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ative processes. These ideas are explored more fully
in Calvin and Nakayama (1997).

While our method has no effect on the standard
regenerative ratio estimator for certain steady-state
performance measures, the basic technique can still
be beneficially applied to a rich class of other per-
formance measures. One example is the standard re-
generative variance estimator. Hence, our estimator
will result in a variance estimator having no more
variability than the standard one. This is important
because one measure of the quality of a particular
output-analysis methodology is the variability of the
half width of the resulting confidence interval (Glynn
and Iglehart 1987), which is largely influenced by the
variance of the variance estimator.

The rest of the paper is organized as follows. In
Section 2, we discuss the standard estimator of α and
describe how to construct our new estimator. Sec-
tion 3 shows how these results can be used to derive
a new estimator of the variance parameter arising in
a regenerative simulation. We analyze the storage
and computational costs of our new estimator in Sec-
tion 4. We present in Section 5 the results of some nu-
merical experiments comparing our new regenerative-
variance estimator to the standard one.

2 OUR NEW ESTIMATORS

Let X = (Xn : n = 0, 1, 2, . . .) be an irreducible ape-
riodic discrete-time Markov chain taking values on a
finite state space S. Suppose our goal is to estimate a
performance measure α of the Markov chain by simu-
lating some fixed number of regenerative cycles for a
fixed return state. More specifically, for a state v ∈ S,
set X0 = v, and define the successive return times

Tv(0) = 0,

Tv(n+ 1) = inf{m > Tv(n) : Xm = v}

for n ≥ 0. Let ~X = {Xn : n = 0, 1, 2, . . . , Tv(mv)}
be a sample path of mv regenerative v-cycles of our
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We propose a new estimator for some performance
measures obtained from a regenerative simulation of
a discrete-time Markov chain. Our new estimator
is based on the idea of generating (uniform) ran-
dom permutations of cycles corresponding to a cer-
tain state, and it has no larger (and typically smaller)
mean squared error than the standard estimator. We
show that our method can be used to derive a new
estimator for the time-average variance parameter of
a regenerative simulation.

1 INTRODUCTION

The regenerative method is a simulation output anal-
ysis technique for estimating performance measures of
regenerative stochastic systems; see Crane and Igle-
hart (1975). The basis of the approach is to di-
vide the sample path into independent and identi-
cally distributed (i.i.d.) segments (cycles), where the
endpoints of the segments are often determined by
hitting times to a fixed return state. Many stochas-
tic systems have been shown to be regenerative (see
Shedler 1993), and the regenerative method results in
asymptotically valid confidence intervals.

In this paper we propose a new estimator for a
performance measure α of a discrete-time Markov
chain obtained from a regenerative simulation of a
fixed number of regenerative cycles for a fixed return
state v. Our new estimator is based on the idea of
generating (uniform) random permutations of cycles
corresponding to a state w 6= v, and the new esti-
mator has the same expected value as the standard
estimator and no greater (and typically strictly less)
variance; thus, it has no larger mean squared error.
We develop our method for irreducible discrete-time
Markov chains defined on a finite state space, but
there are natural extensions to Markov chains with
countable state spaces and to more general regener-
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discrete-time Markov chain, where mv is fixed. Now
we define the standard estimator of α based on the
sample path ~X to be

α̂( ~X) = h( ~X) (1)

where h is some function. This general framework
includes many performance measures of interest. We
describe two examples below; another performance
measure is treated in Calvin and Nakayama (1997).

Example 1 Suppose

α = E

Tv(1)−1∑
j=Tv(0)

g(Xj)

p
for some function g : S → <, where p ≥ 1. Then we
can define h( ~X) by

h( ~X) =
1

mv

mv∑
k=1

Y (g; k)p = α̂( ~X),

where

Y (g; k) ≡ Yv(g; k) =

Tv(k)−1∑
j=Tv(k−1)

g(Xj).

Note that α̂( ~X) is an unbiased estimator of α in this
example.

