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ABSTRACT

This paper discusses the efficiency of various batch-
ing methods for estimating performance parameters
from steady-state simulation output, e.g., the steady-
state mean. Our primary focus is on issues related
to computational and storage requirements of batch-
ing methods such as batch means, overlapping batch
means, and standardized time series. We also exam-
ine the important question of determining the proper
batch size for a given estimation problem — how
much effort do batch-size algorithms require?

1 INTRODUCTION

Suppose we have steady-state (but not necessarily
independent) output, Y1, Y2, . . ., arising from a sin-
gle run of a simulation experiment. For instance, Yi
could represent the waiting time of the ith customer
in a certain queueing model, or the transit time of
the ith part through a manufacturing system. It is
often of interest to estimate a performance measure
θ, a property of the steady-state distribution function
FY . The quantity θ is usually the mean, the variance,
or a quantile, but in general can be any performance
measure of the model being simulated. We briefly dis-
cuss estimation of θ before turning to our main topic
of standard-error estimation.

1.1 Natural Estimators

The natural point estimator for θ, denoted by θ̂, is
typically the sample mean Ȳn =

∑n
k=1 Yk/n, the sam-

ple variance, or a simple function of the relevant order
statistics, chosen to mimic the performance measure
θ. Computational aspects associated with θ̂ differ lit-
tle from the corresponding independent-observations
case, simply because the natural point estimator is
used in both cases. Not only are the natural estima-
tors computationally reasonable, they perform well
statistically.
Confusion sometimes arises about the use of the
sample variance, S2, to estimate the process variance,
Var(Yi). The sample variance performs well both sta-
tistically and computationally. As discussed in Wood
and Schmeiser (1994), despite some bias, S2 is con-
sistent for Var(Yi) and has a smaller mean squared
error (mse) than other so-called quadratic-form es-
timators. Hesitation about using S2 arises because
S2/n, the usual estimator of Var(Ȳn) for independent
observations, is inappropriate for dependent observa-
tions. But the fact that the natural estimators are
appropriate for estimating any θ, regardless of depen-
dency, follows from the empirical distribution func-
tion converging to FY . Without this property, the
ubiquitous histograms created by commercial simula-
tion software would be somewhat misleading.

1.2 Unnatural Estimators

An alternative to the natural estimators are compu-
tationally intensive estimators. Bootstrapping and
jackknifing are commonly used examples (see Efron
1982 and Efron and Gong 1983). These are some-
times inappropriate in the steady-state context where
n is typically large. Because the effort to create n
steady-state simulation observations is O(n), the ef-

fort involved in calculating all estimators (both θ̂ and
the associated standard error) should also be close to
O(n). (The notation f(n) = O(g(n)) means that
|f(n)/g(n)| ≤ C as n → ∞, for some constant C.)
Otherwise, time spent computing the estimator could
have been used to increase n. This is quite unlike the
analysis of real-world data, where the cost of comput-
ing is essentially free compared to the cost of collect-
ing data.

1.3 Sampling Error

A complementary concern of simulation output anal-
ysis is to estimate the sampling error of θ̂, that is,
the error caused by the estimator’s randomness. This
gives the experimenter an idea of the degree to which
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the point estimator θ̂ reflects the true but unknown
parameter θ. The sole source of sampling error is the
choice of random-number generator and its seed. Es-
timating the sampling error allows the practitioner to
conclude which digits of θ̂ are meaningful. We mea-
sure the sampling error by the standard error, the
standard deviation of θ̂ (or, almost equivalently, by

the variance of θ̂). The standard error can be used to
compute a confidence interval for θ or, less commonly,
a tolerance interval, or to simply display meaningful
digits of θ̂ (Song and Schmeiser 1994).

1.4 Batching

Batching is a classical methodology used in simula-
tion output analysis for estimating the standard er-
ror of θ̂. For our purposes, the ith batch is com-
posed of the observations Yi, Yi+1, . . . , Yi+m−1 for
i = 1, 2, . . . , n−m+1, where m is the batch size and n
is the run length. The ith batch statistic θ̂i — an es-
timator for θ composed only of observations from the
ith batch — is a miniature version of θ̂, again usually
a sample mean, sample variance, or simple function
of the relevant order statistics. When appropriate, a
“grand” estimator can be used in the batch statistic;
for example, centering a batch variance on the grand
mean is better than centering it on the batch mean
(Ceylan 1995).

