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ABSTRACT

We investigate the problem of deriving precision es-
timates for bootstrap quantities. The one major
stipulation is that no further bootstrapping will be
allowed. In 1992, Efron derived the method of
jackknife-after-bootstrap (JAB) and showed how this
problem can potentially be solved. However, the ap-
plicability of JAB was questioned in situations where
the number of bootstrap samples was not large. The
JAB estimates were inflated and performed poorly.
We provide a simple correction to the JAB method
using a weighted form where the weights are derived
from the original bootstrap samples. Our Monte
Carlo experiments show that the weighted jackknife-
after-bootstrap (WJAB) performs very well.

1 INTRODUCTION

The bootstrap method is a computer-based technique
that has become very popular in recent years for es-
timating such things as standard errors, confidence
intervals, biases, and prediction errors. Its auto-
matic nature and applicability to complicated prob-
lems have contributed to this popularity. As with
any estimated quantities, measures of precision for
bootstrap estimates are often required or are at least
desirable. The iterated bootstrap has been proposed;
however the computation involved can become pro-
hibitive. A simple approach that uses the information
in the original bootstrap samples without further re-
sampling was sought. Efron [1992] derived the JAB
in an attempt to provide a solution to this problem.
The JAB usually requires 100–1000 times less com-
putation than bootstrap-after-bootstrap.
Although the JAB is theoretically justified, situa-

tions arise in practice where it performs poorly. These
situations occur when a large number of bootstrap
samples are not able to be drawn (Tibshirani [1992]).
The JAB estimates in these situations have a ten-
dency to be over-inflated and don’t reflect the true
variability in the bootstrap statistic but more the
limitations of using a small number of bootstrap sam-
ples. This paper will outline an approach to rectify
this situation through a weighted form of JAB where
the weights are themselves derived from the original
bootstrap samples. In Section 2, we outline the jack-
knife and bootstrap methods. In Section 3, we review
the method of JAB. In Section 4, we introduce the
method of WJAB and compare the performance of
different estimates through Monte Carlo results. In
Section 5, we discuss our conclusions. Rao [1995] is
an early work of this paper.

2 The JACKKNIFE AND BOOTSTRAP

We briefly review the jackknife and bootstrap meth-
ods (see Efron [1982], Efron and Tibshirani [1993],
Hall [1992] and Shao and Tu [1995] for more details).
It is assumed that observed data x = (x1, . . . , xn) are
obtained by independent and identically distributed
(i.i.d.) sampling from an unknown distribution F

F
i.i.d.
−→ (x1, . . . , xn) = x.

Let x(i) indicate the data set remaining after deletion
of the ith point,

x(i) = (x1, . . . , xi−1, xi+1, . . . , xn).
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Suppose that s(x) is a real-valued statistic of inter-
est and let s(i) = s(x(i)) present the corresponding
deleted point value of the statistic of interest. The
jackknife estimate for the standard error of s(x) is

ŝejack{s} =

[
n− 1

n

n∑
i=1

(s(i) − s())
2

]1/2

, (1)

where s() =
∑n
i=1 s(i)/n.

The usual estimate of F is F̂ , the empirical prob-
ability distribution, putting probability 1/n on each
point xi,

F̂ : probability 1/n on xi, i = 1, . . . , n.

A bootstrap sample x∗ = (x∗1, . . . , x
∗
n) is a random

sample of size n drawn from F̂ ,

F̂
i.i.d.
−→ (x∗1, . . . , x

∗
n) = x∗.

Then s∗ = s(x∗), the statistic of interest evaluated for
data set x∗, is a bootstrap replication of s. A typical
bootstrap analysis consists of independently drawing
a large number B of independent bootstrap samples,
evaluating the bootstrap replicates s∗b = s(x∗b) for
b = 1, . . . , B and using summary statistics of the s∗b

values to assess the accuracy of the original statistic
s(x). The bootstrap estimate of standard error for s
is

ŝeB{s} =

[
B∑
b=1

(s∗b − s∗.)2

B − 1

]1/2

, (2)

where s∗. =
∑B
b=1 s

∗b/B.

