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ABSTRACT

General multiclass queueing systems are extremely
difficult to analyze. A great deal of effort has been
devoted to examining the question of stability and
performance of such networks. However, the simu-
lation of multiclass queueing networks as a tool for
performance evaluation has received little attention.

We generate useful control variates for the steady-
state simulation of multiclass queueing networks with
Markovian structure. The resulting variance reduc-
tions greatly outweigh the cost of solving a minimiza-
tion problem prior to the simulation, as evidenced
through numerical examples.

1 INTRODUCTION

Queueing networks are an extremely useful class of
models that have found application in many areas in-
cluding communication networks (Bertsekas and Gal-
lager 1987), computer systems (Lavenberg 1983) and
manufacturing systems (Buzacott and Shanthikumar
1993, Gershwin 1993). Much of this success is per-
haps due to the inherent tractability of a large class of
queueing networks (Kelly 1979, Baskett et al. 1975).
However, for many queueing networks, the questions
of stability and performance evaluation are extremely
challenging problems. In this paper we assume stabil-
ity, and consider the performance evaluation of a spe-
cial class of queueing networks known as re-entrant
lines (see §2). By performance we mean the expected
steady-state number of jobs in the re-entrant line.
Our results are easily extended to cover a broader
class of systems, and other performance measures (see
§8).

Stability analysis and performance evaluation of
queueing networks have received a great deal of atten-
tion recently. This is partly due to several examples
that demonstrate that the usual conditions (traffic
intensity less than one at each station) are not suffi-
cient for stability, even under the well-known FIFO
(first in-first out) service discipline (see, for example,
Rybko and Stolyar 1993, Bramson 1993).

Methods for establishing the stability of queue-
ing networks have been developed by several authors,
based on fluid limits (Dai 1995, Chen 1995), and Lya-
punov functions (for example Kumar and Meyn 1995,
1996). Mathematical programming approaches for
obtaining upper and lower performance bounds for a
queueing network that is assumed stable were simul-
taneously developed by Bertsimas et al. (1994) and
Kumar and Kumar (1994a). Ou and Wein (1992) de-
veloped process approximations, the performance of
which lower bound the original system’s performance.
The lower bounds are evaluated by simulating the ap-
proximation.

In this paper we simulate the network, but use
ideas from the mathematical programming techniques
of Bertsimas et al. (1994) and Kumar and Kumar
(1994a) to develop effective control variates for the
purposes of variance reduction. The basic idea be-
hind control variate schemes is to add random vari-
ables with zero mean to an estimator in an attempt
to reduce its variance. Because the random variables
have zero mean, no bias is introduced. For a general
introduction to the variance reduction method of con-
trol variates, see Law and Kelton (1991) or Bratley,
Fox and Schrage (1987).

Our approach may be viewed as an adaptation of
the Approximating Markov Process method (Hender-
son 1997), a variance reduction technique developed
to improve the efficiency of steady-state simulations
of Markov processes. The basic idea in Henderson
(1997) is to approximate the solution to Poisson’s
equation (see §5), and then construct an estimator
that incorporates the approximation. Andradóttir,
Heyman and Ott (1993) also used approximations to
the solution to Poisson’s equation in simulating finite
state-space discrete-time Markov chains.

This paper is organized as follows. In §2 the re-
entrant line model is introduced. Then, in §3, control
variates are derived and the estimators are proposed.
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Asymptotic behaviour of the estimators is explored in
§4. In §5, we discuss the choice of multipliers for the
control variates derived in §3. In order to obtain con-
fidence intervals (C.I.’s) based on the estimators, we
must be able to estimate certain variances and covari-
ances. This is done using the method of batch means,
as described in §6. Several examples are presented in
§7 and §8 summarizes the paper and discusses future
research directions.

All vectors are assumed to be column vectors.

2 THE BASIC OPEN RE-ENTRANT LINE

For simplicity, we present our results in the context
of re-entrant lines, which are special cases of multi-
class queueing networks. The approach can be ex-
tended in a straight-forward manner to more general
systems (such as those with probabilistic routes etc.,
as described in Kumar and Kumar 1994a).