Example 2 Suppose that

α = σ2 =
E[Z(1)2]

E[τ(1)]
,

where

τ(k) ≡ τv(k) = Tv(k)− Tv(k − 1),

Z(f ; k) = Y (f ; k) − rτ(k),

f : S → < is some “cost” function, r = πf ≡∑
x∈S πxf(x), and π = (πx : x ∈ S) is the stationary

distribution of X. Observe that α in this case is the
time-average variance parameter of the chain. (More
details are given in Section 3.) Then we can define

h( ~X) by

h( ~X) =

∑mv
k=1(Y (f ; k) − r̂τ(k))2∑mv

k=1 τ(k)
= α̂( ~X), ψ (2)

where

r̂ =

∑mv
k=1 Y (f ; k)∑mv
k=1 τ(k)

.

Note that α̂( ~X) is the standard regenerative estima-
tor of σ2. We will return to this particular example
in Section 3.
Our goal now is to create a new estimator for
α, which we do as follows. Given the original sam-
ple path ~X, we begin by constructing a new sample

path ~X′ from ~X such that ~X′
D
= ~X, where “

D
=” de-

notes equality in distribution. This is done by first
taking the original sample path ~X and fixing a new
state w 6= v. The state w is hit a random number of
timesMw within the original path ~X, and we can now
look at the (Mw − 1) w-cycles in the path. We gen-
erate a uniform random permutation of the (Mw−1)

w-cycles within the path ~X, and this gives us our new
sample path ~X′. More specifically, define

Mw = |{0 ≤ n ≤ t : Xn = w}|,

where for notational simplicity we define t = Tv(mv).

If Mw ≤ 2, then let ~X′ = ~X. If Mw ≥ 3, then define

Tw(1) = min{n > 0 : Xn( ~X) = w}

and

Tw(k) = min{n > Tw(k − 1) : Xn( ~X) = w}

for k = 2, 3, . . . ,Mw. Hence, we can break up the
path ~X into

~X = ( ~X1, C(1), C(2), . . . , C(Mw − 1), ~X2),

where

~X1 = {Xn : 0 ≤ n < Tw(1)},

~X2 = {Xn : Tw(Mw) ≤ n ≤ t},

and

C(k) = {Xn : Tw(k) ≤ n < Tw(k + 1)},

k = 1, 2, . . . ,Mw − 1, which is the kth w-cycle of
the original path ~X. Let ζ(1), ζ(2), . . . , ζ(Mw− 1) be
a uniform random permutation of 1, 2, . . .,Mw − 1.
Then we define our new path ~X′ = {X′n : 0 ≤ n ≤ t}
to be

~X′ = ( ~X1, C(ζ(1)), C(ζ(2)), . . . , C(ζ(Mw − 1)), ~X2),

which is the original path ~X with the w-cycles per-
muted. Hence, ~X′ starts in state v and has exactly

mv v-cycles. It can be shown that ~X
D
= ~X′; see Calvin

and Nakayama (1997) for a proof.

Now for the new sample path ~X′, we can calculate

α̂( ~X′) = h( ~X′),

which is just the estimator obtained from the new
sample path ~X′. We finally define our new estimator
for α to be

α̃( ~X) = E∗[α̂( ~X′)],ψ (3)
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where E∗ is the conditional expectation operator with
respect to a random (uniform) permutation of w-

cycles (as was done when constructing the path ~X′

from ~X) given the original sample path ~X. The fol-
lowing result, proved in Calvin and Nakayama (1997),
then holds:

Theorem 1 Let v, w ∈ S be two distinct states and
construct the estimator α̃( ~X) defined by (3). Then

E[α̃( ~X)] = E[α̂( ~X)] and

Var[α̃( ~X)] ≤ Var[α̂( ~X)],ψ (4)

and so the mean squared error of our new estima-
tor α̃( ~X) is no greater than that of the original esti-

mator α̂( ~X). Strict inequality is obtained in (4) un-

less P{h( ~X′) = h( ~X)} = 1, where P is the probabil-
ity measure corresponding to generating the original
sample path ~X and generating the permutation for
constructing ~X′.

An outline of the proof of Theorem 1 is as fol-
lows. Using the Markov property, it can be shown

that ~X′
D
= ~X. It then follows that

E[α̃( ~X)] = E[E∗[α̂( ~X′)]] = E[α̂( ~X′)] = E[α̂( ~X)].

Also, decomposing the variance by conditioning on ~X
establishes the variance reduction.

