ay) is:
r2H,( dw// / s 2dsH,(dv)

or 227  H, (dw) (2)

frow (r, w)



282 Nadarajah

for r > rg and w € [0, 1]. Clearly (2) is the density of
a point of a Poisson process with intensity r =2 H, (dw)
restricted to P(Ap). Accordingly simulation of (z,y)
over Ag reduces in essence to simulation of (r,w) co-
ordinates of the Poisson process over P(A). Further
the form of Ay ensures that the conditional density
(2) is independent, so we can simulate the radial and
angular coordinates (r and w) independently of each
other. The procedures for these are developed in the
subsequent Sections 2.2 and 2.3. To simulate (x,y)
over a region A not having the form Aq first apply
the above procedures to simulate (x,y) over an Ag
for which A C Ag and then delete those points falling
in AQ\A

2.2- r—step

We simulate r by the inversion principle:- set

J ros2ds = u for u ~ U(0,1) and invert to get
0

r=ro/(l—u).

2.3- w-step

Associate with H, the measure density h(w) =
0H,(]0,w])/0w, assuming differentiability of H, in
the interior (0,1), and atoms of mass 6y = H.({0})
and 01 = H,({1}) at the end points of [0, 1]. Then H,
is a composition of the density h in the interior (0, 1)
and the atoms at the end points. Thus simulation
of w can be performed by the method of composi-
tion (see e.g. Ripley 1987, Section 3.2): take w as
0, belonging to (0,1) or 1 with probabilities 2716y,
1—2719y — 2716, and 2716;. If w falls into (0, 1)
then simulate its value from the probability density
h*(w) = (2—609—01)~*h(w) by the method we present
below.

We use the rejection method (see e.g. Ripley 1987,
Section 3.2) to simulate from ~A*(w) and this involves
establishing a probability density g(w) and a constant
M such that h*(w)/g(w) < M for all w € (0,1). The
density g is referred to as the envelope. Under mild
conditions on h*, a form for the envelope ¢ is easily
established by the following theorem.

Theorem 1 Suppose h* is a continuous probability
density over (0,1). Suppose too that there are some
constants qo > —1, 1 > —1 such that h*(w) =
O(w®) and h*(1 — w) = O(w?) hold as w — 0.
Then the beta density

B on(l — w)q1
"~ Be(go+1,q1+1)

g(w) , we (0,1)

where

['(a)l'(b)
Be(a,b) = ———=, a>0,b>0
e(a,b) T(atb) a

satisfies h*(w)/g(w) < M < oo for some constant
M.

Proof On every compact subset of (0,1) the supre-
mum of h*/g is bounded since h* is continuous and g
is bounded away from zero. Near the end points h*/g
is bounded by the assumed conditions on h*. l

Tawn (1990) and Coles and Tawn (1991) among
others have developed several parametric models for
H,..- Nadarajah (1994) shows that each currently
known model for H, satisfies the requirements of
Theorem 1 for particular choices of ¢y, g1 and M:
see Example 1 for an illustration where we choose
M = sup,¢,1)h*(w)/g(w), the value leading to
most efficiency of the rejection method. Hence by
the rejection method simulation of w for each cur-
rently known model reduces to simulation from a
Beta(go + 1, ¢1 + 1) distribution and routines are
widely available for the latter.

Example 1 The logistic model for H, (Tawn 1990)
takes the following form for density h:

h(w) = (s —1)(¢opr) {w(l —w)} 2
x{(p1w)* + (¢o(1 —w))*}/*72 (3)
(0 < ¢g, ¢1 < 1, s > 1) and has atoms 6y = 1 — ¢

& 0y = 1 — ¢p. Limiting w — 0,1 in (3) we see
go = q1 = s — 2. It follows then

h*(w)/g(w) = (s —1)(¢od1)*(do + 1)~
xBe(s — 1,8 —1)- (4)
<{($1w)° + (¢o(1 — w))*}/°72
Since s > 1 use of calculus shows (¢1w)® + (¢o(1 —

w))* attains its global minimum at w = ¢ /(o + P1).
Substituting this w into (4) gives

sup h*(w)/g(w)
we(0,1)

