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ABSTRACT

The problem of searching for important factors in a
simulation model is considered when the simulation
output is subject to stochastic variation. Bettonvil
and Kleijnen (1996) give a method which they call
sequential bifurcation which allows a large number
factors to be considered using a relatively small num-
ber of simulation runs. They give the method un-
der the assumption that the simulation response con-
tains negligible random error, and show that when
the number of important factors is small then the
method is effective and efficient. In this paper the
method is extended to handle simulations where the
response is stochastic and subject to significant error.
An attraction of the sequential bifurcation method is
its flexibility in exploring the effects of different fac-
tors. The approach in this paper is to develop a clear
but flexible framework in which the method is used
as an exploratory tool. For illustration a numerical
example is considered using a simulation metamodel
involving 24 factors. The example is quite a testing
one because the different factors cover a spread of
values of differing importance. The results show that
the method is capable of handling such situations.

1 INTRODUCTION

The output of interest in simulation studies of com-
plex systems usually depends on a large number of
factors. For example in a complex queue, the aver-
age customer delay may depend on a large number
different arrival and service rates, and also on the
capacity of different queues in the system, and on
queueing disciplines. An important objective of the
simulation study is to identify which factors are im-
portant and influence the output most strongly. Bet-
tonvil (1990) and Bettonvil and Kleijnen (1996) point
out that frequently there are only a small number of
key factors which are important, even when the to-
tal number of factors is large. They review a number
of screening methods (see Watson 1961, Jacoby and
Harrison 1962, Li 1962, Morris 1987 and Cochran and
Chang 1990, Welch et al. 1992). Most such meth-
ods are concerned with group screening in contexts
where the experimental process is an involved one.
In computer simulations however it is easy to modify
the experimental runs actually during the process of
accumulating the observations. It is thus possible to
have a much more flexible experimental process which
then determines the important factors efficiently in
the sense of needing a relatively small number of sim-
ulation runs. Bettonvil and Kleijnen (1996) propose
a novel method for doing this called sequential bi-
furcation (SB), which may be thought of as a gener-
alisation of classical binary search (the objective of
this latter technique being to find the single most im-
portant factor). They develop the method for deter-
ministic simulations, which are often appropriate, for
example, in studies involving systems dynamics and
investment analysis.

In this paper we extend the the method to cover
the situation where the simulation output is stochas-
tic.

Usually such screening methods are used at an ini-
tial exploratory phase, where the effect of each given
factor does not have to be determined too precisely.
We adopt this viewpoint. We propose an explicit ver-
sion of SB that is robust and flexible. The method
divides the factors into two sets: those which are
deemed important, and those which are not. One of
the differences between a deterministic and a stochas-
tic output is that in the latter case a disproportion-
ate amount of effort can go into investigating factors
which are borderline in importance. This seems par-
ticularly inappropriate in exploratory work, when im-
portance might be somewhat inexactly defined. Our
method therefore allows for an ‘indifference-zone’. If
the importance of a factor is estimated to fall inside
this indifference zone, then no further effort is wasted
in attempting to estimate this factor effect more ac-
curately. Thus much computing effort is saved. For
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simplicity we classify such factors as unimportant,
though a more cautious approach could be taken.
Our reasoning is that even if more accurate estima-
tion might categorise them as important, they will
only be marginally so. Thus this misclassification, if
handled with due care, will be of little practical im-
portance.

The main difficulty with sequential methods when
observations are subject to uncertainty is establishing
the level of significance of results. It is hoped to give
a more detailed theoretical analysis of the method-
ology elsewhere. Here, the approach is to treat the
method as an exploratory one where the flexibility of
the method is not sacrificed for the sake of achieving
a notionally precise level of significance. We adopt
the approach typically used in practice in such prob-
lems and set a notional significance level for individ-
ual tests. This notional level of significance is then set
sufficiently high to offset what is usually a degrada-
tion in the overall significance level through repeated
use of the individual test. This is the approach used
in stepwise regression for example.

In this paper we focus on presenting the practical
methodology and discuss its application in an exam-
ple involving a simulation experiment with a regres-
sion model where there are 24 factors. It is shown
that the technique works effectively and is easy to
apply.

2 THE SIMULATION MODEL

2.1 Model Structure

The simulation experiment is assumed to be built up
sequentially using runs of equal length. The output
of interest from a run is denoted by y. There are two
quantities which affect the yalue of y that we focus
attention on:

(i) a vector of decision variables

x = (x1, x2, ..., xK) (1)

which are under the control of the experimenter, and
(ii) a set of random numbers

u = (u1, u2, ..., un) (2)

which (typically after a transformation that is not of
concern here) form the stochastic input driving the
simulation run. (Usually n will be a randomly vary-
ing quantity in its own right. However we shall con-
sider only the case where y is a long run average,
so that n will be approximately linearly dependent
on the length of the simulation run. We therefore
tacitly equate n with the run length and treat it as
being essentially known.) Thus y can be regarded as
a function of just x and u:

y = y(x,u). (3)

We can therefore adopt the following regression meta-
model:

y(x,u) = η(x)+ e(x,u) (4)

where e(x,u) is regarded as an ’error’ term containing
all the chance variation of y; and moreover assume
that

E [e(x,u)] = 0,
V ar [e(x,u)] = σ2(x).