In Theorem 1 we see that there is no variance re-
duction when for every possible original sample path
~X, the value of the function h in (1) is unaffected by
permutations of the w-cycles. For example, this is
the case in Example 1 with p = 1 since

h( ~X) =
1

Tv(mv)

Tv(mv )−1∑
j=0

g(Xj) = h( ~X′),

and so α̃( ~X) = α̂( ~X). Similarly, by choosing g(x) ≡
1, we see that permuting w-cycles does not alter the
estimator for E[τ(1)]. Thus, our method has no ef-
fect on the standard ratio estimator for steady-state
performance measures α that can be expressed as
α = E[Y (g; 1)]/E[τ(1)].

However, for p 6= 1, we have that h( ~X) 6= h( ~X′)

in general, and so typically α̃( ~X) 6= α̂( ~X). Also, we
usually have that the standard time-average variance
estimator in Example 2 for a regenerative simulation
will differ from the new estimator defined by (3).

Our new estimator α̃( ~X) is only of use in prac-
tice when we can explicitly compute the conditional
expectation in (3). One situation where this can be
done is in Example 1 for p = 2; i.e., when

α = E[Y (g; 1)2] (5)
and our standard estimator of α is

α̂( ~X) =
1

mv

mv∑
k=1

Y (k)2,ψ (6)

where we have dropped the dependence of Y on g to
simplify the notation. Our new estimator of α is then

α̃( ~X) = E∗

[
1

mv

mv∑
k=1

Y ′(k)2

]
,ψ (7)

where Y ′(k) is the same as Y (k) except that it is for

the sample path ~X′ rather than ~X.
Now to explicitly calculate (7) in this particular

setting, we need some new notation. For v, w ∈ S, let
H(v;w) ⊂ {1, 2, . . ., mv} denote the set of indices of
the v-cycles that hit state w, and define the comple-
mentary set J(v;w) = {1, 2, . . ., mv} −H(v;w). Let
hvw = |H(v;w)|. For k ∈ H(v;w), define T ′w(k) =
inf{n > Tv(k − 1) : Xn = w}, which is the first time
that state w is hit after the (k−1)st time state v is hit.

Similarly define T̃w(k) = sup{n < Tv(k) : Xn = w},
which is the last time state w is hit before the kth
regeneration for state v. Then, for k ∈ H(v;w), we
let

Yvw(k) =

T ′w(k)−1∑
j=Tv(k−1)

g(Xj ),

which is the contribution to Y (k) until state w is hit,
and let

Ywv(k) =

Tv(k)−1∑
j=T̃w(k)

g(Xj),

which is the contribution to Y (k) from the last time
state w is hit in the kth v-cycle until the end of the
cycle. Also, for l ∈ J(w; v), let

Yww(l) =

Tw(l)−1∑
j=Tw(l−1)

g(Xj ),

which is the sum of the g(Xj) over the lth w-cycle
that does not hit state v. Also, define

Ȳvw =
1

hvw

∑
k∈H(v;w)

Yvw(k)

and

Ȳwv =
1

hvw

∑
k∈H(v;w)

Ywv(k).

Finally, we define βl to be the lth smallest element
of the set H(v;w) for l = 1, 2, . . . , hvw, and define
β0 = βhvw . For k = βl ∈ H(v;w) for some l =
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1, 2, . . . , hvw, define ψ(k) = βl−1; i.e., ψ(k) is the in-
dex in H(v;w) that occurs just before k if k is not
the first index and is the last element in H(v;w) if k
is the first element. Then the following is proved in
Calvin and Nakayama (1997):

Theorem 2 Suppose we want to estimate α defined
in (5). Then, our new estimator is given by α̃( ~X) =

α̂( ~X) if Mw < 3, and otherwise by

1

mv

 ∑
k∈J(v;w)

Y (k)2 +
∑

k∈H(v;w)

[
Yvw(k)2 + Ywv(k)2

]

+
∑

k∈H(v;w)

2Yvw(k)

hvw − 1

 ∑
j∈H(v;w)

Ywv(j) − Ywv(ψ(k))


+

∑
k∈J(w;v)

Yww(k)2 + 2(Ȳvw + Ȳwv)
∑

k∈J(w;v)

Yww(k)

+
2

1 + hvw

∑
l,m∈J(w;v)

l6=m

Yww(l)Yww(m)

 .ψ (8)

The estimator α̃( ~X) satisfies E[α̃( ~X)] = α, and also

Var(α̃( ~X)) ≤ Var(α̂( ~X)) when α̂( ~X) is the standard
estimator of α as defined in (6).

