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ABSTRACT

This article discusses implementation issues for the
LBATCH and ABATCH batch means procedures of
Fishman and Yarberry (1997). Theses procedures dy-
namically increase the batch size and the number of
contiguous batches based on the outcome of a hypoth-
esis test for independence among the batch means.
We show that both procedures require O(n) time
and O(log2 n) space, where n is the desired sample
size. Although like complexities are known for static
fixed batch size algorithms, the dynamic setting of the
LBATCH and ABATCH rules offers an important ad-
ditional advantage not present in the static approach.
As the analysis evolves with increasing sample path
length, it allows a user to assess how well the esti-
mated variance of the sample mean stabilizes. This
assessment is essential to gauge the quality of the
confidence interval for the sample mean. The LA-
BATCH implementation (described in Fishman 1996
and Fishman and Yarberry 1997) of the LBATCH
and ABATCH rules is the only computer package that
automatically generates the data for this assessment.

1 INTRODUCTION

Suppose {Xi, i ≥ 1} is a discrete-time stochastic pro-
cess. The method of batch means is frequently used
to estimate the steady-state mean µ of {Xi} or the
Var(Xn) (for finite n) and owes its popularity to its
simplicity and effectiveness. Original references on
the method are Conway (1963), Fishman (1978a),
and Law and Carson (1979).

The classical approach divides the output
X1, . . . , Xn of a long simulation run into a number
of contiguous batches and uses the sample means of
these batches (or batch means) to produce point and
interval estimators.

To motivate the method, suppose temporarily
that the process {Xi} is weakly stationary, that is,
E(Xi) = µ, Var(Xi) = σ2, and the Cov(Xi, Xj)
depends only on the lag |j − i|. Also assume that
limn→∞ nVar(Xn) < ∞. Then split the data into k
batches, each consisting of b observations. (Assume
n = kb.) The ith batch consists of the observations

X(i−1)b+1, X(i−1)b+2, . . . , Xib

for i = 1, 2, . . . , k and the ith batch mean is given by

Xi(b) =
1

b

b∑
j=1

X(i−1)b+j.

For fixed m, let σ2
m = Var(Xm). Since the batch

means process {Xi(b), i ≥ 1} is also weakly station-
ary, some algebra yields

σ2
n =

σ2
b

k
+

1

k2

∑
i 6=j

Cov[Xi(b), Xj(b)]

=
σ2
b

k

(
1 +

nσ2
n − bσ

2
b

bσ2
b

)
.ψ (1)

Since n ≥ b, (nσ2
n − bσ

2
b )/(nσ2

b ) → 0 as first n → ∞
and then b→∞. As a result, σ2

b/k approximates σ2
n

with error that diminishes as b and n approach in-
finity. Equivalently, the correlation among the batch
means diminishes as b and n approach infinity.
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To use the last limiting property, one forms the
grand batch mean

Xn =
1

k

k∑
i=1

Xi(b),

estimates σ2
b by

V̂k(b) =
1

k − 1

k∑
i=1

(Xi(b) −Xn)2,

and computes the following approximate 1−α confi-
dence interval for µ:

Xn ± tk−1,1−α/2

√
V̂k(b)/k .ψ (2)

The main problem with the application of the batch
means method in practice is the choice of the batch
size b. If b is too small, the means Xi(b) can be
highly correlated and the resulting confidence interval
will frequently have coverage below the user-specified
nominal coverage 1 − α. Alternatively, a large batch
size will likely result in very few batches and poten-
tial problems with the application of the central limit
theorem to obtain (2).