Consider a system consisting of s stations (or ma-
chines). Jobs arrive to the system according to a
Poisson process at rate λ. All jobs follow a determin-
istic route through the system. Jobs first visit station
σ(1) ∈ {1, . . . , s}, and are considered to be stored in
buffer 1 while either waiting for or receiving service.
After completing service at station σ(1), jobs then fol-
low the route σ(2), σ(3), . . . , σ(`), and are stored in
buffers 2, 3, . . ., ` respectively. After completing ser-
vice at buffer `, jobs leave the system. Service times
for jobs in buffer i are exponentially distributed with
mean µi. All service and interarrival times are inde-
pendent. We assume that the traffic intensity at each
station is less than one, i.e.,

∑
i:σ(i)=σ λ/µi < 1, ∀σ.

Let Xi(t) denote the number of jobs present at
time t in buffer i, and let X(t) = (X1(t), . . . , X`(t))
be the vector of buffer contents at time t. Let Wi(t)
be the fraction of station σ(i)’s effort devoted to pro-
cessing jobs in buffer i at time t, and let W (t) =
(W1(t), . . . ,W`(t)) be the vector of station effort at
time t. Then Wi(t) ≥ 0 for all i and t, and for all
stations σ and all t,

∑
i:σ(i)=σWi(t) ≤ 1.

We require the scheduling policy adopted by sta-
tions in allocating their effort to be stationary and
non-idling. By stationary, we mean that W (t) is a
function of X(t) alone. This precludes such disci-
plines as FIFO (which rely on additional informa-
tion such as the order in which jobs arrive), but al-
lows (for example) pre-emptive priority and proces-
sor sharing policies. By non-idling, we mean that if∑
i:σ(i)=σ Xi(t) > 0 (there are jobs present at station

σ), then
∑
i:σ(i)=σWi(t) = 1 (the station is allocating

all of its effort). Because the station may allocate ef-
fort to empty buffers, this constraint does not exactly
specify the non-idling condition, but it is a reasonable
approximation.
The stationary scheduling policy assumption al-

lows us to conclude that X = (X(t) : t ≥ 0) is
a continuous-time Markov chain. Now rescale time
so that λ +

∑`
i=1 µi = 1 and uniformize; see Lipp-

man (1975). Let the times {τn} correspond to either
arrivals, real service completions, or virtual service
completions. The control variates that we derive in
the next section are a linear function of the prod-
ucts Wi(τn)Xj(τn), and so are not necessarily a lin-
ear function of the Xj(τn)’s. Therefore, define the
process Z = (Z(n) : n ≥ 0), where Z(n) is a column
vector of the form

(Zij(n) = Wi(τn)Xj(τn) : 1 ≤ i, j ≤ `).

The process Z is a Markov chain, and it is important
to note that X(τn) is a deterministic function of Z(n),
as can be seen from the equality (for each j)

Xj(τn) =
∑

i:σ(i)=σ(j)

Zij(n).ψ (1)

Remark: Notice that for all σ,
∑
i:σ(i)=σWi(τn) ≤

1, so that for σ 6= σ(j)

Xj(τn) ≥
∑

i:σ(i)=σ

Zij(n).ψ (2)

Let the state space of Z be S. Our basic assump-
tion on the process Z is that

(A) there exists a function V : IR`2

+ → IR+ satisfying

1. V is equivalent to a quintic in the sense that for
some γ < 1,

γ(‖z‖5 + 1) ≤ V (z) ≤ γ−1(‖z‖5 + 1); and

2. for some η > 0, and all z,

PV (z) ≤ V (z)− ‖z‖4 + η,

where PV (z)
4
=E[V (Z(1))|Z(0) = z].

This condition will be satisfied if the stability LP
of Kumar and Meyn (1995) admits a solution. In this
case, the function V takes the form V (z) = (zTQz)5/2,
where Q is a matrix of suitable dimension.

Alternatively, if a fluid model is stable, it is shown
in Dai and Meyn (1995) that if we define τ0 = inf{n ≥
1 : Z(n) = 0}, then the function

V (z) = E

[
τ0∑
k=0

‖Z(k)‖4

∣∣∣∣∣Z(0) = z

]
is bounded as in condition 1, and this function is
known to satisfy condition 2 (Meyn and Tweedie 1993,
p. 338).
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Under (A), the chain admits a unique invariant
probability distribution π, andEπ‖Z(0)‖4 <∞ (Meyn
and Tweedie 1993, p. 330), where

Eπ(·)
4
=

∫
S

E(·|Z(0) = z)π(dz).

