
COMPUTATIONAL EFFICIENCY EVALUATION IN OUTPUT ANALYSIS

Halim Damerdji

Department of Industrial Engineering
North Carolina State University

Raleigh, North Carolina 27695–7906, U.S.A.

Shane G. Henderson

Department of Industrial and Operations Engineering
University of Michigan

Ann Arbor, Michigan 48109–2117, U.S.A.

Peter W. Glynn

Department of Engineering-Economic Systems and Operations Research
Stanford University

Stanford, California 94305–4023, U.S.A.
ABSTRACT

A central quantity in steady-state simulation is the
time-average variance constant. Estimates of this
quantity are needed (for example) for constructing
confidence intervals, and several estimators have been
proposed, including nonoverlapping and overlapping
batch means methods, spectral methods, and the re-
generative method. The asymptotic statistical prop-
erties of these estimators have been investigated but
the computational complexity involved in computing
them has received very little attention.

We assume a fixed simulation run-length, as op-
posed to sequential methods in which the run-length
is determined dynamically. In order to consistently
estimate the time-average variance constant, all of the
estimators require an amount of computation that is
linear in the time-horizon simulated, with the excep-
tion of spectral methods which require a superlinear
amount of computation.

1 INTRODUCTION

Let X = (Xn : n ≥ 1) be a real-valued stochastic
process evolving in discrete time. Under very general
conditions it is known that

α(n)
4
=

1

n

n∑
i=1

Xi → α a.s.

as n → ∞, where α is a deterministic constant. We
refer to the problem of estimating α and obtaining re-
lated error bounds through simulation as the steady-
state estimation problem. Again, under very gen-
eral conditions, α(n) satisfies a central limit theorem
(CLT) of the form

√
n(α(n)− α)

D
→ σN(0, 1), (1)

where
D
→ denotes convergence in distribution,

N(0, 1) is a standard normal random variable (r.v.),
and σ2 is the time-average variance constant (TAVC)
of the process. When the process is covariance sta-
tionary, the TAVC is essentially the sum of the co-
variances at all lags; see Section 5 for the definition
of covariance stationarity.

Equation (1) provides a basis for computing a con-
fidence interval for α based on α(n) if an estimator
for σ2 can be computed. Several estimators for σ2

have been proposed in the literature; see chapter 3 of
Bratley, Fox and Schrage (1987), or chapter 8 of Law
and Kelton (1991) for an overview. In selecting an es-
timator V (n) for σ2, one typically takes into account
the properties of X (e.g., is it easy to define regen-
eration epochs for X?). Of course, one should also
take into account the computational effort involved
in computing V (n), as the following analysis shows
(see also Glynn and Whitt, 1992).

Suppose that one has a computational budget of
c units of computer time, and that each transition
(each unit of simulated time) costs a fixed s units of
computer time to simulate. Suppose further that for
a unit increase in simulated time, the computational
effort required to compute V (n) increases by v, so
that computing V (n) requires vn units of computer
time. (The assumption that both the simulation ef-
fort and the computational effort in computing V (n)
increase exactly linearly in n may seem somewhat
restrictive, but the following analysis is easily gen-
eralized to the case where, for example, the average

Computational Efficiency Evaluation in Output Analysis 209
effort over the first n transitions converges weakly
to a constant.) Let ᾱ(c) be the estimator of α ob-
tained from c units of computer time, and note that
if we include the time to compute V (n), bc/(s + v)c
transitions of X will have been recorded. Therefore,
ᾱ(c) = α(bc/(s+ v)c). Now note that if the CLT (1)
holds, then

√
c(ᾱ(c) − α) =

√
c{α(

⌊
c

s+ v

⌋
)− α}

D
→

√
s+ v σN(0, 1)

as c → ∞. We can now see the effect of the effort
required to compute V (n). A confidence interval for
α based on this CLT will have a half-width that is
proportional to

√
s+ v, so that the effort required to

compute the TAVC estimator (quantified by v) has a
direct impact on the accuracy of the point estimator
ᾱ(c) available after c units of computer budget have
been expended. If we could reduce v, we could also
reduce the statistical error in the estimator ᾱ(c). (A
similar analysis can be performed in the case where
the effort to compute V (n) increases at a super-linear
rate.)