3 The JACKKNIFE-AFTER-BOOTSTRAP

The method of JAB was proposed by Efron [1992].
Suppose we have drawn B bootstrap samples and cal-
culated ŝeB ≡ ŝeB{s}, a bootstrap estimate of the
standard error of s(x). We would like to have a mea-
sure of the uncertainty in ŝeB. The JAB method
provides a way of estimating se(ŝeB) using only in-
formation in our B bootstrap samples. The jackknife
estimate of standard error of ŝeB involves two steps:

1. For i = 1, . . . , n, leave out data point i and re-
compute ŝeB and called the result ŝeB(i).

2. Define ŝejack(ŝeB) = {[(n − 1)/n]
∑n
i=1(ŝeB(i) −

ŝeB(.))
2}1/2, where ŝeB(.) =

∑n
i=1 ŝeB(i)/n.

For each i, there are some bootstrap samples in which
that the data point xi does not appear, and we can
use those samples to estimate ŝeB(i). Formally, if we
let Ci denote the indices of the bootstrap samples
that don’t contain data point xi, and there are Bi
such samples, then

ŝeB(i) =

[∑
b∈Ci

(s(x∗b)− s̄i)2

Bi

]1/2

, (3)

where s̄i =
∑
b∈Ci

s(x∗b)/Bi. The JAB estimate of
standard error of ŝeB is

ŝejab(ŝeB) =

[
n − 1

n

n∑
i=1

(
ŝeB(i) − ŝeB(.)

)2]1/2

(4)

where ŝeB(.) =
∑n
i=1 ŝeB(i)/n.

4 The WEIGHTED JACKKNIFE-AFTER-
BOOTSTRAP

Efron [1992] points out that the JAB method is only
reliable when B is some large number like 1000. The
example of Tibshirani [1992] shows that small val-
ues of B can terribly inflate the JAB estimate of er-
rors. We propose a modification to the JAB method
which incorporates a weighting scheme for the deleted
point jackknife quantities. The weights are derived
directly from the original bootstrap samples and no
further bootstrap computations are required. Com-
paring with the JAB, true jackknife, and Tibshirani’s
approximation (Tibshirani [1992]), our Monte Carlo
experiments show that the WJAB performs very well.

Tibshirani [1992] introduces a simple formula to
estimate the standard error of the bootstrap quantity,

ŝetib(ŝeB) =

[(
1 +

1

B

)
σ̃2

]1/2

(5)

where σ̃2 =
∑B
b=1(s

∗b−s∗.)2/(B−1) is the bootstrap
variance. This method performs reasonable well in his
example (Tibshirani [1992]).

In the computation of the JAB, the sample size Bi
is involved in computing ŝeB(i). Here Bi is random
and depends on the B bootstrap samples. But for
i = 1, . . . , n, each ŝeB(i) was treated equally likely
in computing ŝejab(ŝeB). Thus for large Bi, ŝeB(i)

may contribute more information to ŝejab(ŝeB). The
heuristic approach we propose is to assign a weight
wi to each ŝeB(i) that is proportional to Bi. As men-
tioned, the JAB performs well when B is large (Efron
[1992]) so in order to keep consistent with the JAB
method, wi should converge to 1 as B goes to infinity.

We define s̃eB(i) = wiŝeB(i), then the WJAB esti-
mate of the standard error of ŝeB is

ŝewjab(ŝeB) =

[
n− 1

n

n∑
i=1

(
s̃eB(i) − s̃eB(.)

)2]1/2

(6)
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where s̃eB(.) =
∑n
i=1 s̃eB(i)/n.

A natural candidate for wi is

wi =
Bi∑n

i=1Bi/n
, i = 1, . . . , n.  (7)

Thus, wi is proportional to Bi. From DiCicio and
Martin [1992], wi converges to 1 as B goes to infinity
since Bi/B converges to 1/2 as B goes to infinity.

Next, we consider a series of Monte Carlo experi-
ments where we assume that the statistic of interest,
s(x) is the sample mean, x̄ =

∑n
i=1 xi/n, and the

observed data x = (x1, . . . , xn) are i.i.d. from the
standard normal distribution. All Monte Carlo sim-
ulation results are averaged over thirty independent
replications. The method of common random num-
bers was used in the Monte Carlo design for compari-
son. In order to compare the WJAB and the JAB we
consider the ratio of squared error of the JAB to the
WJAB using the true jackknife estimate ŝetj(ŝeB) as
the standard,

R =

∑
(ŝejab(ŝeB)− ŝetj(ŝeB))

2∑
(ŝewjab(ŝeB)− ŝetj(ŝeB))2

. (8)

The most obvious way to implement the true jack-
knife estimate would be to delete one point out at
a time from the observed data x and then carry out
the bootstrap sampling for each deleted point sample.
For each i, the bootstrap sample size, which was used
in Monte Carlo experiments for computing ŝeB(i) of
the true jackknife estimate, is 10000.