3 ESTIMATORS AND CONTROLS

Recall that we wish to estimate the mean steady-state
number of customers in the system. From (1)

∑̀
j=1

Xj(τn) =
∑̀
j=1

∑
i:σ(i)=σ(j)

Zij(n)

= cTZ(n),ψ (3)

where c is a vector of ones and zeros, and cT denotes
the transpose of the vector c. We may define the
mean steady-state number of customers in the system

as cT z̄, where z̄i,j
4
=EπZi,j(0) and z̄ is the column

vector of z̄i,j’s.
Define the standard estimator q0(n) of cT z̄ to be

cT Z̄(n), where

Z̄(n)
4
=n−1

n−1∑
k=0

Z(k).ψ (4)

We now introduce a collection of random variables
with steady-state mean zero that can be used as con-
trol variates. Recall that π is the steady-state dis-
tribution of Z. If Eπ|h(Z(0))| < ∞, then Eπ(Ph −
h)(Z(0)) = 0, so that Ph− h has steady-state mean
zero, suggesting possible control variate applicability.

First consider the function

hj(z)
4
=

∑
i:σ(i)=σ(j)

zij = xj,

where x is the vector of buffer levels corresponding to
the state z. Let w be the vector of work allocations
corresponding to z. In one transition, either an ar-
rival may occur to buffer 1 (with probability λ), a real
service completion may occur at buffer k (with prob-
ability µkwk), or a virtual service completion may oc-
cur at buffer k (with probability µk(1−wk)). There-
fore,

Phj(z) − hj(z) = µj−1wj−1 − µjwj , ψ (5)

where µ0
4
=λ and w0

4
= 1. Condition (A) implies that

Eπ|hj(Z(0))| < ∞, so that (5) has zero steady-state
mean for all j, and it follows that

w̄j
4
=EπWj(0) = λ/µj .
We have shown that the mean steady-state work al-
location at buffer j is λ/µj, as expected by work con-
servation.

The same approach may be used for functions of
the form hjk(z) = xjxk, where once again x and w
are the buffer size and workload allocation vectors
corresponding to z. Suppose first that k ≥ j + 2. By
considering the possible transitions as before,

Phjk(z)− hjk(z) = µj−1wj−1xk − µjwjxk

+µk−1wk−1xj − µkwkxj.

Taking steady-state expectations yields

0 = µj−1z̄j−1,k − µj z̄jk + µk−1z̄k−1,j − µk z̄kj

= rTjkz̄,

where z̄ is the vector of steady-state means (of di-
mension `2) defined at the start of this section, and
rjk is a vector of coefficients.

By considering other j ≤ k, and noting that w̄i =
λ/µi, we determine that rTjkz̄ = γjk, where

γjk =

 −2λ,ψ if j = k,
λ,ψ if k = j + 1,
0, ψ if k > j + 1,

and rjk is defined as follows. Let ejk be the vector
that is zero except for a one in the (j, k)th position,
so that eTjkz = zjk. Then for k = j, k = j + 1 and
k > j + 1, the vector rjk is given by

2µj−1ej−1,j − 2µjejj,
µj−1ej−1,j+1 − µjej,j+1 + µjejj − µj+1ej+1,j, and
µj−1ej−1,k − µjejk + µk−1ek−1,j − µkekj

respectively. There is one equation for each pair (j, k)
where 1 ≤ j ≤ k ≤ `, so that there are `(` + 1)/2
equations in all. These equations were derived in Ku-
mar and Kumar (1994a) using the above approach,
and using a slightly different approach that requires
weaker conditions in Kumar and Meyn (1996). Bert-
simas et al. use the same basic ideas to construct
inequalities.

Let R be the matrix where the (j, k)th column
contains rjk, and let γ be the vector of γjk’s. In
matrix notation, we have shown that RT z̄ = γ. These
relations may be used to obtain control variates in a
simulation of the re-entrant line. In fact, one may
envisage two approaches at this point.

