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ABSTRACT

A classical problem of stochastic simulation is how to
estimate the variance of the sample mean of depen-
dent but stationary outputs. Many variance estima-
tors, such as the batch means estimators and spec-
tral estimators, can be classified as quadratic-form
estimators. Necessary and sufficient conditions on
the quadratic-form coefficients such that the corre-
sponding variance estimator has good performance
have been proposed. But no one has utilized these
conditions to pursue optimal quadratic-form coeffi-
cients to form an optimal variance estimator. In this
paper, we seek an optimal (minimum variance unbi-
ased) variance estimator by searching for the optimal
quadratic-form coefficients.

1 INTRODUCTION

Consider estimating the variance of a sample
mean Ȳ from a sample Y = (Y1, Y2, ..., Yn) from
covariance-stationary process. Various types of es-
timators of Var(Ȳ) have been proposed. For ex-
ample, there are estimators based on classical spec-
tral analysis (Priestly, 1981), spectral-based regres-
sion (Heidelberger and Welch, 1981; Damerdji, 1991),
regenerative processes (Crane and Iglehart, 1975),
ARMA time series (Schriber and Andrews, 1984,
Yuan and Nelson 1994), standardized time series
(Schruben, 1983; Goldsman, Meketon, and Schruben,
1990; Glynn and Iglehart, 1990; Muñoz and Glynn,
1991) batch means (Schmeiser, 1982; Meketon and
Schmeiser, 1984; Welch, 1987; Fox, Goldsman, and
Swain, 1991; Glynn and Whitt, 1991; Bischak, Kel-
ton, and Pollock, 1993; Fishman and Yarberry, 1993;
Pedrosa and Schmeiser, 1994; Chien, 1994; Damerdji,
1994; Song and Schmeiser, 1995; Sherman, 1995;
Chien, Goldsman, and Melamed, 1996; Song, 1996;
Muñoz and Glynn, 1997) and orthonormally weighted
standardized time series area (Foley and Goldsman,
1988)

The batch-means, some spectral-analysis, and
some standardized-time-series estimators are linear
functions of the cross-products YiYj . That is, they

can be written as a quadratic-form, V̂ ≡ Y tQY =∑n
i=1

∑n
j=1 qijYiYj , where Q is a constant, symmet-

ric (quadratic-form coefficient) matrix with (i, j)th

entry qij, for i = 1, 2, ..., n; j = 1, 2, ..., n.
Necessary and sufficient conditions on the

quadratic-form coefficients such that the correspond-
ing variance estimator has good performance have
been proposed (Song and Schmeiser, 1993). How-
ever, no one has utilized these conditions to pursue
optimal quadratic-form coefficients to form an opti-
mal variance estimator. In this paper, we seek an
optimal variance estimator by searching for optimal
quadratic-form coefficients.

We assume that the data Y are from a co-
variance stationary process with mean µ, variance
R2

0, variance-covariance matrix Σ, and finite kur-
tosis α4 = E(Y − µ)4/R2

0. Moreover, we assume

that the sum of autocorrelations
∑n−1
h=−(n−1) ρh ≡∑n

h=−(n−1) corr(Yi, Yi+h) converges to a finite limit
γ0 as n goes to infinity.

In Section 2, we review some properties of the
general class of quadratic-form estimators. In Section
3, we introduce a theoretical optimal quadratic-form
estimator of Var(Ȳ), discuss its properties, and com-
pare its performance to the overlapping batch means
(OBM) estimator with its optimal batch size. In Sec-
tion 4, we discuss possible ways to estimate the theo-
retical optimal variance estimator proposed in Section
3. Section 5 is a summary.
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2 QUADRATIC-FORM VARIANCE ESTI-
MATORS

We review some necessary and sufficient condi-
tions on the quadratic-form coefficients such that the
corresponding estimator of Var(Ȳ ) satisfies four prop-
erties: nonnegativity, location invariance, data re-
versibility, and smoothness. Expressions for the bias
and variance of V̂ as functions of the qij are also in-
cluded in this section.

Nonnegativity: Since Var(Ȳ ) is always nonnega-
tive, it is reasonable to require an estimator of
Var(Ȳ ) to be nonnegative. By definition, V̂ is
nonnegative for all data realizations if and only
if Q is positive semi-definite.