Clearly then, one should be aware of the computa-
tional requirements of various TAVC estimators. In
this paper we evaluate the computational burden in-
volved in computing TAVC estimators. We focus on
fixed run-length procedures where the simulation run-
length is decided in advance. We will address sequen-
tial methods (where the simulation is run until some
stopping criteria are met) in a future paper.

Algorithms for computing a TAVC estimator may
be grouped into two categories: single pass and mul-
tipass. In multipass algorithms, two or more passes
through the data are required to compute the TAVC.
In single pass algorithms only one sweep is made
through the data. One computes V (n+1) (or V (n+q)
for some integer q) in terms of V (n). Single pass
algorithms require relatively little storage and also
have the advantage that they may be efficiently ap-
plied in sequential methods (that we do not consider
here). It may also be the case that a single pass algo-
rithm is computationally more efficient than a multi-
pass method. Therefore, although we do not discuss
sequential methods in this paper, we do explore one
pass algorithms.

Below, we will not distinguish between the compu-
tational effort involved in performing different arith-
metic operations, i.e., between performing an addi-
tion, a subtraction, a multiplication, and a division.
An arithmetic operation of this form will be denoted
by flop and storage of a number by stor.

Cancellation methods may also be used to com-
pute confidence intervals, but they do not estimate
the TAVC, so we do not consider them here. The
work in this paper is devoted to discrete-time pro-
cesses. In Section 2 we evaluate several basic algo-
rithms for computing sample means and variances.
The nonoverlapping batch means method appears in
Section 3, and overlapping batch means are consid-
ered in Section 4. The spectral method is evaluated
in Section 5, and the regenerative method appears in
Section 6.

2 TERMINATING SIMULATIONS

In this section we introduce algorithms for computing
sample means and variances for terminating simula-
tions, and describe their computational properties.
These algorithms are not out of place in this paper,
since they are often used as subroutines for comput-
ing TAVC estimators.

First, we consider how to compute the average of
a large number of observations. Call L1,. . . ,Lq these
observations and L̄q their sample average, i.e.,

L̄q =
1

q

q∑
i=1

Li. (2)

Borrowing notation from Chan, Golub, and LeVeque
(1983), let, for 1 ≤ i ≤ j ≤ q,

Ti,j =

j∑
r=i

Lr,

Mi,j =
1

j − i+ 1
Ti,j,

and

Si,j =

j∑
r=i

(Lr −Mi,j)
2.

The most natural way to compute (2) is

Procedure sum.1:

T1,1 = L1

for i = 2 to q, do
T1,i = T1,i−1 + Li

return T1,q/q

whose computational effort is q flop’s. The following
alternative procedure is more stable numerically. It
is more taxing computationally though, as it requires
3q flop’s.

Procedure sum.2:

M1,1 = L1

for i = 2 to q, do
y = (Li −M1,i−1)/i
M1,i = M1,i−1 + y

return M1,q

210 Damerdji, Henderson, and Glynn
Example: One hundred million independent and
identically distributed (i.i.d.) r.v.’s with a uni-
form(0,1000) distribution were generated. By the
strong law of large numbers, the sample average
should be close to the theoretical mean 500. Us-
ing single-precision floating point arithmetic, serious
numerical errors occurred under Procedure sum.1,
which produced a sample average of (171.798). The
sample average was (499.939) under Procedure sum.2.
However, under double-precision floating-point arith-
metic, the two procedures led to numbers equal up to
nine decimal places.

This example illustrates the need to use double-
precision arithmetic whenever dealing with a large
number of real-valued numbers. We will henceforth
assume that all averages are computed using proce-
dure sum.1 and double precision arithmetic unless ex-
plicitly stated otherwise. For a discussion of modern
summation methods, see Higham (1993).

A number of algorithms have appeared for efficient
computation of sample variances. We will focus on
computation of

S1,q =

q∑
i=1

(Li − L̄q)
2 (3)

=

q∑
i=1

L2
i − (1/q)

(q∑
i=1

Li

)2

. (4)

The procedure given next is based on (3) and so re-
quires passing twice through the series of observa-
tions.

Procedure var.1:

compute L̄q (first pass)
sum = 0.0
for i = 1 to q, do

sum=sum+(Li − L̄q)
2

return sum

This two-pass algorithm involves having to store the q
numbers L1,. . . ,Lq in core memory, if possible, or on
secondary storage. The computing effort is 4q flop’s
and q stor’s. The procedure is very stable numeri-
cally but does require the storage of a large number
of observations. Another disadvantage of the two-
pass method is that it is impractical in a sequential
sampling setting when one needs to update the sam-
ple variance every time an additional observation is
sampled (or every so often).