1. SimulateX up to time n storing the entire sam-
ple path. Then estimate the mean steady-state
number in the system by

q1(n) = cT Z̄(n) + α̂(n)T (RT Z̄(n)− γ),

choosing the vector α̂(n) after the simulation is
complete in an attempt to minimize the vari-
ance of the estimator q1(n).
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2. Choose the vector α prior to the simulation,
then simulate X, and use the estimator

q2(n) = cT Z̄(n) + β̂(n)αT (RT Z̄(n)− γ), (6)

where β̂(n) is chosen after the simulation is com-
plete in an attempt to minimize the variance of
the estimator q2(n).

At first sight, approach 1 may seem somewhat
storage intensive, but after noting that we merely
need to store the initial state and the sequence of
events, it is apparent that the storage requirements
would not be overwhelming. However, for a large re-
entrant line with many buffers, the number of coeffi-
cients (α) needed to be estimated is very large, and
this directly affects the statistical efficiency of q1(n)
(see the discussion of the loss factor in Lavenberg and
Welch 1981, or a generalization of this result given in
Loh 1994). Therefore, we will pursue the use of q2(n)
as an estimator of the mean steady-state system size.

Remark: A hybrid of the two estimators q1 and q2

could be constructed in which one first “clumps” the
control variates into (say) m < `(` + 1)/2 variates,
then performs the simulation, and finally estimates
an m-vector of control coefficients to obtain the esti-
mator. However, it is unclear how to perform the ini-
tial clumping, so we do not pursue such an approach
here.

4 ESTIMATOR ASYMPTOTICS

We would like to investigate the asymptotic proper-
ties of the estimators outlined in the previous section.
In particular, do they satisfy laws of large numbers
and central limit theorems? To answer these ques-
tions, first observe that assumption (A) implies that
Z satisfies a functional central limit theorem (FCLT).

Proposition 1 Let M(n)
4
=
∑n−1
k=0 Z(k). Under the

assumption (A),

n1/2

(
M(n·)

n
− z̄·

)
⇒ B1(·) (7)

as n→∞, where B1(·) is an `2-dimensional Brown-
ian motion with zero drift and positive semi-definite
covariance matrix Λ, and ⇒ denotes weak conver-
gence.

Proof: Let V2 = V 2/5, where V is defined as in (A).
By concavity,

PV2(z) ≤ (PV (z))2/5

≤ (V (z) − ‖z‖4 + η)2/5

≤ V2(z) + (η − ‖z‖4)(V (z))−3/5

≤ V2(z) − ε‖z‖+ η2
for some ε and η2, where we have used the assumption
that V is equivalent to a quintic in the last step.

It follows from this bound and (A) that the mo-
ment conditions of Meyn and Tweedie (1993) §17.5
are satisfied. Theorems 17.4.4 and 17.5.3 of Meyn
and Tweedie (1993) complete the proof. 2

Remark: The FCLT may be viewed as an extension
of the ordinary central limit theorem to an entire pro-
cess. In particular, the ordinary central limit theorem
results by looking at the FCLT result at time 1.

We may now describe the asymptotic behaviour
of the standard estimator q0(n).

Theorem 1 Under the assumption (A),

1. q0(n)→ cT z̄ a.s. as n→∞; and

2. n1/2(q0(n)−cT z̄) ⇒ σ0N(0, 1), as n→∞ where
σ2

0 = cTΛc and N(0, 1) denotes a standard nor-
mal random variable.

Proof: The first result is a consequence of the strong
law of large numbers for Markov chains; see Meyn and
Tweedie (1993), p. 424. The second result is a direct
consequence of the FCLT and the fact that q0(n) is a
linear function of M(n). 2

In order to describe the asymptotic behaviour of
q2(n), we first note that the FCLT (7) implies another
FCLT of the form

n1/2

(
n−1cTM(n·)− (cT z̄)·

n−1αTRTM(n·)− (αTγ)·

)
⇒ B2(·), (8)

as n→∞, where B2 is a zero drift Brownian motion
with covariance matrix

Γ =

(
cTΛc cTΛRα
cTΛRα αTRTΛRα

)
.

Theorem 2 Suppose that assumption (A) holds, and

that β̂(n) → β a.s. as n → ∞, where β is a deter-
ministic constant. Then

1. q2(n)→ cT z̄ a.s. as n→∞; and

2. n1/2(q2(n)−cT z̄) ⇒ σ2N(0, 1) as n→∞, where
σ2

2 = Γ11 + 2βΓ12 + β2Γ22.