3 NEW ESTIMATOR FOR THE REGEN-
ERATIVE VARIANCE

We can use Theorem 2 to construct a new estimator
for the variance parameter in a regenerative simula-
tion of a discrete-time Markov chain X. We start
by first giving a more complete explanation of Ex-
ample 2 in Section 2. Recall that X possesses a
unique stationary distribution π. Given a cost func-
tion f : S → <, the goal of the regenerative method
of steady-state simulation is to estimate the param-
eter r ≡ πf . To estimate r, we simulate X for n
transitions, and form the estimator

rn =
1

n + 1

n∑
i=0

f(Xi).

There exists a finite positive constant σ such that

n1/2 (rn − r)

σ

D
→ N(0, 1) (9)

as n→∞, where
D
→ denotes convergence in distribu-

tion. The constant σ2 is called the time-average vari-
ance of X. Given the central limit theorem described
by (9), construction of confidence intervals for r there-
fore effectively reduces to developing a consistent esti-
mator for σ2. The quality of the resulting confidence
interval is largely dependent upon the quality of the
associated time-average variance estimator.

The standard consistent estimator of σ2 is σ̂2( ~X)

= α̂( ~X) defined in (2). Note that σ̂2( ~X) can be ex-
pressed as

σ̂2( ~X) =

∑mv
k=1 Y (f − r̂; k)2∑mv

k=1 τ(k)
.

Now we define our new estimator σ̃2( ~X) to be the

conditional expectation of σ̂2( ~X′) with respect to a
random permutation of w-cycles, given the original
sample ~X. Hence, letting r̂′, Y ′(f − r̂′; k), and τ ′(k)
be the corresponding values of r̂, Y (f−r̂; k), and τ(k)

for the sample path ~X′, we get that

σ̃2( ~X) = E∗

[∑mv
k=1 Y

′(f − r̂′; k)2∑mv
k=1 τ

′(k)

]
=

E∗
[∑mv

k=1 Y
′(f − r̂′; k)2

]∑mv
k=1 τ(k)

,

since
∑mv
k=1 τ

′(k) = Tv(mv) =
∑mv
k=1 τ(k) is indepen-

dent of the permutation of w-cycles. Also, observe
that

r̂′ =
1

Tv(mv)

Tv(mv)−1∑
j=0

f(Xj ) = r̂

is independent of the permutation of w-cycles, so

σ̃2( ~X) =
E∗
[∑mv

k=1 Y
′(f − r̂; k)2

]∑mv
k=1 τ(k)

; (10)

i.e., we can replace r̂′ with r̂. Therefore, we can com-
pute the numerator of the right-hand side of (10)
using (8) with the function g = f − r̂. It follows

from Theorem 1 that E[σ̃2( ~X)] = E[σ̂2( ~X)] and also

Var[σ̃2( ~X)] ≤ Var[σ̂2( ~X)].

4 STORAGE AND COMPUTATION COST

We now discuss the implementation issues associated
with constructing our new estimator α̃( ~X) given in
(8) for the case when α is defined in (5). First ob-
serve that the second line of (8), without the factor
2/(hvw − 1), satisfies

∑
k∈H(v;w)

Yvw(k)

 ∑
j∈H(v;w)

Ywv(j) − Ywv(ψ(k))


=

∑
k∈H(v;w)

Yvw(k)
∑

j∈H(v;w)

Ywv(j)

−
∑

k∈H(v;w)

Yvw(k)Ywv(ψ(k)).
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Also, the last line of (8), excluding the 2/(1 + hvw)
term, satisfies∑
l,m∈J(w;v)

l6=m

Yww(l)Yww(m)

=

 ∑
k∈J(w;v)

Yww(k)

2

−

 ∑
k∈J(w;v)

Yww(k)2

 .

Hence, to construct our estimator α̃, we need to cal-
culate the following quantities:

• the sum of the Y (k)2 over the v-cycles k ∈
J(v;w);

• the sums of the Yvw(k), Ywv(k), Yvw(k)2, and
Ywv(k)2 over the v-cycles k ∈ H(v;w);

• the sum of the Yvw(k)Ywv(ψ(k)) over the v-
cycles k ∈ H(v;w);

• the sums of the Yww(k) and Yww(k)2 over the
w-cycles k ∈ J(w; v).