Location Invariance: An estimator is location in-
variant if it is not a function of the process loca-
tion. Location invariance is appealing because
Var(X̄) = Var(Ȳ), when Xi = Yi − d. If V̂ is
location invariant, then we can assume without
loss of generality that the process mean is zero
when studying properties of V̂ . A necessary
and sufficient condition for location invariance
is
∑n
i=1 qij = 0, i = 1, 2, ..., n, or equivalently∑n

j=1 qij = 0, j = 1, 2, ..., n.

Data Reversibility: Define the reversed sample
{Xi}ni=1 with Xi = Yn−i+1. We call the estima-

tor V̂ data reversible if V̂ has the same value
after being applied to both Y and X. If V̂ is
data reversible, then reversing the quadratic-
form coefficients is equivalent to reversing the
order of the data. Thus, an estimator is data
reversible if and only if qij = qn−i+1,n−j+1

for all i and j. When the data are from a
covariance-stationary process, data reversibility
seems desirable because Rh ≡ cov(Yi, Yi+h) ≡
cov(Xi, Xi+h) for all i and lags h.

Smoothness: We define V̂ (S) = Y tQ(S)Y to be
a smooth estimator of Var(Ȳ) if all coefficients

q
(S)
ij with common lag h = |i − j| are equal.

We can smooth any non-smooth estimator to
reduce its variance and without increasing its
bias. That is, suppose V̂ =

∑n
i=1

∑n
j=1 qijYiYj

and consider the corresponding smoothed es-

timator V̂ (S) =
∑n
i=1

∑n
j=1 q

(S)
ij YiYj , where

q
(S)
h = (n − h)−1

∑
{i,j:|i−j|=h} qij for h =

1, 2, ..., n− 1. Then V̂ (S) has the same bias as
V̂ , but smaller variance (Grenander and Rosen-
blatt, 1957).
Bias: Without loss of generality we assume that
the data are p dependent; that is ρh = 0 for
|h| > p, where possibly p is infinite. The bias
of a location-invariant estimator V̂ , defined as
E(V̂ ) −Var(Ȳ ), is

bias(V̂ ) = b0R0 + 2

p∗∑
h=1

bhRh (1)

where Rh ≡ Cov(Yi, Yi+h),

bh =
∑n−h
i=1 {qi,i+h − n

−1(1− h
n

)},
h = 0, 1, ..., n− 1 , and p∗ = min(n− 1, p).

Variance: Let {Yi}ni=1 be independent identically
distributed (iid) random variables. Then the
variance of the location invariant quadratic-
form estimator V̂ is

R2
0

(α4 − 3)
n∑
i=1

q2
ii + 2

n∑
i=1

n∑
j=1

q2
ij

 .
Therefore, the variance of V̂ for indepen-
dent identically distributed (iid) normal data
is 2R2

0

∑n
i=1

∑n
j=1 q

2
ij, which is proportional to

the sum of all squared quadratic-form coeffi-
cients.

3 OPTIMAL QUADRATIC-FORM VARI-
ANCE ESTIMATORS

3.1 Definition of Q∗

Let V̂ ≡ Y tQY be any location invariant
quadratic-form estimator of Var(Ȳ ). Therefore, we
can assume without loss of generality that µ = 0.
The optimal quadratic-form coefficient matrix intro-
duced in this section is obtained by minimizing an
upper bound on Var(V̂ ) provided that V̂ is an unbi-
ased estimator of Var(Ȳ ).

We first review two results. Equation (2) states
that the expected value of V̂ is equal to the trace
of QΣ while Equation (3) shows that φtr(QΣQΣ)
is an upper bound on Var(V̂ ). The derivations of
Equations (2) and (3) are given in Rao and Kleffe
(1988). Specifically,

E(Y tQY ) = tr(QΣ) (2)

and

Var(Y tQY ) ≤ φtr(QΣQΣ), (3)

where φ is a function of E(Y 3) and E(Y 4), but not of
Q.
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Throughout this paper, we define the optimal es-
timator of Var(Ȳ), V̂ (∗)(Q∗) ≡ Y tQ∗Y , to be the
minimum variance unbiased estimator for the upper
bound on Var(V̂ ) in Equation (3). We call Q∗ the
optimal Q-F coefficients matrix. That is, Q∗ can be
obtained by solving the following problem:

(P.1) minimize tr(QΣQΣ)

subject to:

Q1 = 0,  (4)

tr(QΣ) = Var(Ȳ ) (5)

Q is positive definite, (6)

where 1 = [1, 1, ..., 1]t. Equation (4) enforces the
property of location invariance and Equation (5)
guarantees unbiasedness. The solution of problem
(P.1) is

Q∗ = λCtΣ−1C, (7)

where

λ =
tr(CtΣ−1CΣ)

Var(Ȳ )
(8)

and

C = I− 1(1tΣ−11)−11tΣ−1. (9)

This result is a direct application of a theorem in Rao
(1973), stated in the Appendix.

3.2 Comparison with the Optimal OBM Esti-
mator

The OBM estimator is a smooth quadratic-form
estimator with many nice properties such as smaller
asymptotic variance than all other batch-means es-
timator while requiring only O(n) computational ef-
fort. In this subsection, we use the OBM estimator
with the optimal batch size in terms of the mean-
squared-error (MSE) as a basis for comparing with
the optimal Q-F variance estimator introduced in Sec-
tion 3.1.

Let V̂ (O)(m∗) = Y t Q(O) Y be the OBM estima-
tor of Var(Ȳ) with the MSE-optimal batch size m∗.
That ism∗ = arg minmMSE(V̂ (O)(m)). Table 1 com-
pares V̂ (∗)(Q∗) with V̂ (O)(m∗) in terms of the bias,
variance, and MSE for the first-order autoregressive
(AR(1)) process with mean µ = 0, lag-1 correlation
φ = 0.8182, and var(Y ) = 5.54885. The variance of
the sample mean Var(Ȳ) = 1; the sum of correlations
γ0 = 10, and the sample size n = 50 for this example.
Table 1. AR(1), φ = 0.8182 and n = 50

V̂ Bias Variance MSE

V̂ (∗)(Q∗) -.011 (.006) .038 (.002) .039 (.002)

V̂ (O)(m∗) -.481 (.004) .150 (.004) .383 (.003)

The simulation results shown in Table 1 are based
on 50 independent macro-replications. Each involves
50 independent micro-replications, each having sam-
ple size n = 50. Each macro-replication generates
one estimator of the variance of the sample mean V̂ .
One macro-replication generates one bias, variance,
and MSE of V̂ , The standard error of the bias, vari-
ance and MSE are reported in the parentheses next
to the corresponding estimates. Table 1 shows that
the estimator V̂ (∗)(Q∗) has smaller bias (in fact zero
bias) and smaller variance than the OBM estimator
V̂ (O)(m∗). The MSE of V̂ (∗)(Q∗) is about 10 percent
of the MSE of V̂ (O)(m∗) for the AR(1) process.

In practice, we are not able to obtain Q∗ since
it depends on the unknown parameter Var(Ȳ) (see
Equation (5)). But the huge MSE reduction encour-
ages us to further investigate the estimator V̂ (∗)(Q∗).

3.3 Viewing Q∗ Graphically

We consider three processes: (1) AR(1) as used
in Section 3.2, (2) the second-order autoregres-
sive AR(2) process, and (3) M/M/1-queue-wait-time
(M/M/1-QWT) process. The parameters of these
three processes are selected as follows: the mean
µ = 0; the variance of the sample mean Var(Ȳ) = 1;
the sum of correlations γ0 = 10, and the sample size
n = 50. Applying the results in (P.1), we derive the
optimal Q-F coefficients matrix Q∗ and present them
in three-dimensional plots as a function of i and j.

The three-dimensional plots of Q∗ for AR(1)
and M/M/1 are almost identical: the main-diagonal
terms are positive, the first off-diagonal terms are
negative, and the other terms are negligible. This
pattern remains the same for AR(1) and M/M/1 pro-
cesses for a broad range of parameters except those
cases where γ0 ' 1, which is close to the iid process.
Figure 1 contains the three-dimensional plot of Q∗ for
AR(1). It can be seen from the plot that V̂ (∗)(Q∗)
satisfies the four properties: nonnegativity, location
invariance, reversibility and smoothness.