Proof: The first result follows from the fact that
Z̄n → z̄ a.s. as n→∞ and αTRT z̄−αT γ = 0 for any
α. The second result is a consequence of the FCLT
(8) and the converging together lemma (Billingsley
1986, p. 349). 2

Remark: To minimize the time-average variance
constant (TAVC) σ2

2 we should take β∗ = −Γ12/Γ22

unless Γ22 is zero, in which case β∗ = 0. Since Γ will
rarely (if ever) be known exactly, β∗ must be esti-
mated. We will return to this point in §6.
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5 CHOOSING α

In this section we show how to choose the parameters
α so that the TAVC of q2(n) is minimized. Our goal
in doing so is to provide some insight as to a “good”
choice of α. Of course, the parameter β is also at
our disposal, but merely scales α, so may be ignored
(set to 1) in determining the optimal α. Because
the optimal choice of α will prove to depend on the
covariance structure of Z, it cannot, in general, be
determined prior to the simulation.

Consider the estimator q2(n) with β̂(n) = 1 for all
n. From Theorem 2, we see that

σ2
2 = (c +Rα)TΛ(c+ Rα)

= ‖Λ1/2(Rα+ c)‖22,

where Λ1/2 is a Cholesky factor of Λ (i.e., Λ1/2 is
upper triangular and (Λ1/2)TΛ1/2 = Λ). Ideally, α
would be chosen to minimize σ2

2, so that we should
choose α to minimize the above 2-norm.

Prior to the simulation, both R and c are known,
but Λ is not. In general then, we cannot choose the
optimal α’s prior to the simulation. However, we now
have some insight into how to choose α. A reasonable
approach is to attempt to minimize ‖Rα+c‖ for some
norm, and then use the estimator q2(n) defined in (6).
A reasonable choice of norm is the 2-norm, because
this will yield the optimal α when Λ is the identity
matrix, and intuitively should yield good results if Λ
is “close” to the identity. However, it is conceivable
that other norms may also prove useful.

We may also exploit prior knowledge of Λ. For
example, consider the class of pre-emptive priority
policies. In these policies, the buffers at a station
are ordered according to priority, and a job in one
of the buffers receives service only if the buffers of
higher priority at that station are empty. Therefore,
if σ(i) = σ(j), and j has a higher priority than i, then
Zij = WiXj = 0 (Kumar and Kumar 1994a). We im-
mediately see that the column of Λ1/2 corresponding
to the variable Zij must be zero, so that the (i, j)
element of Rα+ c corresponding to that column has
no effect on the TAVC. Hence, we minimize ‖Rα+ c‖
but exclude the (i, j) element from the norm calcula-
tion. It is conceivable that similar methods might be
used to exploit knowledge about other policies.

The problem of minimizing the 1 or ∞ norm of
Rα + c may be formulated as a linear program. By
appealing to the normal equations, one may also min-
imize the 2-norm using linear programming, or of
course, solve this least squares problem by some other
method. Thus, our approach is as follows.

1. Solve a linear program or least squares problem
to obtain α.
2. Simulate the Markov chain Z up to time n.

3. Compute some reasonable β̂(n).

4. Compute the estimator q2(n) as given in (6).

Remark: The minimization problem above may be
viewed as approximating the solution to Poisson’s
equation (Henderson 1997). For positive recurrent
discrete-time processes, Poisson’s equation may be
written

Ph(z)− h(z) = −(cT z − cT z̄) ∀z ∈ S.ψ (9)

If this equation could be solved, then we would ob-
tain a zero variance estimator for cT z̄ via cTZ(0) +
Ph(Z(0)) − h(Z(0)). We may view the problem of
minimizing ‖Rα+ c‖ as finding a function

hα
4
=
∑
i,j

αijhij

that approximately solves (9). To see this, observe
that

Phα(z) − hα(z) ≈ αT (RT z − γ),

so that if Rα = −c, then hα approximately solves (9).

6 BATCH MEANS

Recall that it is desirable to estimate β∗ = −Γ12/Γ22

when using the estimator q2(n). One approach to
doing so would be to use the regenerative method
(see Law and Kelton 1991), with regeneration times
defined by the return times to a distinguished state.
However, it is conceivable that for large systems, the
time between returns to a distinguished state would
be prohibitive, so that very large run lengths would
be required to obtain even a single regenerative cycle.

