Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradéttir, K. J. Healy, D. H. Withers, and B. L. Nelson

A JAVA BASED SYSTEM FOR SPECIFYING
HIERARCHICAL CONTROL FLOW GRAPH MODELS

Thorsten Daum
Robert G. Sargent

Simulation Research Group
439 Link Hall
Syracuse University
Syracuse, New York 13244, U.S.A.

ABSTRACT

The portion of the Hierarchical Modeling And Simula-
tion System-Java (HiMASS-j) used for specifying
Hierarchical Control Flow Graph (HCFG) Models is
described.- The specification of HCFG Models in
HiMASS-j is by visual interactive modeling through
the use of graphical user interfaces and dialog boxes.
HCFG Models are specified using two complemen-
tary hierarchical specification structures, one to spec-
ify the components that comprise a model and how
these components are interconnected, and the other
to specify the behaviors of the individual atomic com-
ponents.

1 INTRODUCTION

This paper describes the portion of the Hierarchical
Modeling and Simulation System-Java (HiMASS-j)
used for specifying Hierarchical Control Flow Graph
(HCFG) Models. A brief overview of the HCFG Mod-
el paradigm is given in this introduction; however, a
deeper understanding of the HCFG Model paradigm
will provide more and better insights into the work
described here. A short description of the HCFG
Model paradigm can be found in “An Overview of
Hierarchical Control Flow Graph Models” (Fritz and
Sargent 1995) and a more detailed description can be
obtain in an expanded version of this Overview paper
located at http://www.cat.sgdu/srg/

An HCFG Model can conceptually be viewed as
consisting of a set of independent, encapsulated, con-
currently operating (atomic) components where each
(atomic) component has its own thread of control and
the (atomic) components interact with each other
solely via message passing. Two kinds of encapsu-
lated components are used to specify an HCFG Model:
an atomic component (AC), which is the most ele-
mentary type of component, and a coupled compo-
nent (CC), which couples together ACs and/or other
CCs.- The CCs provide hierarchical relationships

150

among components in HCFG Models. Each CC is
specified by the use of a CC Specification (CCS). A
CCS is a directed graph whose nodes represent com-
ponents and whose directed edges represent channels
between components. Channels carry messages be-
tween the input and output ports of components.
Each channel connects exactly one output port to
one input port and each port is connected to only one
channel. The hierarchical relationships of all compo-
nents and their interconnections are contained in the
Hierarchical Interconnection Graph (HIG). A HIG
tree shows the hierarchical relationships among the
components but not their interconnections. The root
(or top) node of the HIG tree is an instance of a CC
and is usually called root with type name Root.
Each AC contains a set of (local) variables includ-
ing a (local) simulation clock, a set of input ports,
a set of output ports, a set of parameters, and an
HCFG, which describes the behavior of that AC. The
basic building block of an HCFG is the Macro Con-
trol State (MCS). A MCS is a state-based behavior
specification structure and is an augmented directed
graph whose nodes are control states (CSs) and/or
other MCSs and whose directed edges give the set of
possible control state transitions. A CS is a formal-
ization of the “process reactivation point” (Cota and
Sargent 1992). Edges originating from CSs have three
attributes: a condition, a priority, and an event. The
condition specifies when an edge can become a can-
didate for traversal, the priority is used to break ties
when more then one edge is a candidate for traver-
sal at the same simulation time, and the event speci-
fies a state transition for the AC which is executed
whenever that edge is traversed during simulation
execution. Three different kinds of edges, which de-
pend on the condition attribute, leaving CSs are used:
TimeEdges, BoolEdges, and PortEdges. To specify
an edge, a priority and event is specified along with
an edge type and either a time function, a boolean
function, or an input port, depending on the type of
edge. Edges originating from MCSs do have not at-

A Java Based System for Specifying Hierarchical Control Flow Graph Models 151

tributes. Each HCFG has a point of control (POC),
which moves from CS to CS to indicate the state that
the HCFG (i.e., the AC) is in. An HCFG is a hier-
archical organized set of MCSs (which contain all of
their interconnections). An HCFG tree shows the
hierarchical relationships among the MCSs but not
their interconnections.

The HCFG Model paradigm supports and
HiMASS-j implements the use of types and instances
of model elements. The model elements are the ACs,
CCs, MCSs, event routines, time delay functions, and
boolean functions. The types of model elements are
specified and instances of the types are used to specify
HCFG Models. Libraries of the types can be estab-
lished and this provides for reuse. Having libraries of
types allows the “layered” approach to modeling to
be used where ACs and CCs can be used for model
specification if the appropriate ones are available, and
if not, then the needed components can be build.