Since the main and first off-diagonal terms of Q∗

play an important role in Q∗, the ratio of the q∗ii to
q∗i,i+1 seems to be an important summary quantity of
Q∗. The ratio increases as γ0 increases and converges
to -2 as γ0 → ∞. The ratio approaches -2 at about
γ0 = 10. Figure 2 shows the ratio of q∗ii to q∗i,i+1

versus γ0 for AR(1). The analogous plot for M/M/1
is almost identical to Figure 2.

The three-dimensional plot of Q∗ for AR(2) has
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the main-diagonal terms positive, the first off- and
second off-diagonal terms negative, and the other
terms are negligible. Figure 3 is the three-dimensional
plot of Q∗ for AR(2). We observe that the ratio q∗ii
/ (q∗i,i+1 + q∗i,i+2) converges to -2. Again, V̂ (∗)(Q∗)
satisfies the four properties: nonnegativity, location
invariance, data reversibility and smoothness.

The three-dimensional plots of Q∗ for AR(1) and
AR(2) differ from that for OBM estimator, in which
the qij linearly decreases to zero as |i−j| increases for
0 < |i−j| < m. Figure 4 shows the three-dimensional
plot of the quadratic-form coefficient qij for the OBM
estimator for n = 50 with batch size m = 10. One
reason to explain the difference between the plots is
in the bias expression. For V̂ (∗)(Q∗) to have zero
bias, we have observed that b0R0 = −2

∑p∗
h=1 bhRh

(see Equation (1)). For OBM to have low bias, bh
must be close to 0 for all h. Specifically, the sum of
the main diagonal should be 1/n, with each succes-
sive off-diagonal sum decreasing to n−1(1−|h|/n)) for
all lags |h| whose autocorrelation is nonzero. Thus,
for OBM to have low bias requires a wide ridge when
the data process has autocorrelation extending over
many lags. For iid data, V̂ (∗)(Q∗) = V̂ (O)(m = 1).

4 ESTIMATING THE OPTIMAL
QUADRATIC-FORM COEFFICIENTS

We now investigate the statistical performance ob-
tained when we use the data Y to estimate Q∗. Let
Q̂∗ = [(q̂∗ij)] be the estimator of Q∗. To obtain a par-
ticular method that is computationally reasonable,
we assume that only the main-diagonal and first off-
diagonal terms of Q∗ are non-zero. That is,

q̂∗ij = 0 for |i− j| ≥ 2.  (10)

This structure is appropriate for AR(1) and M/M/1
processes.

We now define the main and the first off-diagonal
terms. We assume that the output data has γ0 > 10,
so we can apply the result shown in Figure 2 that the
ratio of the q∗ii to q∗i,i+1 approaches -2. That is, we
set

q̂∗i,i+1 = q̂∗i+1,i = −q̂∗22/2 (11)

for i = 2, 3, ..., n− 1. To satisfy the invariance prop-
erty, we set

q̂∗11 = q̂∗nn = q̂∗22/2, (12)

so that
∑n
i=1 q̂

∗
ij = 0 for j = 1, 2, ..., n. To satisfy un-

biasedness, we plug Equations (10) to (12) into Equa-
tion (1) to enforce bias(V̂ ) = 0 and obtain

q̂∗ii = n−1(n− 1)−1(1− ρ̂1)−1 V̂ar(Ȳ )

R̂0

(13)
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Figure 3: Three-dimensional Plot of Q∗ for AR(2)
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Figure 4: Three-dimensional Plot of Q(O) for OBM
for i = 2, 3, ..., n− 1, where ρ̂1, R̂0, and V̂ar(Ȳ ) de-
note the estimators of the unknown parameters ρ1,
R0, and Var(Ȳ ), respectively. We will define these
estimators in the next paragraph. In this setting,
V̂ (∗)(Q̂∗) = (q̂∗22/2)

∑n−1
i=1 (Yi − Yi+1)2, where q̂∗22 is

defined in Equation (13).
In the empirical study, we define R̂0 ≡ (n −

1)−1
∑n
i=1(Yi − Ȳ )2, ρ̂1 ≡

∑n−1
i=1 (Yi − Ȳ )(Yi+1 −

Ȳ )/
∑n
i=1(Yi − Ȳ )2, V̂ar(Ȳ ) ≡ V̂ (O)(m1−2−1), which

is the OBM estimator using Pedrosa and Schmeiser’s
1-2-1 OBM batch size (Pedrosa and Schmeiser, 1994).