To compute these quantities in a simulation, we do
not have to store the entire sample path, but rather
we only need to keep track of the various cumulative
sums as the simulation progresses. Therefore, com-
pared to the standard estimator, the new estimator
can be constructed with little additional computa-
tional effort and storage.

At first glance, it may appear that to calculate
the expression on the right-hand side of (10) for the
new estimator of the time-average variance parame-
ter of a regenerative simulation, we must store the
entire sample path. This is because as it currently
stands, two passes must be made through the sam-
ple path to construct our estimator σ̃2( ~X), where r̂
is calculated in the first pass, and then on the second
pass, we can compute the cycle quantities Y (f−r̂; k).
However, one can derive an equivalent expression for
σ̃2( ~X) (which we do not give here) that can be calcu-
lated in a single pass through the sample path using
only accumulators.

5 NUMERICAL EXPERIMENTS

Our numerical example is based on the Ehrenfest urn
model with cost function f the identity function. The
transition probabilities are given by P01 = Ps,s−1 =
1, and

Pi,i+1 =
s− i

s
= 1− Pi,i−1, 0 < i < s.

In our numerical experiments we take s = 8. We per-
formed 3 experiments, corresponding to return states
v = 1, 2 and 4. In all three experiments we performed
1,000 independent replications, each comprising 1,000
v-cycles. In Tables 1–3 we present results from esti-
mating the time-average variance of this process, giv-
ing the sample average and sample variance of our
new estimator over the 1,000 replications.

Table 1 shows, for all choices of alternate state
w, the estimated variance and the sample variance of
the estimates for return state v = 1. (The entry for
w = v corresponds to the standard regenerative es-
timator.) The transition probabilities are symmetric
around state 4 (the mean of the binomial station-
ary distribution), so our first choice of return state
is fairly far from the mean. Notice that the variabil-
ity of the variance estimator is smaller with w near
the mean state 4, and that the variance reduction is
greater for w > v. The reason for this is that the ex-
cursions from v that go below 1 have little variability;
because of the strong restoring force of the Ehrenfest
model, such excursions tend to be very brief. On the
other hand, excursions that get as far as the mean
are likely to be quite long (and thus the contribution
to the variance estimator tends to have large variabil-
ity). In the second table we ran the same experiment
with v = 2 and obtained similar results.

In the third table, we examine the same model,
but now with our return state v chosen to be the sta-
tionary mean, 4. (The average cycle lengths change
with different choices of v, so the results in the tables
correspond to simulations of differing lengths.) The
first thing to notice is that, compared with the other
choices of the return state, the variance reduction is
relatively small. State 4 is the best return state in the
sense of minimizing the variance of the regenerative-
variance estimator. Therefore, for this example, it
appears that our estimator is a significant improve-
ment over the standard regenerative estimator if the
standard regenerative estimator is based on a rela-
tively bad return state. However, if one is able to
choose a near optimal return state to begin with, our
estimator yields a modest improvement. Our method
thus offers some safety against the choice of a bad
return state.
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Table 1: Ehrenfest Urn Model, v = 1

w Avg. of σ̃2 Sample Var.

0 13.97 1.35
1 13.97 1.35
2 13.98 0.53
3 13.96 0.26
4 13.97 0.19
5 13.98 0.23
6 13.96 0.39
7 13.97 0.69
8 13.97 1.14

Table 2: Ehrenfest Urn Model, v = 2

w Avg. of σ̃2 Sample Var.

0 13.98 1.72
1 13.98 1.72
2 13.98 1.72
3 13.98 0.86
4 13.99 0.63
5 13.99 0.65
6 14.00 0.92
7 13.99 1.35
8 13.99 1.66

Table 3: Ehrenfest Urn Model, v = 4

w Avg. of σ̃2 Sample Var.

0 13.90 1.75
1 13.90 1.68
2 13.92 1.62
3 13.91 1.56
4 13.90 1.75
5 13.88 1.53
6 13.88 1.56
7 13.90 1.63
8 13.89 1.74
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