1.5 Organization

This paper discusses the efficiency of three batching
methods for estimating performance parameters from
steady-state simulation output. Our primary focus is
related to computational and storage requirements of
the batching methods. To this end, in §2 we describe
some desirable properties that estimators ought to
have and summarize the approach for using batching
to estimate standard error. §3 discusses some specific
batching methods in the context of the steady-state
mean estimation problem, where we are interested
in estimating the standard error of the sample mean
(the true mean’s natural estimator). The batching
methods under study may be familiar to the reader
— batch means, overlapping batch means, and stan-
dardized time series. In §4, we present theoretical
considerations in determining the optimal batch size
for a given estimation problem. §5 examines the im-
portant question of batch-size determination in prac-
tical applications — for example, how much effort do
various batch-size algorithms require? We comment
in §6 on the use of batching for estimating perfor-
mance other than means. §7 gives some final remarks.
2 STANDARD-ERROR ESTIMATION

Batching methods are often used to estimate the stan-
dard error of an estimator. This section deals with
the general problem of estimating standard error.

2.1 Properties of Estimators

We first list some properties that a good estimator
should possess. These apply whether computing θ̂ to
estimate a system performance measure θ or, as is
our focus, computing a measure of experiment qual-
ity, such as the standard error. For notational conve-
nience, we use θ̂ and θ here.

• Statistical performance. An estimator θ̂ should
have low bias, variance, and mse. That is,
bias = E[θ̂]− θ, Var(θ̂), and mse = bias2 + Var
should all be small. Ideally the estimator is
consistent.

• Ease of computation. As discussed above, es-
timators should involve little more than O(n)
calculation operations.

• Parsimonious storage requirements. Data stor-
age should beO(1), and certainly not more than
O(n).

• Ease of understanding. All things being equal,
intuitive “simple” estimators are preferred over
more complicated estimators.

• Numerical stability. Large sample sizes should
not cause underflow, overflow, or rounding er-
rors.

• User-specified parameters. In the best of all
worlds, the user should be required to specify
no parameters, such as the number of batches
or the batch size.

• Amenability for use in algorithms. In our con-
text, we are concerned with how easily the esti-
mators can be incorporated into batch-size de-
termination procedures.

2.2 Batching Estimators

Armed with an idea of what properties an estimator
for the standard error should have, we now give a
top-level discussion of estimators arising from batch-
ing. We combine the generic batch statistics, θ̂i,
i = 1, 2, . . . , n−m+ 1, in order to estimate the vari-
ance of θ̂, or its square root, the standard error. In
particular, the batch-statistics estimator for the vari-
ance of θ̂ is of the form

V̂ar(θ̂) =

∑
A(θ̂i − θ̂)2

d|A|
,
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where A is an appropriate subset of {1, 2, . . ., n−m+
1}, |A| is the cardinality of A, and d is a constant cho-

sen, for example, to yield E[V̂ar(θ̂)] = Var(θ̂) for in-
dependent data. For any batching method, the value
of d is roughly n/m, because the underlying batching
idea is that there is an asymptotic constant

σ2 ≡ limn→∞nVar(θ̂),

which implies that for large values of m and n the
fraction Var(θ̂i)/Var(θ̂) is approximately n/m.

Instead of using V̂ar(θ̂) to estimate Var(θ̂), one
can estimate directly the asymptotic constant σ2.
The change in the associated batch-statistics estima-
tor is easy — just multiply by n. Of course, this
relationship is true only asymptotically, and may re-
quire very long runs before the necessary asymptotics
apply.

3 SOME BATCHING METHODS

We illustrate batching methods by considering the
problem of estimating the steady-state mean µ aris-
ing from a simulation process, Y1, Y2, . . .. The natu-
ral point estimator for µ is the grand sample mean
θ̂ = Ȳn =

∑n
k=1 Yk/n. There are a number of pop-

ular batching estimators for Var(θ̂) in the literature.
Song and Schmeiser (1993) discuss each of the three
estimators described below as well as some others,
giving their quadratic-form representations both al-
gebraically and graphically.

3.1 Nonoverlapping Batch Means Estimator

The nonoverlapping batch means (NBM) estimator
for Var(Ȳn) is defined as

V̂N ≡
m

n

∑b
j=1(Ȳj,m − Ȳn)2

b− 1
,

where we divide the n observations into b adjacent,
nonoverlapping batches, each of size m (assume n =
mb), and where the jth nonoverlapping batch mean
is

Ȳj,m ≡
1

m

m∑
k=1

Y(j−1)m+k,

j = 1, 2, . . ., b. Notice that V̂N is similar to the sam-
ple variance of the batch means. Also notice that, if
we define batch estimators by θ̂i =

∑m−1
k=0 Yi+k/m,

then the nonoverlapping batch means are Ȳj,m =

θ̂(j−1)m+1.
If the batch size m is known, then NBM requires

O(n) computation and O(1) storage. Additional de-
tails on NBM and simple variants thereof are given in
Schmeiser (1982), Carlstein (1986), Glynn and Whitt
(1991), and Chien, Goldsman, and Melamed (1997).
3.2 Overlapping Batch Means Estimator