Thus

η(x) =E(y|x) =

∫
y(x,u)du (5)

is the expected value of y.
The precise distribution of e(x,u) is not known of

course. However for stationary processes where y is a
long term average then e(x,u) can be expected to be
approximately normally distributed, and we assume
this in what follows.

Our objective is to investigate how η depends on
x. We focus on the local behaviour of η about some
notional operating point

x0 = (x0
1, x

0
2, ..., x

0
K).

We confine our discussion to small changes of x about
x0. Assuming that η(x) is continuously differentiable,
we can adopt the linear approximation

η(x) = η0 +
K∑
i=1

βi(xi − x
0
i ). (6)

The coefficients βi =∂η(x)/∂xi|x0 i = 1, 2, ..., K will
be called the sensitivity coefficients.

Bettonvil and Kleijnen (1996) consider the situa-
tion where K is large, but only a few, k say, of the
βi are important in the sense of being large, and so
influential on how η(x) varies. The objective is to
determine these k important factors without having
to make too many runs. Bettonvil and Kleijnen also
assume that the simulation error e(x,u) is small and
can be neglected. We consider the situation where
e(x,u) cannot be neglected. We shall however as-
sume that locally the variability of e(x,u) does not
depend on x, that is we assume that

σ2(x) = σ2, is independent of x.

The values of the βi will be unknown, but in most
situations it is quite realistic to assume that their sign
is known. For example consider a queueing model
where η is the average customer delay and the xi are
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the arrival and service rates; here it is fairly clear
whether a change in xi will increase or decrease η.
Moreover, simply by reversing the sign of xi itself
where necessary, it may be assumed that:

βi ≥ 0 for all i. (7)

We shall assume this from now on.

2.2 Estimating the Sensitivity Coefficients

In SB the decision variables are assumed to be listed
in some fixed order. This order will be maintained
throughout the ensuing calculations.

Each run is made by selecting a value of j and then
making the run with x set at x(j) with components

x
(j)
i = x0

i + δ, i = 1, 2, ..., j

x
(j)
i = x0

i , i = j + 1, j + 2, ..., K

We denote the output from the run made at this value
of x by

y(x(j),u) = y(j); (8)

with y(0) the value obtained from a run made with
x = x(0). For convenience we refer to y(j) as a run
made at level j.

If j < k then the scaled difference

D(j, k) = [y(k) − y(j)]/δ

has expectation

E[D(j, k)] =
k∑

i=j+1

βi,

so that D(j, k) can be regarded as an estimator of the
sum of the sensitivity coefficients running from j + 1
to k. If the runs y(j) and y(k) are independent, then

V ar[D(j, k)] = 2τ2,

where τ2 = σ2/δ2.
The selection of δ is an interesting problem in its

own right, but will not be discussed here. We shall
set it to a (small) value equal to the value that we
would wish to vary xi by in the practical application.
This at least partially addresses the problem of non-
linearities in the response not being properly allowed
for, in that it considers y at settings of xi that are of
direct interest.

In the following it will sometimes be necessary to
improve the accuracy y(j). This will be done simply by
replication. In general we may have r(j) observations

at level j : y
(j)
i i = 1, 2, ..., r(j). If we use

D̄(j, k) = (
r(k)∑
i=1

y
(k)
i /r(k) −

r(j)∑
i=1

y
(j)
i /r(j))/δ
then this has improved variance

V ar[D̄(j, k)] = τ2(1/r(j) + 1/r(k)).

3 SB UNDER UNCERTAINTY

3.1 The Proposed Method

We shall only consider one specific, prototype, version
of the problem. The primary objective is to divide the
sensitivity coefficients into just two groups: those for
which βj > B and those for which 0 ≤βj ≤ B :

I = {βj : βj > B}, U = {βj : βj ≤ B}.

Here B is some prescribed value selected by the user,
depending on the problem. Bettonvil and Kleijnen
consider the case B = 0, calling those βj > 0 im-
portant. We extend this terminology by calling those
βj ∈ I important, and those βj ∈ U unimportant.

As mentioned in the Introduction, much simula-
tion effort can be spent on borderline cases, where
βj is close to B, to determine if βj just falls above
or below B. We avoid doing this by allowing for an
indifference-zone (0, B+a). If βj is estimated as being
located within this zone, it is automatically classified
as being in U. This greatly saves on computing effort
for such cases. If a is set small relative to B, then a
misclassification where βj is wrongly put in U, when
actually B < βj , can be assumed to be of little prac-
tical consequence, as we will know that βj < B + a.