Therefore, we choose to use the method of batch
means for estimating β∗. Following the recommenda-
tions of Nelson (1989) on combining batch means and
control variates, we used a fixed number of batches
b = 30. However, in doing so we no longer obtain
a consistent estimator of β∗, so that the asymptotic
results of §4 may not apply (and in fact, they do not).
In order to be precise, we first outline how the estima-
tor q2(n) is constructed, which basically comes down

to how β̂(n) is constructed, and then provide the rele-
vant asymptotic results. The following computational
procedure is adapted from Loh (1994), p. 33.

1. Select α.

2. Simulate Z up to time n and compute (for i =
1, ..., b) the batch means

Z̄i =
b

n

bni/b−1c∑
k=bn(i−1)/bc

Z(k).
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3. Compute Z̄(n) = b−1
∑b
i=1 Z̄

i.

4. Compute

V11(n) = (b− 1)−1
b∑
i=1

(cT Z̄i − cT Z̄(n))2,

V22(n) = b−1
b∑
i=1

(αTRT Z̄i − αTRT Z̄(n))2,

V12(n) = (b− 1)−1
b∑
i=1

(cT Z̄i − cT Z̄(n))

×(αTRT Z̄i − αTRT Z̄(n)),

V 2(n) =
b− 1

b− 2
(V11(n) −

V12(n)2

V22(n)
) and

S2(n) = V 2(n)(
1

b
+

(αTRT Z̄(n) − αTγ)2

b− 1
).

5. Set β̂(n) = −V12(n)/V22(n).

6. Set q2(n) = cT Z̄(n) + β̂(n)(αTRT Z̄(n)− αTγ).

Theorem 3 If q2(n) is computed according to the
computational procedure outlined above, then under
the assumption (A),

1. q2(n) converges in probability to cT z̄ as n→∞;
and

2.
q2(n)− cT z̄

S(n)
⇒ tb−2, as n → ∞, where tb−2 is

a random variable with the Student’s t distribu-
tion with b − 2 degrees of freedom.

Proof: The second result is proved in §1.3.2 of Loh
(1994). In addition, Proposition 1.5 of Loh (1994)
shows that nS2(n) converges in distribution to a finite-
valued random variable as n→∞, so the first result
follows. 2

Suppose that P (tb−2 < t∗) = 0.95. Since the con-
stant σ2

0 of Theorem 1 may be estimated by nV11(n)/(b−
1), approximate 95% C.I.’s for cT z̄ are given by

q0(n) ± t∗
√
V11(n)

b− 1
and q2(n)± t∗S(n).ψ (10)

7 EXAMPLES

In this section we present three examples that provide
a comparison between the standard estimator q0(n)
and the controlled estimator q2(n). We will base the
comparisons on the expected halfwidths of the C.I.’s
given in (10).

The major component of the additional work re-
quired to use the new estimator q2(n) is the solution
of the minimization problem prior to the simulation.
For the examples presented below we minimized the
2-norm problem. In all cases, the minimization took
less than 20% of the time required for each of the
simulation runs. Furthermore, in practice one would
run the simulations for a longer period than was fea-
sible in collecting these numerical results, so that the
minimization would be an even smaller portion of the
overall computational time. This observation and the
reductions in halfwidth demonstrated below make the
controlled estimator very appealing.

Example 1 The symmetric tandem queue may be
considered to be the simplest non-trivial re-entrant
line. Jobs arrive to the first station at rate λ, are
served at rate µ, move to the second station, are again
served at rate µ, and then depart from the system.

We ran simulations for several utilization levels to
see how effective the variance reductions are over var-
ious system loads. For each utilization level, we ran
100 simulations, calculating q0(n) and q2(n), and es-
timates of their C.I. halfwidths. The C.I. halfwidths
were estimated using the batch means method with
30 batches, where each batch consisted of 10000 sim-
ulated time units. In an attempt to remove initial-
ization bias, the first batch of each simulation was
discarded.