The method of Fishman (1978) selects the smallest
batch size from the set {1, 2, 4, . . . , n/8} that passes
the test of independence based on von Neumann’s
statistic (see Section 2.1). A variant of this method
was proposed by Schriber and Andrews (1979). Me-
chanic and McKay (1966) choose a batch size from the
set {16b1, 64b1, 256b1, . . . , n/25} (usually b1 = 1) and
select the batch size that passes an alternative test
for independence. The procedure of Law and Car-
son (1979) starts with 400 batches of size 2. Then
it considers sample sizes that double every two iter-
ations until an estimate for lag-1 correlation among
400 batch means becomes smaller than 0.4 and larger
than the estimated lag-1 correlation among 200 batch
means. The procedure stops when the confidence in-
terval (2) computed with 40 batches satisfies a rel-
ative width criterion. Schmeiser (1982) reviews the
above procedures and concludes that selecting be-
tween 10 and 30 batches should suffice for most sim-
ulation experiments. The major drawback of these
methods is their inability to yield a consistent vari-
ance estimator.

Example 1 shows how an asymptotically optimal
batch size can be obtained in special cases.

Example 1 Consider the stationary AR(1) process

Xi = µ+ ρ(Xi−1 − µ) + Zi, i ≥ 1,
where |ρ| < 1, X0 ∼ N(µ, 1), and the Zi’s are i.i.d.
N(0, 1− ρ2). Carlstein (1986) showed that

Bias(V̂k(b)) = −
2ρ

(1− ρ)3(1 + ρ)
×

1

b
+ o

(
1

b

)
(3)

and

Var(V̂k(b)) =
2

(1− ρ)4
×
b

n
+ o

(
b

n

)
,

where o(h) is a function such that limh→0 o(h)/h =
0. Then the batch size that minimizes the asymp-
totic (as n → ∞ and k → ∞) mean squared error
MSE(V̂k(b)) = Bias2(V̂k(b)) + Var(V̂k(b)) is

b0 =

(
2|ρ|

1− ρ2

)2/3

n1/3.ψ (4)

Clearly, the optimal batch size increases with the ab-
solute value of the correlation ρ between successive
observations.

In practice, the relevance of this model is conjec-
tural. First, the optimal batch size may differ sub-
stantially from (4) for a finite sample size (e.g., Song
and Schmeiser 1995). Second, the model generally
does not apply to the analysis of queueing systems
data. Third, it is not evident that this strategy for
batch size selection allows the space and time com-
plexities achievable by the LBATCH and ABATCH
rules for generating an assessment of the stability of
the variance of the sample mean.

2 CONSISTENT ESTIMATION BATCH
MEANS METHODS

Consistent estimation batch means methods assume
the existence of a parameter σ2

∞ (the time-average
variance of the process {Xi}) such that a central limit
theorem holds

√
n(Xn − µ)

D
−→ σ∞N(0, 1) as n→∞←(5)

and aim at constructing a consistent estimator for
σ2
∞ and an asymptotically valid confidence interval

for µ. [Notice that the Xi’s in (5) need not be i.i.d.]
Consistent estimation methods are often preferable
to methods that “cancel” σ2

∞ (see Glynn and Iglehart
1990) because: (a) The expectation and variance of
the halfwidth of the confidence interval resulting from
(5) is asymptotically smaller for consistent estima-
tion methods; and (b) Under reasonable assumptions
nVar(Xn)→ σ2

∞ as n→∞.
Chien, Goldsman, and Melamed (1996) considered

stationary processes and, under quite general mo-
ment and sample path conditions, showed that as



196 Alexopoulos, Fishman, and Seila
both b, k→∞, MSE(bV̂k(b))→ 0. Notice that mean
squared error consistency differs from consistency.

The limiting result (5) is implied under the fol-
lowing two assumptions, where {W (t), t ≥ 0} is the
standard Brownian motion process (see Resnick 1994,
Chapter 6).

Assumption of Weak Approximation (AWA).
There exist finite constants µ and σ∞ > 0 such that

n(Xn − µ)

σ∞

D
−→ W (n) as n→∞.

Assumption of Strong Approximation (ASA).
There exist finite constants µ, σ∞ > 0, λ ∈ (0, 1/2],
and a finite random variable C such that, with prob-
ability one,

|n(Xn − µ) − σ∞W (n)| ≤ Cn1/2−λ as n→∞.