The most computationally efficient way to compute
S1,q is via (4); the so-called textbook one-pass algo-
rithm requires 3q flop’s and no storage. It is not
a recommended procedure, however, especially when
the Li’s are close to one another (i.e., when their vari-
ance is small). The following procedure, due to Han-
son (1975), is one of the recommended ones in the
literature, and is based on the induction

S1,i = S1,i−1 +
(i− 1)

i
(Li − L̄i−1)2, (5)

with S1,1=0.

Procedure var.2:

M1,1 = L1, S = 0.0
for i = 2 to q, do

y = Li −M1,i−1

z = y/i
M1,i = M1,i−1 + z
S = S + (i− 1)yz

return S (S1,q = S)

The procedure requires 6q flop’s and no storage.
This single-pass method is stable numerically, and is
very useful in a sequential setting. Another efficient
and stable procedure for computing the sample vari-
ance is the pairwise algorithm, developed by Chan,
Golub, and LeVeque (1982). Other relevant refer-
ences include Chan and Lewis (1979), Clark (1980),
West (1979), and Youngs and Cramer (1971).

3 NONOVERLAPPING BATCH MEANS

By fixed sample size method, it is meant that before
the start of the simulation, the analyst decides the
total number of process observations to be simulated.
(Naturally, the analyst has no control afterwards on
the width of the confidence interval.) The n process
observations are divided up into k adjacent batches,
each of size m, assuming km = n for simplicity. For
a ≥ 0, b ≥ 1 and a + b ≤ n, consider

Y a,b
4
=

1

b

a+b∑
i=a+1

Xi.

The jth batch mean (j=1,. . . ,k) is Y (j−1)m,m and the

grand sample mean Y 0,n. The batch means TAVC
estimator is

Vbm(n) =
m

k − 1

k∑
j=1

(
Y (j−1)m,m − Y 0,n

)2

(6)

=
n

k − 1

(1

k

k∑
j=1

Y
2

(j−1)m,m − Y
2

0,n

)
. (7)

It is known that when the batch size and number of
batches get large (at a suitable rate) with the sample
size, the batch means variance estimator is consistent

Computational Efficiency Evaluation in Output Analysis 211
(under certain conditions on the process). See Carl-
stein (1986) and Damerdji (1994).

It is straightforward to evaluate the computational
efficiency for this estimator. Using a two-pass algo-
rithm, the first pass to compute the batch means and
grand sample mean, and the second pass to compute
(6), it is necessary to store the k values of Y (j−1)m,m

for j=1,. . . ,k. The computational effort will be n+4k
flop’s and k stor’s. Assuming an infinite precision,
one would use the textbook formula (7) which re-
quires n + 3k flop’s and no storage. Because the
Y (j−1)m,m’s are very close to one another for a large
batch size, the procedure is unstable numerically. A
numerically stable single-pass procedure would use
Procedure var.2 applied to the batch means. The
computational effort is n+6k flop’s with no storage.

If one wishes to minimize the mean squared er-
ror of the TAVC estimator Vbm(n), Goldsman and
Meketon (1986) showed that the optimal batch size
m = cn1/3 for a certain process constant c. Further-
more, Glynn and Whitt (1991) showed that to ob-
tain a consistent TAVC estimator using batch means,
a necessary condition is that the number of batches
m → ∞ as n → ∞. In either case we require that
m grow without bound as n → ∞. Under this re-
quirement, the dominant computational effort needed
to compute Vbm(n) is still O(n) (i.e., the number of
flop’s is bounded above by a linear function of n).

We have been assuming that once the sample size
n is fixed, the analyst decides upon a batch size and
then computes the corresponding TAVC estimator.
If the analyst desires to try different batch sizes with
that same total number of observations, it then be-
comes necessary to store all the observations or a
number of intermediate batch means with a carefully
selected sampling plan. A convenient choice is to con-
sider a total number of observations and batch size
that are powers of two; one could then easily con-
sider a new batch size that is a power (positive or
negative) of two of the old batch size.