Our search process, though varying in detail, fol-
lows the basic precept of the SB process given by
Bettonvil and Kleijnen. The decision variables are
kept in their initial order throughout. The key idea
is that if we find that

k2∑
j=k1

βj < B  (9)

then, because βj > 0 for all j, we must have βj < B
for j = k1, k1 = 1, ..., k2. Thus it is not necessary
to test for the importance of individual βj when (9)
is true. The overall method is to partition the coeffi-
cients into contiguous sets Gi, i = 1, 2, ..., p where all
the coefficients of each set have the same classification
of unimportant or important.

The method is as follows.

Algorithm for SB under Uncertainty
(0) To initiate the process we set the step counter,

s say, to s = 1. We then make r(0) > 1 and r(K) > 1
(typically r(0) = r(K) = a small number, between 2
and 5, say) runs at levels 0 and K respectively. Thus
at the start of Step 1 we have two sets of observations:

{y(ki1)
j : j = 1, ..., r(ki1)}, i = 0, 1,
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where k01 = 0 and k11 = K denotes the initial two
levels at which runs have been made. We also place
all the coefficients in the single,unclassified, set G1s =
{β1, β2, ..., βK}. Thus initially the number of sets is
p (= p1) = 1.

We now progressively select sets to partition and
classify in the following way.

(1) At the start of Step s we have ps + 1 sets of
observations:

{y
(kis)
j : j = 1, ..., r(kis)}, i = 0, 1, 2, ..., ps, (10)

(where all the observations {y(kis)
j : j = 1, ..., r(kis)}

of the ith set are made at the same level kis, i.e. at the
same decision variable setting x(kis)). Moreover the
decision variables are partitioned into ps contiguous
sets:

Gis = {βj : k(i−1),s < j ≤ kis}, i = 1, 2, ..., ps.

Some of the sets are already classified, some are un-
classified. If all sets have been classified the algorithm
ends. Otherwise we select any unclassified set (the
one with largest cardinality, say): call this Gis.

(2) If Gis is not a singleton set we see if all the
coefficients can be classified as unimportant. This
is done by considering D̄(k(i−1),s, kis). From the
assumption that e(x,u) is normally distributed, D̄(
k(i−1),s, kis) is also normally distributed, with mean
and variance

µis =

kis∑
i=k(i−1),s+1

βi, vis = τ2(1/r(k(i−1),s)+1/r(kis)).

We can estimate τ2 from each set (10):

t2is =
r(kis)∑
j=1

(y
(kis)
j − ȳ(kis))2/[(r(kis) − 1)δ2],

and pooling these estimates gives an overall estimator
of τ2 at the start of the Step s as:

t2s = [
s∑
i=0

(r(kis) − 1)t2is]/(
s∑
i=0

r(kis) − s− 1).

If zα is the upper α-quantile of the standard normal
distribution, then with probability approximately (1−
α) :

µis < D̄(k(i−1),s, kis)+zαts(1/r
(k(i−1),s) +1/r(kis))

1
2 .

If therefore

D̄(k(i−1),s, kis) < B − zαts(1/r
(k(i−1),s) + 1/r(kis))

1
2

(11)
then with confidence (1− α) :

µis < B,  i.e.

kis∑
i=k(i−1),s+1

βj < B.

As the βj are all positive this means

βj < B, j = k(i−1)s + 1, k(i−1),s + 2, ..., kis.

and the entire set of sensitivity coefficients, Gis, can
thus be classified as unimportant.

If (11) is not satisfied we split Gis into two at
k =

⌈
(k(i−1),s + kis)/2

⌉
(if the cardinality of the set

is odd, the split gives the set with the smaller indices
one more member than the other). The two new sets:

{βk(i−1),s
, ..., βk} and {βk+1, ..., βkis}

replace Gis.
Finally a run is made at k. We then increment s

and repeat the process from (1).
(3) If however Gis = {βk}, i.e. it is a singleton

set, then we proceed to fully classify βk. This is done
by calculating a two-sided (1−α) confidence interval
for βk with upper and lower limits given by:

β±k = D̄(k − 1, k) ± zαts(1/r
(k(i−1),s) + 1/r(kis))

1
2 .

(12)
If B is contained in this interval we make additional
runs at the levels k−1 and k. If r(kis) and r(k(i+1),s) are
not initially equal we add the runs at the level with
the smaller number of runs, until r(kis) = r(k(i+1),s),
and then add runs at both levels k−1 and k, keeping
r(kis) = r(k(i+1),s). As runs are added the length of
the confidence interval (12) decreases. We stop when
either

(i) B < β−k when βk is classified as important,
or

(ii) β+
k < B when βk is classified as unimportant,

or
(iii) β+

k < B+ a, (where a is small relative to B)
when βk is deemed determined to be sufficiently close
to B to be classified as unimportant.