Both AWA and ASA state that the process
{n(Xn−µ)/σ∞} is close to a standard Brownian mo-
tion. However the stronger ASA addresses the con-
vergence rate of (5).

The ASA is not restrictive as it holds under rel-
atively weak assumptions for a variety of stochastic
processes including Markov chains, regenerative pro-
cesses and certain queueing systems (see Damerdji
1994 for details). The constant λ is closer to 1/2
for processes having little autocorrelation while it is
closer to zero for processes with high autocorrelation.
In the former case the “distance” between the pro-
cesses {n(Xn−µ)/σ∞} and {W (n)} “does not grow”
as n increases.

2.1 Batching Rules

Fishman and Yarberry (1997) and Fishman (1996,
Chapter 6) presented a thorough discussion of batch-
ing rules. Both references contain detailed instruc-
tions for obtaining FORTRAN, C, and SIMSCRIPT
II.5 implementations for various platforms via anony-
mous ftp from ftp.or.unc.edu.

Equation (1) suggests that fixing the number of
batches and letting the batch size grow as n → ∞
ensures that σ2

b/k→ σ2
n. This motivates the following

rule.

The Fixed Number of Batches (FNB) Rule.
Fix the number of batches at k. For sample size n,
use batch size bn = bn/kc.

The FNB rule along with AWA lead to the following
result.

Theorem 1 (Glynn and Iglehart 1990) If {Xi} sat-

isfies AWA, then as n→∞, Xn
P
−→ µ and (5) holds.
Furthermore, if k is constant and {bn, n ≥ 1} is a se-
quence of batch sizes such that bn → ∞ as n → ∞,
then

Xn − µ√
V̂k(b)/k

D
−→ tk−1 as n→∞.

The primary implication of Theorem 1 is that (2)
is an asymptotically valid confidence interval for µ.
Unfortunately, the FNB rule has two major limita-
tions: (a) bnV̂k(b) is not a consistent estimator of
σ2
∞. Therefore the confidence interval (2) tends to

be wider than the interval a consistent estimation
method would produce. (b) Statistical fluctuations
in the halfwidth of the confidence interval (2) do not
diminish relative to statistical fluctuation in the sam-
ple mean (see Fishman 1996, pp. 544–545).

The following theorem proposes batching assump-
tions which along with ASA yield a strongly consis-
tent estimator for σ2

∞.

Theorem 2 (Damerdji 1994) If {Xi} satisfies ASA,

then Xn
a.s.
−→ µ as n→∞. Furthermore suppose that

{(bn, kn), n ≥ 1} is a batching sequence satisfying

(1) bn →∞ and kn →∞ monotonically as n→∞;

(2) b−1
n n1−2λ lnn→ 0 as n→∞;

(3) there exists a finite positive integer a such that

∞∑
n=1

(bn/n)a <∞.

Then, as n→∞,

bnV̂kn(bn)
a.s.
−→ σ2

∞ (6)

and

Zkn =
Xn − µ√
V̂kn(bn)/kn

D
−→ N(0, 1).ψ (7)

The last display implies that

Xn ± tkn−1,1−α/2

√
V̂kn(bn))/kn

is an asymptotically valid 1 − α confidence interval
for µ.

Theorem 2 motivates the consideration of batch
sizes of the form bn = bnθc, 0 < θ < 1. In this case
one can show that the conditions (1)–(3) are met if
θ ∈ (1−2λ, 1). In particular, the assignment θ = 1/2
and the SQRT rule below are valid if 1/4 < λ < 1/2.
Notice that the last inequality is violated by processes
having high autocorrelation (λ ≈ 0).
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The Square Root (SQRT) Rule. For sample size
n, use batch size bn = b

√
nc and number of batches

kn = b
√
nc.

Under some additional moment conditions, Chien
(1989) showed that the convergence of Zkn to the
N(0, 1) distribution is fastest if both bn and kn grow
proportionally to

√
n. Unfortunately, in practice

the SQRT rule tends to seriously underestimate the
Var(Xn) for fixed n.