4 OVERLAPPING BATCH MEANS

This method of steady-state output analysis is a con-
sistent-estimation method, introduced in the simula-
tion context by Meketon and Schmeiser (1984). The
OBM variance estimator is given by

Vobm(n) =
m

n −m+ 1

n−m∑
j=0

(
Y j,m − Y 0,n

)2

(8)

≈
m

n −m+ 1

(n−m∑
j=0

Y
2

j,m − nY
2

0,n

)
.(9)
The textbook formula (9) requires storage of m suc-
cessive observations and about 4n flop’s. The two-
pass algorithm of (8) requires on the order of 6n
flop’s and necessitates storing the n observations in
either core memory or on a storage device (the space
can be reused to store the n−m+ 1 centered batch
means). An alternative to having to store all of the
observations is to use the following single-pass pro-
cedure which does require, however, storage of the
last m observations (but, then, so does the textbook
formula). For r ≥ m+ 1, let

∆(r) =
r−m∑
j=0

(
Y j,m − Y 0,r

)2

=
r −m+ 1

m
Vobm(r),

Λ(r) =
r−m∑
j=0

(
Y j,m − Y 0,r

)
,

and

Ψ(r) = Y 0,r+1 − Y 0,r =
(
Xr+1 − Y 0,r

)
/(r + 1).

We have the relations

∆(r+ 1) = ∆(r) + (r −m+ 2)Ψ2(r) − 2Ψ(r)Λ(r)

−2Ψ(r)
(
Y r−m+1,m − Y 0,r

)
+
(
Y r−m+1,m − Y 0,r

)2

, (10)

and

Λ(r + 1) = Λ(r)− (r −m+ 2)Ψ(r)

+
(
Y r−m+1,m − Y 0,r

)
. (11)

One should first compute ∆(m + 1) and Λ(m + 1).
After sampling Xr+1 (r ≥ m+ 1), one uses (10) and
(11) to update the variables. It takes 3 flop’s to com-
pute Ψ(r) and an additional flop to compute Y 0,r+1

(using procedure sum.2). It takes 4 flop’s to com-
pute Y r−m+1,m − Y 0,r, 9 flop’s for ∆(r + 1), and 4
flop’s for Λ(r + 1). At each iteration, 21 flop’s are
performed. The total effort to compute Vobm(n) is
about 21n flop’s and m stor’s. The two major ad-
vantages of this iterative procedure are that (1) one
does not have to store all the observations, and (2) it
is very efficient in a sequential sampling setting. This
procedure is computationally more demanding, but
its major drawback is that the batch size cannot be
modified in a sequential setting. If the analyst wants
to try different batch sizes for a fixed number n of
observations, then all these n observations must be
stored.

For the overlapping batch means estimator to be
a consistent estimator of the TAVC, the batch size

212 Damerdji, Henderson, and Glynn
m must be such that m → ∞ and m/n → 0 as
n → ∞ (among other conditions) (Damerdji 1994).
Goldsman and Meketon (1986) (see also Song and
Schmeiser, 1995) show that to minimize the mean
squared error of Vobm(n), the batch size m = m(n) =
cn1/3 for a certain process constant c. The number
of flops required to compute Vobm(n) remains O(n)
when m = cn1/3.

5 THE SPECTRAL METHOD

5.1 The Spectral Variance Estimator

Let us assume that the process is covariance station-
ary, i.e., that EXi = µ and E[(Xi − µ)(Xi+q − µ)] ≡
γ(q) for all lags q and all times i. If

∑∞
q=−∞ |γ(q)| <

∞, then (Anderson 1971) σ2 can typically be re-
expressed as

∑∞
q=−∞ γ(q). The spectral density func-

tion f(·) of the process is the Fourier transform of the
covariance sequence, i.e., for λ ∈ [−π, π],

f(λ) =
1

2π

∞∑
q=−∞

γ(q) cos(λq).

At frequency 0, 2πf(0) =
∑∞
q=−∞ γ(q), and so an es-

timate of the spectral density function at frequency 0
provides an estimate of the TAVC σ2. From Ander-
son (1971), for example,

Vs(n) =
m−1∑

q=−(m−1)

wn(q)γn(q) (12)

is a consistent estimator of σ2 in the mean-square
sense (under certain additional conditions), where:

γn(q) =
1

n

n−q∑
r=1

(Xr − Y 0,n)(Xr+q − Y 0,n) (13)

is the sample covariance at lag q; the weight func-
tion wn(·) is even, |wn(·)| ≤ 1, with wn(0) = 1; and
m is a parameter, which we will call the batch size,
such that m → ∞ and m/n → 0 as n → ∞. The
weight function wn(·) is also called the lag-window
function. We will restrict attention to lag-window
functions such that wn(q) = 0 for |q| ≥ m. Exam-
ples include the modified Bartlett window and (one
of) the Parzen window; these are wn(q) = 1 − |q|/m
and wn(q) = 1− q2/m2, respectively, for |q| ≤ m− 1
and wn(q) = 0 for |q| ≥ m. The critical choice in the
application of spectral methods is the batch size.