The overlapping batch means (OBM) estimator for
Var(Ȳn), proposed by Meketon and Schmeiser (1984),
is defined as

V̂O ≡
m

n−m

∑n−m+1
i=1 (θ̂i − θ̂)2

n−m+ 1
,

where we divide the n observations into n − m + 1
overlapping batches, each of size m, and where the
ith overlapping batch mean is θ̂i =

∑m−1
k=0 Yi+k/m,

for i = 1, 2, . . . , n−m+ 1.
OBM is identical to NBM, except that it uses all

n−m+ 1 batches and rescales accordingly. Compu-
tationally, if m is known, then OBM is O(n), rather
than O(nm), if each new batch mean is obtained by
adding and subtracting one observation from the pre-
vious batch of size m. But to achieve O(n) compu-
tation, OBM requires saving the previous m observa-
tions, so it needs O(m) storage. OBM and NBM have
about the same bias as estimators of Var(Ȳn), but for
large m and n/m, OBM’s variance (and hence its
mse) is about 1/3 smaller. See Goldsman and Meke-
ton (1986) and Song and Schmeiser (1995) for details.

Welch (1987) discusses partially overlapping batch
means and Fox, Goldsman, and Swain (1991) propose
spaced batch means, both of which are other varia-
tions on the batches to use. All are O(n) in compu-
tation, but OBM is statistically the most efficient.

3.3 Standardized Time Series Estimator

Schruben (1983) defines the standardized time series
from (nonoverlapping) batch i, i = 1, 2, . . ., b, as

Ti,m(t) ≡
bmtc(Ȳi,bmtc − Ȳi,m)

σ
√
m

(0 ≤ t ≤ 1),

where b·c is the floor function, and

Ȳi,j ≡
1

j

j∑
k=1

Y(i−1)m+k,

for 1 ≤ i ≤ b, 1 ≤ j ≤ m.
The most well-known standardized time series es-

timator is based on the area under each Ti,m(t) func-
tional,

Ai ≡

√
12σ

m

m∑
k=1

Ti,m(k/m)

=

√
12

m3/2

m∑
k=1

(
m+ 1

2
− k

)
Y(i−1)m+k,

for i = 1, 2, . . ., b. The area estimator for Var(Ȳn) is
given by

V̂A ≡
1

nb

b∑
i=1

A2
i .
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If the batch size m is known, then the area estimator
requires O(n) computation and O(1) storage.

The area estimator is one of many possible stan-
dardized time series estimators. It has some very nice
asymptotic bias and variance properties, but is known
to converge rather slowly with respect to these prop-
erties (Sargent, Kang, and Goldsman 1992). A num-
ber of variants of the area estimator try to avoid these
slow-convergence problems, e.g., the weighted area es-
timator of Goldsman, Meketon, and Schruben (1990),
the Cramér-von Mises estimator of Goldsman, Kang,
and Seila (1997), and the Lp-norm estimator of Tokol
et al. (1997).

4 OPTIMAL BATCH SIZE

Batch size selection (or, for nonoverlapping batches,
the number of batches) is a problem that software
vendors have typically solved by asking the practi-
tioner to choose a value—a potentially problematic
approach. Research into automating this choice has
been in the context of confidence-interval procedures
and mse-optimal standard-error estimation. All of
the research has been for NBM or OBM estimators.

In the context of confidence-interval procedures,
Fishman (1978), Law and Carson (1979), and Fish-
man and Yarberry (1997) provide specific procedures
for NBM. Alexopoulos, Fishman, and Seila (1997)
consider computational issues for NBM confidence-
interval procedures.

An optimal batch size for confidence-interval pro-
cedures is difficult to define, however, because the
performance of these procedures is inherently multi-
dimensional. Schmeiser (1982) considers four relevant
performance properties: probability of covering θ, ex-
pected half width, variance of the half width, and the
probabilities of covering points θ0 6= θ. He argues,
without providing a procedure, that if n is fixed and
only the first two criteria are deemed important, as
is common in the research literature, then there is
little statistical reason to use more than thirty NBM
batches and substantial incentive to obtain at least
ten NBM batches. Similar arguments suggest that
the OBM batch size be chosen to be 1/7 to 1/20
of n. More batches are useful to improve the lat-
ter two criteria, including obtaining the consistency
needed for the asymptotic results underlying sequen-
tial methods. In addition, Nelson (1989) argues that
more NBM batches are needed while applying control
variates, even if only the first two criteria are consid-
ered. Unlike algorithms, the informal guidelines are
O(1) in both computation and space; the cost is that
the choice must be either hard coded or left to the
practitioner.
Standard-error estimation is simpler because it al-
lows a single criterion. The usual criterion is the mse
of V̂ar(θ̂) as an estimator of θ̂. If θ̂ is the sample
mean, then asymptotic arguments lead to an mse-
optimal batch size