With the contrasts between the FNB and SQRT
rules in mind, Fishman and Yarberry proposed two
procedures that dynamically shift between the two
rules. Both procedures perform “interim reviews”
and compute confidence intervals at times nl ≈
n12l−1, l = 1, 2, . . ..

The LBATCH Procedure. At time nl, if an
hypothesis test detects autocorrelation between the
batch means, the batching for the next review is de-
termined by the FNB rule. If the test fails to detect
correlation, all future reviews omit the test and em-
ploy the SQRT rule.

The ABATCH Procedure. If at time nl the hy-
pothesis test detects correlation between the batch
means, the next review employs the FNB rule. If the
test fails to detect correlation, the next review em-
ploys the SQRT rule.

Both procedures LBATCH and ABATCH yield
random sequences of batch sizes. Under relatively
mild assumptions, these sequences imply convergence
results analogous to (6) and (7).

Test for Correlation

We will briefly review a test for the hypothesis H0:
the batch means X1(b), . . . , Xk(b) are uncorrelated.
A commonly used test is due to von Neumann (1941)
and is effective when the number of batches k is as
small as 8.

Assume that the process {Xi} is weakly stationary.
The von Neumann test statistic for H0 is

Ck(b) =

√
k2 − 1

k − 2

×

[
1−

∑k
i=2(Xi(b) −Xi−1(b))2∑k
i=1(Xi(b) −Xn)2

]
.

Under H0, Ck(b) ≈ N(0, 1) for large b (the batch
means become approximately normal) or large k (by
the central limit theorem). If {Xi} has a monotone
decreasing autocorrelation function (e.g., the delay
process for an M/M/1 queueing system), one rejects
H0 at level β if Ck(b) > z1−β. Alternatively, if
{Xi} has an autocorrelation function with damped
harmonic behavior around the zero axis (e.g., an
AR(1) process with ρ < 0), the rejection of H0 when
Ck(b) > z1−β can lead to erroneous conclusions. In
this case, repeated testing under the ABATCH pro-
cedure reduces this possibility.

The p–value, 1−Φ(Ck(b)), of the test is the largest
value of the type I error β = P (reject H0 | H0 is true)
given the observed value of Ck(b). Equivalently, H0

is rejected of the p–value is larger than β. Hence, a
p–value close to zero implies low credibility for H0.

2.2 Implementing the LBATCH and
ABATCH Procedures

To understand the role of the hypothesis test in the
LBATCH and ABATCH algorithms, define the ran-
dom variables

Rl = fraction of rejected tests for H0

on reviews 1, . . . , l.

A sufficient condition for strong consistency (equa-
tion (6)) and asymptotic normality (equation (7)) is
β0 > 1−4λ (or λ > (1−β0)/4), where β0 = liml→∞ Rl
is the long-run fraction of rejections. In practice, β0

differs from but is expected to be close to the type
I error β. Clearly, λ > 1/4 guarantees (6) and (7)
regardless of β0. However, β0 plays a small role when
λ ≤ 1/4. Specifically, for β0 equal to 0.05 or 0.10,
the lower bound (1−β0)/4 becomes 0.2375 or 0.2225,
respectively, a small reduction from 1/4.

On review l, both methods induce batch size

bl = 2(l−1)(1+Rl−1)/2

×

{
b1 if (l− 1)(1 +Rl−1) is even
b̃1/
√

2 otherwise,

where

b̃1 =

{
3/2 if b1 = 1
b
√

2 b1 + 0.5c if b1 > 1,

and number of batches

kl = 2(l−1)(1−Rl−1)/2

×

{
k1 if (l − 1)(1− Rl−1) is even
k̃1/
√

2 otherwise,

where k̃1 = b
√

2 k1 + 0.5c.
The resulting sample sizes are

nl = klbl =

{
2l−1k1b1 if (l− 1)(1 +Rl−1) is even
2l−2k̃1b̃1 otherwise

and the definitions for b̃1 and k̃1 guarantee that if
H0 is never rejected, then both bl and kl grow ap-
proximately as

√
2 with l (i.e., they follow the SQRT

rule).
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Suppose one decides to perform L+1 reviews (iter-
ations). The final implementation issue is the relative
difference between the potential terminal sample sizes

∆(b1, k1) =
|2Lk1b1 − 2L−1k̃1b̃1|

2Lk1b1
=
|2k1b1 − k̃1b̃1|

2k1b1
.