(s = 1)2"/° 7% (gog1)" ~*(¢o + ¢1)°
xBe(s —1,5—1)

My =

which is a finite constant for ¢9 > 0, ¢1 > 0 and
s>1. 1
2.4- Illustration

We illustrate the above simulation method graphi-
cally, the basis being the following construct. Let
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(R,W) be a random vector satisfying (2). For v €
(0,1) define Z(v) = R~ max(v/W, (1 —v)/(1 — W)).
Then it is easily seen that for roz < min(v, 1 — v):

Pr(Z() <2) = 2 {% /[0 . )

1
1—wv (v,1]

(1- w)H*(dw)} z

Hence r9Z(v)/ min(v, 1 —v) | 70Z(v)/ min(v,1 —v) <
1 ~U(0,1), the construct which we illustrate as fol-
lows using Q—Q plots. Simulate values of (R, W) over
P(Ap) by the r & w-steps with ro = 1, an arbitrary
choice as other values for it will produce identical
results given this illustration — we used the Numeri-
cal Algorithms Group routines GO5CAF and GOS5FEF
to simulate random numbers having the uniform and
beta distributions. Then plot quantiles of the sim-
ulated roZ(v)/ min(v,1 — v) not exceeding 1 versus
the corresponding probabilities — we will expect the
plot (Q-Q plot) to be linear with a slope of 1 and
an intercept of 0. Figure 1 shows these plots for a
number of choices for v and parameters of H, when
H, is modelled as in Example 1. Clearly, in each
plot, there is satisfactory agreement that the condi-
tional distribution of 79 Z(v)/ min(v, 1 —v) is uniform
U(o,1).

3- GENERALISATION TO
MULTIVARIATE EXTREMES

Here we consider simulation for a vector of more than
two variables (X1, ..., X,), say, with each X; having
the unit Fréchet distribution. As before the simula-
tion is based on a model for extremes of (X1, ..., X))
and involves two independent steps for simulating ra-
dial and angular transforms of the variables.

3.1- The Model

The radial-angular transform P(Xi,...,X,) for p
variables can be written as (R,W) = (3°F | X;,
X1/R, ..., Xp—1/R) where W = (Wq,...,Wp_1),
the angular transform, is an element of the (p — 1)—
dimensional unit simplex S, = {(w1,...,wp—1) :
wy + ...+ wp 1 < 1}. By analogy to (1) we say
that (Xi,...,X,) takes extreme values in a region
AC %ﬂ\{( .,0)} sufficiently away from the ori-
gin if

Pr((Xi,...,X,) € A) :/P(A) r2drH,.(dw) (5)

where H, is a finite non—negative measure on .S, con-
strained to have unit means and thus a total mass

of p. Following steps analogous to those in Section
2.1 we can see easily that simulation of multivari-
ate extremes based on (5) amounts to simulation of
(r,w) coordinates of a Poisson process with inten-
sity 72H,(dw). We can also see that by choosing
A appropriately the r and w can be simulated inde-
pendently of each other: specifically simulate r as in
Section 2.2 by the inversion principle and simulate w
from H,/p. A method for the latter is developed in
the following generalisation of the w—step.