The results are presented in Table 1. The first
column contains the traffic intensity ρ = λ/µ, (where
λ+2µ = 1), and the next two columns are 95% C.I.’s
for the expected halfwidths of q0(n) and q2(n). For
example, for ρ = 0.5, the expected C.I. halfwidths
are 0.046 and 0.015. This represents variance reduc-
tion by a factor of (0.046/0.015)2 ≈ 9 (note that the
halfwidths are proportional to the square-roots of the
variances).

Table 1: Estimates of CI Halfwidths for Example 1

ρψ Standard Controlled
1/3 0.0185± 0.0005 0.0045± 0.0001
1/2 0.046± 0.001 0.015± 0.0005
2/3 0.134± 0.003 0.057± 0.002
9/10 1.80± 0.07 1.00± 0.05
19/20 5.9± 0.3 3.7± 0.3

Notice that the method provides useful variance
reductions for all traffic intensities ρ. In heavy traffic,
the difference between the two methods appears to
decrease. This is perhaps disappointing, considering
that heavy traffic is exactly the regime that causes es-
timation difficulties, owing to large variances (Whitt
1989, Asmussen 1992).

Example 2 The second example that we consider is
a system consisting of 2 stations and 3 buffers. Jobs
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arrive to buffer 1 at station 1, then proceed to buffer 2
at station 2, and complete their excursions by revisit-
ing station 1 at buffer 3. We assume that this system
operates under the LBFS (last buffer first served) pre-
emptive priority policy, which is known to be stable
as long as λ < µ2, µ1+µ3 (Kumar and Kumar 1994b).
We took µ1 = µ3.

We performed the same experiments as in the pre-
vious example. The results are presented in Table
2. The first 3 columns are the unnormalized rates
λ, µ1 = µ3 and µ2. The final 2 columns are 95%
C.I.’s for the expected half-width of the standard and
new estimators. The traffic intensity at both stations
increases with the rows of the table.

Once again the variance reductions are of a very
useful size, but decrease in effectiveness as the system
enters heavy traffic.

Table 2: Estimates of CI Halfwidths for Example 2

λ µ1 µ2 Standard Controlled
1 4 3 0.042± 0.001 0.00229± 0.00006
1 3 3 0.096± 0.003 0.0043± 0.0001
2 5 3 0.34± 0.01 0.0272± 0.0008
9 20 11 1.32± 0.05 0.84± 0.03

Example 3 Our final example demonstrates that the
methodology is effective for larger systems. The sys-
tem consists of 10 stations and 59 buffers as shown
in Figure 1. Every station operates under the LBFS
pre-emptive priority policy. As before, the rates are
scaled so that the sum of the service rates and the
arrival rates is 1. The unscaled arrival rate is λ = 1,
and the unscaled service rates are identical at each
station, and equal to 16, 16, 16, 18, 18, 20, 20, 20, 20
and 20. C.I.’s for the standard and controlled mean
C.I. halfwidths are 0.68±0.02 and 0.32±0.03 respec-
tively. Thus we obtain a factor of approximately 4 in
variance reduction.

To conclude this section we remark that we could
also have minimized the 1 or ∞ norm of Rα− c, in-
stead of the 2-norm as above. For the examples we
tried (including those presented here), similar vari-
ance reductions were achieved.

8 SUMMARY AND DISCUSSION

The methodology presented in this paper generates
effective control variates for simulations of re-entrant
lines. Our control variate approach appears to be
quite effective for all traffic loadings, but is more-so
for moderate to light loadings. Although we have
restricted attention to the mean steady-state number
?
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Figure 1: The Re-Entrant Line of Example 3.

of jobs in the system, we could also apply the method
to any linear function of z̄. In particular, we could
use the same approach in estimating the mean steady-
state number of jobs in a single buffer.

The extension of this methodology to more gen-
eral multiclass queueing systems (such as those con-
sidered in Bertsimas et al. 1994) is straight-forward.
Simply uniformize the process Z, and consider func-
tions of the form Ph−h, where h is a quadratic func-
tion of the buffer sizes, exactly as in §3.

It is of interest to see if it is possible to construct
an estimator that performs far better than the stan-
dard estimator in heavy traffic, which is traditionally
the most difficult performance regime in which to sim-
ulate. While the estimator constructed in this paper
realized useful variance reductions, the reductions in
heavy traffic were not as substantial as (for instance)
those seen for the Approximating Markov Process
method applied to the single-server queue (Hender-
son 1997). This remains an open problem.
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