We rewrite Vs(n) = γn(0) +
∑m−1
q=1 2wn(q)γn(q).

One could compute the spectral variance estimator
by first computing Y 0,n, subtracting it from every
observation, then computing γn(0),. . . ,γn(m−1) from
(13), and finally, computing Vs(n) from (12). This
takes 2(m+1)n flop’s and n stor’s, assuming it takes
no effort to compute the 2wn(q)’s. The procedure is of
course two-pass. A computationally more attractive
way to compute the sample covariances is via the fast
Fourier transform (FFT) algorithm.

5.2 The Partial-Sum Variance Estimator

An alternative way for computing/approximating a
spectral variance estimator is the following. It is
known that the OBM variance estimator is equal,
but for some end-effect terms, to a spectral variance
estimator with a modified Bartlett lag-window func-
tion. One can go the other way, i.e., given a lag-
window kernel of the kind considered here, one can
construct a generalized OBM-type variance estima-
tor that is equal to the spectral variance estimator
but for some end-effect terms. This estimator, intro-
duced in Damerdji (1991), is called the partial-sum
variance estimator because each observation, from 1
up to (n −m + 1), starts a batch of size 1, a batch
of size 2,. . . , and a batch of size m. Some notation is
needed. Let

∆2w(k) = w(k − 1) cos ((k − 1)λ)− 2w(k) cos (kλ)

+w(k + 1) cos ((k + 1)λ),

and α(k, λ) = k2∆2w(k). From Damerdji (1991),

n−1
n−1∑
j=0

m∑
k=1

α(k, λ)
(
Y j,k − Y 0,n

)2

≈

(m−1)∑
q=−(m−1)

w(q)γn(q) cos (λq).

At frequency 0, define the partial-sum variance esti-
mator as

Vps(n) = n−1
n−1∑
j=0

m∑
k=1

α(k)
(
Y j,k − Y 0,n

)2

,

where α(k)
4
=α(k, 0). It follows that Vps(n) ≈ Vs(n).

For the modified Bartlett window, α(m) = m and
α(k) = 0 for k < m, and so, for this lag-window
function the partial-sum variance estimator is indeed
the OBM variance estimator (with an asymptotically
equivalent denominator).

Most of the lag-window functions in the literature
depend explicitly upon m and not n. See Chap-
ter 6 of Priestley (1981). If one initially chooses a
large enough parameter m, then the following one-
pass procedure could be used to compute Vps(n). For

Computational Efficiency Evaluation in Output Analysis 213
r ≥ m+ 1, let

Υ(r) =
r−m∑
j=0

m∑
k=1

α(k)
(
Y j,k − Y 0,r

)
.

We have that

(r + 1)Vps(r + 1) = rVps(r)− 2Ψ(r)Υ(r)

+(r −m+ 2)Ψ2(r)
m∑
k=1

α(k)

+
m∑
k=1

α(k)
(
Y r−m+1,k − Y 0,r

)2

−2Ψ(r)
m∑
k=1

α(k)
(
Y r−m+1,k − Y 0,r

)
and

Υ(r + 1) = Υ(r) − (r −m+ 2)Ψ(r)
m∑
k=1

α(k)

+
m∑
k=1

α(k)
(
Y r−m+1,k − Y 0,r

)
.

To compute Vps(n), one can initially compute Vps(m+
1) and Υ(m+ 1). One can then evaluate Vps(m+ 2)
and Υ(m + 2) using the above relations, etc. The
terms that are computationally taxing are

m∑
k=1

α(k)
(
Y r−m+1,k − Y 0,r

)2

and
m∑
k=1

α(k)
(
Y r−m+1,k − Y 0,r

)
.

To compute these two terms, an array containing the
last m observations should be kept (and updated).
This procedure is single pass and requires about 6mn
flop’s.