With the natural weightwi = Bi/(
∑n
i=1 Bi/n), Ta-

bles 1 - 4 compare ŝejab(ŝeB) and ŝewjab(ŝeB) with
ŝetj(ŝeB). The Monte Carlo results show that

1. ŝejab(ŝeB) ≥ ŝewjab(ŝeB) ≥ ŝetj(ŝeB),

2. ŝejab(ŝeB) goes to ŝetj(ŝeB) as B goes to infinity,

3. ŝejab(ŝeB) increases in n and

4. ŝewjab(ŝeB) seems to overestimate the standard
error when B is small, which is consistent with
Tibshirani’s result (Tibshirani [1992]).

Comparing with ŝejab(ŝeB), ŝetj(ŝeB), and R values,
ŝewjab(ŝeB) is better than ŝejab(ŝeB) and closer to
ŝetj(ŝeB). But, ŝewjab(ŝeB) does not improve much.
From Tables 1 - 4, the Monte Carlo results using
wi = Bi/(

∑n
i=1 Bi/n) are not exciting. Besides con-

verging to 1 as B goes to infinity and being propor-
tional to Bi, the weight wi should contain the infor-
mation of B bootstrap samples and the observed data
size n. according to Tables 1 - 4, the weight wi should
Table 1: For n = 20 and wi = Bi/(
∑n
i=1 Bi/n)

B ŝejab(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.2202 0.1938 0.0357 1.3594
20 0.1538 0.1344 0.0348 1.4062
40 0.0982 0.0952 0.0382 1.1097
60 0.0887 0.0866 0.0363 1.0829
100 0.0645 0.0638 0.0326 1.1115
500 0.0415 0.0413 0.0318 1.0122
1000 0.0328 0.0327 0.0284 1.0164

Table 2: For n = 50 and wi = Bi/(
∑n
i=1 Bi/n)

B ŝejab(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.2553 0.2198 0.0184 1.3867
20 0.1487 0.1345 0.0147 1.2493
40 0.1074 0.1024 0.0198 1.1063
60 0.0806 0.0787 0.0160 1.0652
100 0.0646 0.0635 0.0143 1.0400
500 0.0309 0.0307 0.0152 1.0150
1000 0.0251 0.0251 0.0161 0.9959

decease in B and n. After large amount of Monte
Carlo experiments, a better weight was obtained,

wi =
Bi∑n

i=1 Bi/n+ n
, (9)

which satisfies all the basic requirement we mentioned
before.

With the better weight wi = Bi/(
∑n
i=1 Bi/n+ n),

Tables 5 - 9 compare ŝejab(ŝeB), ŝetib(ŝeB), and
ŝewjab(ŝeB) with ŝetj(ŝeB). The Monte Carlo results
show that ŝewjab(ŝeB) performs extremely well and
is always the best estimate. The improvement of
ŝewjab(ŝeB) is great. Tibshirani’s estimate ŝetib(ŝeB)
performs poorly when the observed data size n is less
than 40.

5 DISCUSSION

Efron [1992] points out that the bootstrap-after-
bootstrap seems to be too computationally intensive
for routine use. The JAB method, a clever idea, intro-
duces a simple way of estimating the standard error
of the bootstrap estimates without the need to do a
second level of bootstrap replication. However, Tib-
shirani’s example (Tibshirani [1992]) and our Monte
Carlo experiment show that the JAB method is not
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Table 5: For n = 20 and wi = Bi/(
∑n
i=1Bi/n+ n)

B ŝejab(ŝeB) ŝetib(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.2238 0.1508 0.0304 0.0342 80.690
20 0.1461 0.1471 0.0350 0.0368 59.908
30 0.1107 0.1484 0.0374 0.0395 12.680
50 0.0850 0.1417 0.0390 0.0281 13.246
100 0.0761 0.1550 0.0489 0.0408 5.7174
500 0.0476 0.1521 0.0432 0.0383 1.4917
1000 0.0318 0.1272 0.0300 0.0272 1.6175