This quantity is minimized (i.e., the final sample size
is deterministic) when 2k1b1 = k̃1b̃1. Although this
condition excludes several practical choices for b1 and
k1, such as b1 = 1 (to test the original sample for
independence) and 8 ≤ k1 ≤ 105, ∆(b1, k1) remains
small for numerous choices of b1 and k1.

Below we are listing algorithm ABATCH. The im-
plementation of procedure LBATCH is simpler. Once
H0 is accepted in step 15, the steps 17–19 are ignored
for the remainder of the execution.

Algorithm ABATCH
Source: Fishman and Yarberry (1997) and Fishman
(1996, Chapter 6). Minor notational changes have
been made.
Input: Minimal number of batches k1, minimal
batch size b1, desired sample size n = 2Lk1b1 (L is
a positive integer), and confidence level 1− α.
Output: Sequences of point estimates and confi-
dence intervals for sample sizes N ≤ n.
Method:

1. b← b1 and k← l1.
2. If b1 = 1, b̃1 ← 3/2;

otherwise b̃1 ← b
√

2 b1 + 0.5c.
3. k̃1← b

√
2 k1 + 0.5c.

4. g← b̃1/b1 and f ← k̃1/k1.
5. i← 0.
6. ñ← 2L−1k̃1b̃1.

Until N = n or N = ñ:

7. N ← kb.

8. Randomly generate Xi+1, . . . , XN .

Compute:

9. The batch means
X1(b), . . . , Xk(b).

10. XN as a point estimate of µ.

11. The sample variance V̂k(b) of the
batch means.

12. The halfwidth

δ = tk−1,1−α/2

√
V̂k(b)/k

of the confidence interval (2).

13. Print N , k, b, XN , XN − δ, XN + δ,
V̂k(b).

14. i← N .

15. Test
H0 : X1(b), . . . , Xk(b) are uncorrelated.
Print the p-value of this test.
16. If H0 is rejected, b← 2b. (FNB rule)

If H0 is accepted:

17. If b = 1, b← 2. (FNB rule)

Otherwise: (SQRT rule)

18. b← bg and k← kf .

19. If g = b̃1/b1, g ← 2b1/b̃1 and
f ← 2k1/k̃1;
otherwise g ← b̃1/b1 and f ←
k̃1/k1.

3 COMPUTATIONAL COMPLEXITY

We now discuss the computational complexity of the
LBATCH and ABATCH methods. Detailed deriva-
tions and a pseudo-code are in Chapter 5 of Yarberry
(1993).

On each review, both methods require updated
XN , V̂k(b), and Ck(b). Let Sn =

∑n
i=1 Xi and

S0 = 0. Then Si can be computed by the recursion

Si = Si−1 +Xi,

the batch means can be computed from

Xi(b) =
1

b
(Sib − S(i−1)b),

and XN = SN/N . This approach eliminates the need
to store X1, . . . , XN .

Now define

Wi(b) = bXi(b)

Yk(b) =
k∑
i=1

Wi(b)
2,ψ (8)

Zk(b) =
k∑
i=2

Wi(b)Wi−1(b),

and notice that V̂k(b) can be expressed in terms of
Yk(b) and S2

N :

V̂k(b) =
1

b2(k − 1)

[
Yk(b)−

S2
N

k

]
.ψ (9)

Furthermore, one can write von Neumann’s statistic
as

Ck(b) =
−S2

N/k +W1(b)2/2 +Wk(b)2/2 + Zk(b)

Yk(b) − S2
N/k

.