3.2- w—step

As before this step requires decomposition of H, by
partitioning S, into subspaces. For simplification of
notation associate with each w = (w1,...,wp_1) €
Sp a p—dimensional vector w = (@1, ...,Wp) where
w; =w; fori=1,...,p—1land w, =1—->"_ 1w1
Then partition Sy, into Sj . = {w € S, : W, = 0,k &
¢} where ¢ = {i1,...,4;} is an index variable over
subsets of size j of the set ¢, = {1,...,p}. Note S; .
is isomorphic to the (j — 1)-dimensional unit simplex
Sj, so, for example, if j = 1 then S () represent
vertices of S, and if j = p then S}, ., represents the
interior of S,. Now assume H, has atoms of mass only
at the vertices of Sp and is differentiable everywhere
else with hj., 7 > 1 being the (j — 1)-dimensional
density of H, over S;.. Then H, is a composition
of the atoms of mass at the vertices of S, and den-
sities h; . over S;.. Thus we can use the method of
composition to simulate w as belonging to Sj7c with
probability p; ./p where p; . = fs «(dv) is the to-
tal measure of S;.: if j =1 then we take w as the
coordinate of the vertex represented by S . and oth-
erwise (j > 1) we simulate the value of w from the
probability density hi. = p; Chj ¢ by means of the
rejection method and the following generalisation of
Theorem 1.

Theorem 2 Suppose h* is a continuous (j — 1)-
dimensional probability density over S;. Suppose too
that there are some constants qr > —1,k =1,...,j
such that

h*(w) = O(wi .. wi Fwish . w¥)

holds as w; — 0,1 =1,...,4,1 # k. Then the Dirich-

let density

wit..w qJ 1(1—21 1wl)
Be (Q1+177q]+1)

g(w17 ] '7wj—l)

where
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Figure 1: Q—Q plots for the logistic model (3) with parameter values: (a) (s, ¢, ¢1) = (1.5,1,1); (b) (s, ¢o, 1) =

(27 17 1)7 (C) (57¢07¢1) = (47 17 1)7 (d) (57¢07¢1) = (15702708)7 (e) (57¢07¢1) = (15703707)7 (f) (57¢07¢1) =
(4,0.4,0.6). The five different curves correspond to v = 0.1,0.3,...,0.9, each based on exactly 100 simulated
values of roZ(v)/ min(v, 1 — v) not exceeding 1.
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(a1 >y 0, cen Gy > 0) sat-
isfies h* (w1, ...,wj—1)/g(w1,...,wj—1) < M < oo
for some constant M.

The proof is not given as it is similar to that of The-
orem 1. H

Replacing h* in the theorem in turn by each hj .,
we see that simulation from H,/p reduces to sim-
ulation from a Dirichlet distribution. For the lat-
ter, simulation of gamma random variables is suf-
ficient because of the following characterisation re-
sult on a Dirichlet random vector (Wilks 1962, Sec-
tion 7.7): if G4, ..., G, are independent gamma ran-
dom variables with means ¢; + 1,...,g; + 1 then
(G1/ Z{:l Gi,...,Gj_1/ Z{:l G)) has the Dirichlet
distribution of form (6). Gamma random variables
can be simulated by standard routines.

An important assumption in Theorems 1 and 2 is
that the measure density of H, behaves as a poly-
nomial term near the vertices of S,. For the p = 2
case all currently known structures for H, satisfy this
assumption (Nadarajah 1994). However it is possible
that the assumption might fail for higher dimensions,
e.g. mnested logistic model (McFadden 1978; Tawn
1990). A relaxed version of the assumption is to ap-
proximate the measure density near each vertex by a
finite sum of polynomial terms of the form given in
the theorems. Under this assumption the envelope
g will take the form of a finite mixture of Dirichlet
densities and simulation from it can be performed by
the method of composition.

4 CONCLUSIONS

Methods for simulation of bivariate and multivari-
ate extremes are introduced. Both simulations are
reduced to simulation of bivariate/multivariate Pois-
son processes with independent coordinates. For the
Poisson process simulation two standard techniques,
method of composition and rejection method with
Dirichlet—type envelope, are exploited. The bivariate
method, a method applicable for all currently known
structures for H, (Nadarajah 1994), is shown to per-
form reasonably for a special class of distributions
considered. The multivariate method is less widely
applicable because of possible departure from the as-
sumed polynomial behaviour.
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