Table 6: For n = 50 and wi = Bi/(
∑n
i=1Bi/n+ n)

B ŝejab(ŝeB) ŝetib(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.2470 0.1011 0.0143 0.0167 735.63
20 0.1534 0.0977 0.0176 0.0172 227.04
30 0.1116 0.0969 0.0191 0.0136 154.79
50 0.0842 0.0942 0.0218 0.0138 53.274
100 0.0702 0.1033 0.0292 0.0169 15.126
500 0.0324 0.0970 0.0253 0.0169 2.9229
1000 0.0240 0.0963 0.0211 0.0141 1.9017

Table 7: For B = 10 and wi = Bi/(
∑n
i=1 Bi/n+ n)

n ŝejab(ŝeB) ŝetib(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.2096 0.2019 0.0484 0.0549 46.565
20 0.2238 0.1508 0.0304 0.0342 80.690
30 0.2543 0.1405 0.0238 0.0306 248.97
40 0.2405 0.1123 0.0173 0.0219 260.37
50 0.2470 0.1011 0.0143 0.0167 735.63
60 0.2470 0.0950 0.0121 0.0140 1858.1
80 0.2382 0.0755 0.0090 0.0103 4698.8

Table 8: For B = 20 and wi = Bi/(
∑n
i=1 Bi/n+ n)

n ŝejab(ŝeB) ŝetib(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.1585 0.2158 0.0628 0.0837 4.7462
20 0.1461 0.1470 0.0350 0.0368 59.908
30 0.1430 0.1191 0.0250 0.0243 96.942
40 0.1395 0.1030 0.0194 0.0203 69.405
50 0.1534 0.0977 0.0176 0.0172 227.04
60 0.1507 0.0850 0.0147 0.0146 300.58
80 0.1554 0.0792 0.0119 0.0131 481.04
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Table 9: For B = 30 and wi = Bi/(
∑n
i=1 Bi/n+ n)

n ŝejab(ŝeB) ŝetib(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.1228 0.0231 0.0621 0.0784 1.5929
20 0.1107 0.1484 0.0374 0.0395 12.680
30 0.1212 0.1266 0.0306 0.0254 44.964
40 0.1177 0.1031 0.0237 0.0184 136.90
50 0.1116 0.0969 0.0191 0.0136 154.79
60 0.1127 0.0859 0.0164 0.0125 279.81
80 0.1184 0.0793 0.0133 0.0113 462.66
Table 3: For B = 10 and wi = Bi/(
∑n
i=1 Bi/n)

n ŝejab(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.2072 0.1952 0.0657 1.1658
20 0.2202 0.1938 0.0357 1.3594
30 0.2297 0.1970 0.0228 1.3617
40 0.2399 0.2125 0.0211 1.2770
50 0.2338 0.2035 0.0162 1.3413
60 0.2303 0.1972 0.0142 1.3614
80 0.2561 0.2504 0.0112 1.3772

Table 4: For B = 20 and wi = Bi/(
∑n
i=1 Bi/n)

n ŝejab(ŝeB) ŝewjab(ŝeB) ŝetj(ŝeB) R

10 0.1422 0.1321 0.0656 1.3358
20 0.1538 0.1344 0.0348 1.4062
30 0.1475 0.1311 0.0244 1.3301
40 0.1467 0.1342 0.0179 1.2300
50 0.1487 0.1342 0.0147 1.2493
60 0.1518 0.1362 0.0152 1.2594
80 0.1507 0.1374 0.0136 1.2164

very accurate when B is small which restricts its use-
fulness in application.

The proposed weighted version of the JAB method
overcomes this problem by weighting the deleted
point values (ŝeB(i)

). In terms of computation, this
just requires some extra bookkeeping for computing
the weights. The Monte Carlo experiments consid-
ered indicate the WJAB method produces estimates
of standard error that are nearly identical to the
true jackknife estimates even when B is small. This
method can potentially be used for any bootstrap es-
timates.

The WJAB method performs very well with our
weights. What is the theoretical background behind
this method? What are the optimal weights? Those
problems are currently under investigation.
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