Note that both Vs(n) and Vps(n) require on the
order of mn flop’s to compute. As n → ∞, m
should also increase without bound to obtain a con-
sistent estimator, so that the computation of these
estimators requires superlinear effort in the simula-
tion run-length. Therefore, the computational effort
required to compute these estimators asymptotically
dominates (for example) the nonoverlapping batch
means estimator.

5.3 The Fast Fourier Transform

For simplicity, we now assume that the sample size is
a power of two. One typically computes an estimate
of the spectral density function using the FFT algo-
rithm. From the theory of spectral analysis of time
series, ∫ π

−π
In(θ)Wn(λ− θ)dθ (14)

is a consistent estimator (in the mean-square sense)
of the spectral density function at frequency λ, where
In(λ) is the sample periodogram and Wn(λ) is the
spectral window function (associated with some lag
window function) at frequency λ. For example, the
spectral window function associated with the modi-
fied Bartlett lag window function is

Wn(λ) = (1/(2πm))(sin (mλ/2)/ sin (λ/2))2.

More notation is needed. Consider the finite Fourier
transform

d(λ) =
1

√
2πn

n∑
r=1

(
Xr − Y 0,n

)
exp (−iλr).

We have that
In(λ) = |d(λ)|2. (15)

Consider the frequencies λp = 2πp/n for p =
0,±1,. . . ,±n/2. The integral of (14) can then be

approximated by (2π/n)
∑n/2
p=−n/2 In(λp)Wn(λ−λp).

See Priestley (1981, p. 581). A spectral window func-
tion is even, and so a spectral variance estimator
Vsf(n) of the TAVC σ2 can be taken as

Vsf(n) =
4π2

n

n/2∑
p=−n/2

In(λp)Wn(λp). (16)

The FFT algorithm allows for efficient computation
of d(λ−n/2), . . . ,d(λ0), . . . , and d(λn/2), the finite
Fourier transforms at these particular frequencies.
One then computes Vsf(n) from (15) and (16).

By padding the vector of n values Xr − Y 0,n with
(n − 1) zeros, the integral of (14) can be computed
exactly from the (2n−1) values d(λp) (λp = 2πp/(2n−
1) for p = 0,±1,. . . ,±(n−1)) instead of approximated.
For simplicity, we will not do so, however.

The version of the FFT algorithm we consider is
the one implemented in the C functions four1 and
realft of Press, Flannery, Teukolsky, and Vetterling
(1988,pp. 411-412 and 417–418). One needs a first
pass through the data in order to compute the sam-
ple mean Y 0,n. The n values (Xr − Y 0,n) are then
stored in an array, called data, say. One also needs
to store the n values of the finite Fourier transforms
(−n/2 < p ≤ n/2). The algorithm will actually store
them onto the same array data. To compute these
values within a C program, one would call the func-
tion realft(data,n/2,-1), which in turn will call the

214 Damerdji, Henderson, and Glynn
function four1(data,n/2,-1). The function realft

requires of the order of n flop’s. The taxing com-
putation is actually performed by four1. The so-
called Danielson-Lanczos part of the function four1

requires on the order of n log2 n flop’s and the re-
mainder of the function requires O(n) flop’s (Cor-
men, Leiserson and Rivest 1990 p. 795). Therefore
the dominant term for computing Vsf(n) is on the or-
der of n log2 n flop’s, and once again, we see that
the effort required to compute the TAVC estimator is
superlinear in the simulation run-length.

6 THE REGENERATIVE METHOD

For an overview of this method, see Shedler (1993).
The process observations are divided up into regen-
erative cycles. Let the regeneration times be 1 =
T0, T1, . . ., and let `(n) = sup{k ≥ 0 : Tk ≤ n} be the
number of regenerative cycles completed by time n.
For the ith regenerative cycle, let Yi =

∑Ti−1
j=Ti−1

Xj
be its total cost and τi = Ti+1 −Ti be its length. Let
Ci =

∑i
j=1 Yj be the total cost observed in the first

i regenerative cycles.
After k cycles have been completed, the regenera-

tive point estimator is given by α(Tk) = Ck/Tk. The
regenerative estimator for the variance is based on
the fact that the TAVC can be written

E(Y1 − ατ1)2

Eτ1
(17)

and is given by

Vr(n) =

∑`(n)
j=1 (Yi − α(T`(n))τi)