Let W0(b) = 0, Y0(b) = 0, and Z0(b) = 0. Since

Wi(b) = Sib − S(i−1)b,

Yi(b) = Yi−1(b) +Wi(b)
2, and (10)

Zi(b) = Zi−1(b) +Wi(b)Wi−1(b),
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the quantities V̂k(b) and Ck(b) can be computed from
(8) and (9), respectively, after repeating the recur-
sions (10) until i = k. Since k is nondecreasing,
one need only maintain the summary variablesWi(b),
Yi(b), and Zi(b).

To this end, one can use vectors S[·], W [·], Y [·],
and Z[·], where the lth entry of each vector is used to
store summary data for batch size bl. When the first
batch of size bl is complete, the vectors are initialized
as follows:

1. s = Sbl .

2. w = s.

3. Z[l] = 0.

4. W [l] = w.

5. S[l] = s.

6. Y [l] = W [l]2.

For every complete subsequent batch of size bl, the
vectors are updated by:

1. w = s− S[l].

2. Z[l] = Z[l] + w ·W [l].

3. W [l] = w.

4. S[l] = s.

5. Y [l] = Y [l] +W [l]2.

A potential problem with the above updates is the
lack of knowledge of the batch sizes that will be used.
Hence, it may be necessary to maintain the vector en-
tries corresponding to all potential batch sizes. Below
we show how a large number of redundant operations
can be eliminated.

Notice that (see Section 2.2) the set of poten-
tial batch sizes is A1 ∪ A2, where A1 = {2lb1, l =
0, 1, . . . , blog2(ñ/(b1k1))c}, and A2 = {2lb̃1, l ∈ I},
where

I =

 {0, . . . , blog2(ñ/(b̃1k̃1))c}←if b1 > 1, ñ ≥ b̃1k̃1

{1, . . . , blog2(ñ/(b̃1k̃1))c}←if b1 = 1, ñ ≥ 2b̃1k̃1

∅ ← otherwise.

Define the auxiliary variables

θi(b) = W1(b)2/2 +

di/2e∑
j=2

W2j−1(b)W2j−2(b),

ξi(b) =

bi/2c∑
j=1

W2j(b)W2j−1(b) (11)
and use (10) and (11) to obtain

Zk(b) = −W1(b)2/2 + θk(b) + ξk(b) (12)

and

Ck(b) =
−S2

N/k + θk(b) + ξk(b) +Wk(b)2/2

Yk(b)− S2
N/k

. (13)

Notice that for odd i ≥ 3

θi(b) = θi−2(b) +Wi(b)Wi−1(b), ψ (14)

ξi(b) = ξi−1(b)

and for even i

ξi(b) = ξi−2(b) +Wi(b)Wi−1(b), ψ (15)

θi(b) = θi−1(b).

Hence von Neumann’s statistic can be computed
from (13) after repeating (14) and (15) until i = k.

After some algebra, one can now show that for even
k

Yk(b/2) + 2ξk(b/2) = Yk/2(b) (16)

whereas for odd k

Yk(b/2)−Wk(b/2)2 + 2ξk(b/2) = Y(k−1)/2(b). (17)

The last two equalities show that, on each review, di-
rect computation of Yk(b) is only required for the cur-
rent batch size and the potential batch size resulting
form the SQRT rule. This can be achieved by using
two summary variables, y (for the current batch size)
and ỹ (for the SQRT batch size). Whenever a batch
size is eliminated, either (16) or (17) can be used to
update the values of y or ỹ for the new batch size.
Therefore, y, ỹ, and the vectors θ[·] and ξ[·] can be
used to compute Yk(b) and Ck(b).

When the first batch of size bl is complete, the vec-
tors are initialized as follows:

1. w = s.

2. θ[l] = w2/2.

3. ξ[l] = 0.

4. W [l] = w.

5. S[l] = s.

Upon completion of each subsequent batch of size bl,
these vectors are updated by:

1. w = s− S[l].