We now compare four different estimators of
V̂ar(Ȳ ): V̂ (∗)(Q̂∗), V̂ (O)(m∗), V̂ (O)(m1−2−1), and
V̂ (O)(mS). The first estimator is the estimated op-
timal Q-F estimator proposed above and the last
three estimators are OBM estimators with different
batch sizes, where m∗ is the MSE-optimal batch size,
m1−2−1 is the 1-2-1 OBM batch size (Pedrosa and
Schmeiser, 1994), and mS is Song’s batch size (Song,
1996). The empirical results are shown in Tables 2
and 3 in terms of bias, variance, and MSE for AR(1)
data with n = 500 and M/M/1 data with n = 5000.
In both cases γ0 = 10 and Var(Ȳ ) = 1.

Table 2. AR(1), n=500

V̂ Bias Variance MSE

V̂ (∗)(Q̂∗) -0.29 (.01) .05 (.01) .13 (.01)

V̂ (O)(m∗) -.14 (.01) .06 (.006) .08 (.005)

V̂ (O)(m1−2−1) -.20 (.01) .07 (.01) .11 (.07)

V̂ (O)(mS) -.24 (.01) .05 (.01) .11 (.01)

Table 3. M/M/1, n=5000

V̂ Bias Varance MSE

V̂ (∗)(Q̂∗) -0.08 (.01) .24 (.02) .25 (.02)

V̂ (O)(m∗) -.25 (.004) .08 (.003) .14 (.003)

V̂ (O)(m1−2−1) -.08 (.01) .24 (.02) .25 (.02)

V̂ (O)(mS) -.09 (.01) .24 (.01) .25 (.01)

As can be seen, the proposed estimated optimal
Q-F estimator does not perform better nor worse than
Pedrosa and Schmeiser’s 1-2-1 OBM or Song’s esti-
mator. Both Pedrosa and Schmeiser’s 1-2-1 OBM
and Song’s estimator have similar MSE, although the
tradeoffs between bias and variance differ.

In the proposed simple algorithm, we use OBM
estimator with 1-2-1 OBM as the batch size to es-
timate the unknown parameter Var(Ȳ ) in Equation
(13) as the initial value to estimate the optimal Q-F
coefficients Q∗. There are other ways to estimate the
unknown parameter Var(Ȳ ). For example, we can es-
timate individual correlations. One specific method
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is first fitting an autoregressive process and then es-
timating the corresponding parameters and finally
computing the corresponding correlations (Yuan and
Nelson, 1994).

5 SUMMARY

This paper proposes the idea of searching for
the optimal quadratic-form estimator to estimate the
variance of the sample mean for a stationary process.
The optimal quadratic-form coefficients are obtained
by minimizing an upper bound on the variance of the
quadratic-form estimator of Var(Ȳ ). The statistical
performance in terms of both bias and variance out-
performs the optimal OBM estimator if the process
is known. If the process is unknown, the proposed
simple method is still competitive with two existing
methods. The theoretical optimal quadratic-form ex-
pression provides a reasonable foundation to search
for the optimal quadratic-form estimator and the pro-
posed simple method encourages future research.

APPENDIX

Theorem (Rao, 1973): Let Q , V, and {Ui, i =
1, 2, ..., k} be positive definite and symmetric matri-
ces. Let B be any arbitrary matrix and {pi, i =
1, 2, ..., k} be constants. The solution of the following
minimization problem

minimize tr(QVQV)

subject to:
QB = 0

tr(QUi) = pi, i = 1, 2..., k

is

Q∗ =
k∑
i=1

λiC
tV−1UiV

−1C,

where λ1, λ2, ..., λk are roots
of
∑k
i=1 λitr(C

tV−1UiV
−1CUj) = pj, j = 1, 2, ..., k

and C = I−B(BtV−1B)−1BtV−1.
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