2

T`(n)
. (18)

We will first evaluate the following two-pass algo-
rithm for computing (18).

for j = 1 to `(n), do
calculate Yj and τj

calculate α(T`(n))
calculate (18)

In determining the computational cost of this al-
gorithm, we will assume zero cost for determining
whether a regeneration occurred or not. This may
be a good assumption in some contexts (e.g., simu-
lating a discrete-time Markov chain on a countable
state space, with regenerations defined as the hitting
times of a distinguished state), or a poor assumption
in others (e.g., for discrete-time Markov processes on
a general state space, typically one needs to gener-
ate “splitting” random variables at each transition;
see Glynn and L’Ecuyer (1995) for details). In any
case, the check is linear in simulated time, and never
superlinear.
The first step in the algorithm will take approx-
imately 2n flop’s. The second will take approxi-
mately 2`(n) flop’s if one uses the Yj ’s as interme-
diate quantities. The final step will require approx-
imately 5`(n) flop’s, so that the expected total ef-
fort will be approximately 2n + 7`(n) flop’s. The
algorithm will also require 2`(n) stor’s to record the
Yi’s and τi’s. But recall that `(n)/n → (Eτ1)−1 as
n → ∞, so that the expected total computational
effort will be approximately (2 + 7(Eτ1)−1)n flop’s.

A one pass algorithm that avoids the storage re-
quirements of the above algorithm but is potentially
numerically unstable was given in Shedler (1993). It
is based on the observation that the TAVC (17) can
also be written

Var(Y1) − 2αCov(Y1, τ1) + α2Var(τ1)

Eτ1
.

Define the quantities Ȳm = Cm/m, τ̄m = Tm/m,

S11(m) =
m∑
k=1

(Yk − Ȳm)2,

S22(m) =
m∑
k=1

(τk − τ̄m)2, and

S12(m) =
m∑
k=1

(Yk − Ȳm)(τk − τ̄m).

Note that S11(m) and S22(m) satisfy the recursion
(5), and S12(m) satisfies the recursion

S12(m) = S12(m−1)+
m − 1

m
(Ym−Ȳm−1)(τm−τ̄m−1).

(19)
The one pass algorithm for computing the estimator
(18) is as follows.

set S11(1) = S12(1) = S22(1) = 0
compute Y1, τ1. Set C1 = Ȳ1 = Y1 and T1 = τ̄1 = τ1
for m = 2 to `(n), do

compute Ym, τm
compute S11(m), S22(m) from the recursion (5)
compute S12(m) from the recursion (19)
set Tm = Tm−1 + τm, Cm = Cm−1 + Ym
set τ̄m = Tm/m, Ȳm = Cm/m

compute α(n) = C`(n)/n

return
S11(`(n)) − 2α(n)S12(`(n)) + α(n)2S22(`(n))

(`(n)− 1)τ̄`(n)
.

It is easy to see that for a simulation run of length
n (and hence `(n) regenerative cycles), this algorithm
will require approximately (2 + 23/Eτ1)n flop’s.

REFERENCES

Anderson, T. W. 1971. Statistical analysis of time
series. New York: Wiley.

Computational Efficiency Evaluation in Output Analysis 215
Bratley, P., B. L. Fox, and L. E. Schrage. 1987.
A guide to simulation, 2nd Edition. New York:
Springer-Verlag.

Carlstein, E. 1986. The use of subseries for estimating
the variance of a general statistic from a stationary
sequence. Annals of Statistics 14:1171–1179.

Chan, T. F., and J. G. Lewis. 1979. Computing
standard deviations: Accuracy. Communications
of the ACM 22:526–531.

Chan, T. F., G. H. Golub, and R. J. LeVeque. 1982.
Updating formulae and a pairwise algorithm for
computing sample variances. Compstat 1982, Pro-
ceedings of the 5th Symposium, eds. H.Caussinus,
P. Ettinger, and J. R. Mathieu, 30–41. Cambridge,
Massachusetts: Physica-Verlag.

Chan, T. F., G. H. Golub, and R. J. LeVeque.
1983. Algorithms for computing the sample vari-
ance: analysis and recommendations. The Ameri-
can Statistician 37:242–247.

Clark, G. M. 1980. Recursive estimation of the vari-
ance of the sample average. ACM Transactions on
Mathematical Software 6:58–67.