~m∗ =

(
2n
c2b
cv

γ1

γ0

)1/3

+ 1,

where c2b and cv are the known bias constant and
variance constant of the standard-error estimator,
γj =

∑∞
h=−∞ |h|

j Corr(Yi, Yi+h), and the additive
constant is chosen to yield a batch size of one for in-
dependent data (Goldsman and Meketon 1986, Song
1988, Song and Schmeiser 1995).

5 DETERMINING BATCH SIZE

Given the asymptotic results of the previous section,
the problem of estimating the mse-optimal batch size
when θ is the mean can be reduced to estimating
γ1/γ0. This ratio can be interpreted as the center
of gravity of the non-negative lags of the autocorrel-
ogram. Two methods have been proposed for esti-
mating the mse-optimal batch size via the center of
gravity.

Song (1996) estimates autocorrelations explicitly,
using tests of hypotheses to determine which auto-
correlations to ignore as negligible. These estimated
autocorrelations are then used to estimate the center
of gravity. Although this technique works well on the
battery of examples presented in the paper, it may re-
quire more than O(n) work to estimate the required
correlations. Also, the method depends critically on
two user-supplied parameters, which must be chosen
carefully.

Pedrosa and Schmeiser (1994), based on results
in Pedrosa (1994) and Pedrosa and Schmeiser (1993),
estimate the center of gravity implicitly. The method,
named 121-OBM, is specific to the use of the OBM
estimator, which is called four times in three steps. In
the first step, OBM is called with a large batch size,
with the purpose being to estimate, quite crudely, the
sum of the autocorrelations γ0. Based on the result
from Step 1, Step 2 estimates the center of gravity
as a simple ratio of two OBM estimates, using two
different batch sizes on the same data. Step 3 then
estimates the variance of the sample mean using the
batch size implied by the result of Step 2 and the
asymptotic batch-size formula.

Step 2 deserves some discussion, since this is
where the issue of computational efficiency arises.
Avoiding explicit autocorrelation calculations allows
O(n) computation in an algorithm where much of the
logic is buried in the OBM algorithm, which is called
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as a subprogram. The key thought is to notice that
the lag window of the OBM estimator, which is the
same as the Bartlett spectral estimator, is a trian-
gle. Consider superposing two such lag windows, one
using some batch size m and another using m + 1.
Think about the area within the second but not in the
first. Corresponding to lag h is an area proportional
to h. So the difference of the two OBM estimators,
scaled appropriately, automatically weights each au-
tocorrelation ρh by h, as needed in γ1, but without
calculating ρh.

Both Song’s method and 121-OBM assume that
the data are available as n discrete data points in a
vector that can be called repeatedly. Song’s method
requires the user to provide an algorithm parameter,
while 121-OBM does not. On the other hand, Song’s
method could be adapted to any batching estimator,
whereas 121-OBM is based on a property offered only
by the OBM estimator.

6 OTHER PERFORMANCE MEASURES

Schmeiser, Avramidis, and Hashem (1990) and Cey-
lan (1995) consider performance measures other than
the mean. Overlapping batch variances (OBV) re-
quire O(n) computation and O(m) space. Overlap-
ping batch quantiles require O(n ln(m)) computation
if implemented carefully (as in Hashem and Schmeiser
1994). The optimal batch size, even in the asymptotic
case, is unknown for these performance measures.
Heuristic arguments and empirical evidence, however,
suggest that the optimal mse-batch size grows with
n1/3. Ceylan (1995) shows that the OBV (or NBV)
optimal-mse batch size is closely related to the op-
timal OBM (or NBM) batch size for the process of
squared observations, Y 2

i .

7 CONCLUSIONS

Some interesting computational problems for batch-
ing remain unsolved. Central to these is that the
research literature has assumed that the n observa-
tions Yi are available in a vector, either in memory on
stored in a data base. Of course, in practice, n might
not be known a priori, in which case the size of the
vector is unknown. Because n is not known, an ap-
propriate value for m is also unknown. So we need a
method that accepts observations sequentially, accu-
mulates some sums in O(1) space and O(n) time, dy-
namically increases m as is appropriate to the current
run length n, and computes standard-error estimates
as needed using the current value of m. The natural
approach would be something like Fishman’s (1978)
idea of doubling batch sizes for NBM. Ideally, a com-
putationally efficient algorithm can be developed that
is based on a more statistically efficient estimator.
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