Once βk is classified we increment s and repeat
from (1).

It will be seen that at the end of the process ev-
ery βj will have been classified as either important or
unimportant. Moreover all βj classified as important
will have a corresponding confidence interval calcu-
lated.

3.2 Properties

The final probability of correctly classifying all βj is
not easily determined as the procedure is sequential.
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However the procedure used in the calculation is not
unusual for such processes, and should be sufficiently
robust to give a satisfactory practical procedure. An
analogous case occurs in polynomial regression where
the degree of the polynomial to be fitted is unknown
and has to be estimated. Our methodology operates
in essentially the same type of way as standard for-
ward or backward stepwise selection methods which
use single step probability calculations to decide on
whether to proceed to the next step or not.

The main property of the method is that it allows
large groups of variables to be eliminated from con-
sideration if they are unimportant. The key control-
ling factor is the setting of the probability level in the
test given in equation (11). A high level (i.e. small α
value) makes high the probability of correctly deter-
mining the important and unimportant sets I and U
but at the expense of additional observations being
needed. A low level (i.e. large value of α) makes the
overall determination process faster but with a higher
risk of variables being assigned to the incorrect set.

Overall however the technique should be an effec-
tive and efficient one for exploratory purposes. We
illustrate with a detailed example.

4 REGRESSION EXAMPLE

Bettonvil and Kleijnen give a deterministic regression
metamodel example involving 24 factors. We mod-
ify the problem to include stochastic variation. Our
model is given in equation (4), where e ∼ N(0, 302)
and η is as given in equation (6) with K = 24. The in-
dividual βj used in the experiment are given in Table
1.

Table 1: Coefficients βj of the Regression Metamodel

j 1 2 3 4 5 6
βj 5.7 0.6 4.5 19.3 9.1 28.4
j 7 8 9 10 11 12
βj 51.0 34.6 23.3 39.7 45.4 93.0
j 13 14 15 16 17 18
βj 73.7 144.6 130.4 42.5 313.0 166.2
j 19 20 21 22 23 24
βj 76.6 345.4 195.7 188.8 148.0 206.4

The settings used for the other factors were as fol-
lows: δ = 1, α = 0.05, a = 25.0. The initial run set-
tings were r(0) = r(24) = 2. Table 2 gives the results
for three different settings ofB. Also shown are the re-
sults from an equivalent experiment where SB was not
used. Instead two runs were initially made at all lev-
els 0 through 24. The confidence interval calculation
of stage (3) in the algorithm above was then applied
to each βj to determine if each is important or not,
using the same criterion as applied in the SB method.
Examination of the true values of the βj shows that
none of the misclassifications are serious errors. It
will be seen that the SB method requires proportion-
ately fewer runs, relative to the basic method as the
importance threshold B is raised. At the highest level
B = 200, the basic method needed over two and a half
times as many runs to carry out the classification.
This is very much as expected, as the SB method is
designed to handle situations where there are only a
few important factors.

Table 2: Classification of βj in the Regression Meta-
model

SB Method Basic Method

Import. Mis- No. Mis- No.
B Coeffs class Runs class runs

100 β14 β15 None 48 None 68
β23

+ below

150 β18 β21 β14 35 β18 86
β22 β18

+ below

200 β17 β20 β24 25 None 64
β24

5 CONCLUSIONS

The paper has focused on a specific implementation
of the method of sequential bifurcation under uncer-
tainty. Variations of the method suggest themselves,
and a number of interesting properties need to be
investigated. Most obvious is the robustness of the
method. The efficiency clearly depends on order in
which the sensitivity coefficients are placed in the list,
and on their relative sizes. The best case scenario
occurs where there is a sharp distinction between im-
portant and unimportant coefficients, and where the
important coefficients are placed close together in the
initial list. In this case large numbers of unimportant
coefficients will be rapidly removed in just a few steps.
The worst case scenario is where the important coeffi-
cients are evenly spread over the initial list, and where
there are are many of them. In this latter situation
the SB method reduces in effect to the basic method
where each coefficient is individually estimated.

One possibility of interest is to use prior informa-
tion or knowledge in assigning the coefficients their
positions in the list, and it is hoped to discuss this
elsewhere.
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The example is a reasonable test in that the val-
ues of the coefficients vary over a wide range, and
their position in the list used for the experiment re-
ported previously might be typical of an initial or-
dering based on prior knowledge. Thus the order is
roughly correct but not exactly right.

The ease of implementation and its generality of
application are the most attractive features of the
method and the potential efficiency gains make it
worth serious consideration.
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