Cormen, T. H., C. E. Leiserson, and R. L. Rivest.
1990. Introduction to algorithms. Cambridge,
Massachusetts: The MIT Press.

Damerdji, H. 1991. Strong consistency and other
properties of the spectral variance estimator. Man-
agement Science 37:1424–1440.

Damerdji, H. 1994. Strong consistency of the variance
estimator in steady-state simulation output analy-
sis. Mathematics of Operations Research 19:494–
512.

Glynn, P. W., and P. L’Ecuyer. 1995. Likelihood
ratio gradient estimation for stochastic recursions.
Advances in Applied Probability 27:1019–1053.

Glynn, P. W., and W. Whitt. 1991. Estimating the
asymptotic variance with batch means. Operations
Research Letters 10:431–435.

Glynn, P. W., and W. Whitt. 1992. The asymptotic
efficiency of simulation estimators. Operations Re-
search 40:505–520.

Goldsman, D., and M. S. Meketon. 1986. A com-
parison of several variance estimators. Technical
report J-85-12, School of Industrial and Systems
Engineering, Georgia Institute of Technology, At-
lanta, GA.

Hanson, R. J. 1975. Stably updating mean and stan-
dard deviation of data. Communications of the
ACM 18:57–58.

Higham, N. J. 1993. The accuracy of floating point
summation. SIAM Journal of Scientific Computa-
tion 14:783–799.

Law, A. M., and W. D. Kelton. 1991. Simulation
modeling & analysis, 2nd edition. New York: Mc-
Graw Hill.
Meketon, M., and B. W. Schmeiser. 1984. Over-

lapping batch means: Something for nothing? In
Proceedings of the 1984 Winter Simulation Con-
ference, eds. S. Sheppard, U. W. Pooch, and C. D.
Pegden, 227–230. IEEE, Piscataway, New Jersey.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. 1988. Numerical recipes in C,
The art of scientific computing. Cambridge, Eng-
land: Cambridge University Press.

Priestley, M. B. 1981. Spectral analysis and time se-
ries. New York: Academic Press.

Shedler, G. S. 1993. Regenerative stochastic simula-
tion. San Diego: Academic Press.

Song W. T., and B. W. Schmeiser. 1995. Optimal
mean-squared-error batch sizes. Management Sci-
ence 41:110–123.

West, D. H. D. 1979. Updating mean and variance
estimates: Communications of the ACM 22:532–
535.

Youngs, E. A., and E. M. Cramer. 1971. Some re-
sults relevant to choice of sum and sum-of-product
algorithms. Technometrics 13:657–665.

AUTHOR BIOGRAPHIES

HALIM DAMERDJI is an assistant professor in
the Department of Industrial Engineering at North
Carolina State University. He received a Ph.D. de-
gree in industrial engineering from the University of
Wisconsin-Madison. He has held positions at the
Ecole Nationale Polytechnique of Algiers and Purdue
University. His research interests are in simulation
and applied stochastic processes.

SHANE G. HENDERSON graduated from the
Department of Operations Research at Stanford Uni-
versity in 1996. He then joined the Department of
Industrial and Operations Engineering at the Univer-
sity of Michigan at Ann Arbor. His research interests
include discrete-event simulation, Markov processes
and queueing theory.

PETER W. GLYNN received his Ph.D. from Stan-
ford University, after which he joined the faculty of
the Department of Industrial Engineering at the Uni-
versity of Wisconsin-Madison. In 1987, he returned to
Stanford, where he currently holds the Thomas Ford
Chair in the Department of Engineering-Economic
Systems and Operations Research. He was a co-
winner of the 1993 Outstanding Simulation Publica-
tion Award sponsored by the TIMS College on Sim-
ulation. His research interests include discrete-event
simulation, computational probability, queueing, and
general theory for stochastic systems.

	COMPUTATIONAL EFFICIENCY EVALUATION IN OUTPUT ANALYSIS
	ABSTRACT
	1 INTRODUCTION
	2 TERMINATING SIMULATIONS
	3 NONOVERLAPPING BATCH MEANS
	4 OVERLAPPING BATCH MEANS
	5 THE SPECTRAL METHOD
	5.1 The Spectral Variance Estimator
	5.2 The Partial-Sum Variance Estimator
	5.3 The Fast Fourier Transform

	6 THE REGENERATIVE METHOD
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 208
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