2. If the number of batches is even,
then ξ[l] = ξ[l] + w ·W [l];
otherwise, θ[l] = θ[l] + w ·W [l].
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3. W [l] = w.

4. S[l] = S.

5. Y [l] = Y [l] +W [l]2.

The last issue that must be addressed is the test-
ing for batch completion. Fortunately, the number of
batch completion tests that are performed in either
LBATCH of ABATCH can be reduced substantially
by exploiting the special structure of the set of po-
tential batch sizes.

The complexity of the two algorithms is derived as
follows: The Until loop is executed no more than
ñ times. Thus, excluding the time for updating the
vectors S[·], Y [·], θ[·], and ξ[·], either algorithm takes
O(ñ) time. Since the entries θ[l] are updated only
after odd batch completions and the entries ξ[l] are
updated only after even batch completions, the total
number of updates is bounded above by

blog2(ñ/b1)c∑
l=0

1

2
bñ/(2lb1)c+

blog2(ñ/b̃1)c∑
l=0

1

2
bñ/(2lb̃1)c ≤ 2ñ.

Each update is performed in O(1) time. Then
the computational complexity of LBATCH and
ABATCH is O(ñ) = O(n).

Now observe that the vectors S[·], Y [·], θ[·],
and ξ[·] have max{2blog2(ñ/b1)c+ 1, 2blog2(ñ/b̃1)c+
2} = O(log2 ñ) entries. Hence both LBATCH and
ABATCH require O(log2 ñ) = O(log2 n) space.

Remark 1 The above numerical techniques can be
extended to non-classical batch means methods with
dynamic batching strategies. These methods include
Overlapping Batch Means (Meketon and Schmeiser
1984) and Spaced Batch Means (Fox, Goldsman, and
Swain 1990). The complexity issues are a problem
under investigation.

REFERENCES

Carlstein, E. 1986. The use of subseries for estimating
the variance of a general statistic from a station-
ary sequence. Annals of Mathematical Statistics
14:1171–1179.

Chien, C.-H. 1989. Small sample theory for steady
state confidence intervals. Technical Report No.
37, Department of Operations Research, Stanford
University, Palo Alto, California.

Chien, C., D. Goldsman, and B. Melamed. 1996.
Large-sample results for batch means. To appear
in Management Science.

Conway, R. W. 1963. Some tactical problems in dig-
ital simulation. Management Science 10:47–61.
Damerdji, H. 1994. Strong consistency of the variance
estimator in steady-state simulation output analy-
sis. Mathematics of Operations Research 19:494–
512.

Fishman, G. S. 1978. Grouping observations in digi-
tal simulation. Management Science 24:510–521.

Fishman, G. S. 1996. Monte Carlo: Concepts, al-
gorithms, and applications. New York: Chapman
and Hall.

Fishman, G. S., and L. S. Yarberry. 1997. An imple-
mentation of the batch means method. To appear
in INFORMS Journal on Computing .

Fox, B. L., D. Goldsman, and J. J. Swain. 1990.
Spaced batch means. Operations Research Letters
10:255–266.

Glynn, P. W., and D. L. Iglehart. 1990. Simulation
analysis using standardized time series. Mathemat-
ics of Operations Research 15:1–16.

Law, A. M., and J. S. Carson. 1979. A sequential pro-
cedure for determining the length of a steady-state
simulation. Operations Research 27:1011–1025.

Mechanic, H., and W. McKay. 1966. Confidence
intervals for averages of dependent data in simu-
lations II. Technical Report ASDD 17–202, IBM
Corporation, Yorktown Heigths, New York.

Meketon, M. S., and B. W. Schmeiser. 1984. Over-
lapping batch means: Something for nothing? In
Proceedings of the 1984 Winter Simulation Con-
ference, eds. S. Sheppard, U. W. Pooch, and C. D.
Pegden, 227–230. IEEE, Piscataway, New Jersey.

Resnick, S. I. 1994. Adventures in stochastic pro-
cesses. Boston: Birkhaüser.
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