The specification of an HCFG Model requires one
HIG and one HCFG for each type of AC in the model.
HCFG Model specification in HIMASS-j is via visual
interactive modeling (VIM) through the use of graph-
ical user interfaces (GUIs) and dialog boxes. The
HCFG model paradigm supports and HiMASS-j im-
plements the use of experimental frames (EFs)
(Zeigler 1984). The use of EFs allows the values of
the parameters of the model elements, the model’s
initial conditions, etc. to be specified separately from
the HCFG Model specification.

The HCFG model paradigm favors an “active re-
source” view of modeling over an “active transaction”
view. Modeling from an active resource view means
that the system is modeled from the point of view
of the system’s resources by describing the behaviors
and interactions of those resources. We use the active
resource view for modeling in this paper.

The remainder of this paper is organized as fol-
lows: Section 2 discusses how one specifies HCFG
Models, Section 3 gives a brief description of the Java
software that is used for specifying HCFG Models in
HiMASS-j, and Section 4 contains the summary.

2- SPECIFYING HCFG MODELS

In this section we discuss how HiMASS-j can be used
to specify HCFG Models. HCFG Models are specified
in HIMASS-j via VIM using GUIs and dialog boxes.
Our emphasis will be on specifying HCFG Models
top down and from scratch, i.e., not using libraries of
model elements. A simple way to specify and view
HCFG Models is to use the Model Navigator dialog
box. The Model Navigator contains the HCFG Model
tree and is used to navigate, i.e. to move, among the
model’s CCs, ACs, and MCSs. The model tree con-

sists of the HIG tree and the HCFG tree of each AC
in the model. (The model tree does not show the
top MCS of an HCFG since it is the internal view of
an AC.) The Model Navigator containing a sample
model tree is shown in Figure 1. Each node of the
model tree has a symbol (defined below) to indicate
the kind of model element, the instance name of the
model element, and the type name of the model ele-
ment given in parentheses. For example, the model
tree in Figure 1 has a coupled component with in-
stance name ccl of type CoC. At each level of hi-
erarchy of the model tree there is a ‘switch’ which
when clicked either displays or discontinues the dis-
play of the lower levels of the model tree. The top
node (named root unless renamed) of the model tree
is always displayed and this is the HIG root (top)
node.

_.i Model Havigator | 4 | _l

File Show

EH root (feof] = Instance

B ccl (Col) Type

H—]— cc3 (CC3)
Rename Instance

[nill (A
[womAny | | ||_Rename Type |
—)] acg (4cc)

EH cc? [Coto)

— 2] aczz (BASKC)
— 2] ac23 (tARGE]
EH [Z] acl (axc)

— O omes1 (AS)
() mesZ (MOSE)
— [arr[3] (47A)

Figure 1: Model Navigator Dialog Box

The Model Navigator has four buttons on its right;
Instance opens a GUI window containing the instance
of the selected model element in the model tree, Type
opens a GUI window containing the type of the se-
lected model element, and the other two buttons open
dialog boxes to rename either a selected model ele-
ment instance or type name. HIMASS-j has two dif-
ferent GUI windows: the CCS GUI window for work-
ing with the CCs of a HIG and the MCS GUI window
for working with the MCSs of the HCFGs. The CCS
GUI window opens if an instance of a component (AC
or CC) or if a type of CC is selected; otherwise a MCS
GUI window opens.

152 Daum and Sargent

_II

File Show Options

Warning: Applet Window

ccl

out! # int

y ind outs3)
\ outl in

A
Componerni

Channel |

Port

Connecton Box |

(| -
coi

inl outl

=

Ceomponent Arrsy |
IuldiChannel |
IultiPort |

iNZ[3] | owtz[3)

ol

&

Mowve |

Open

Edit

Delete |

arr[3]

Figure 2: CCS Graphical User Interface Window

2.1- HIG Specification

The first step in specifying an HCFG Model from top
down is to open the Model Navigator. The model tree
in the Model Navigator will contain one node which
is a CC with the instance name ‘root’ of type ‘Root’.
This is the top (root) node of the model tree (and HIG
tree). A modeler opens a CCS GUI window for Root
by selecting the Type button while the root node is
selected (highlighted). Figure 2 shows the CCS GUI
window with a sample Root CC in it. (The canvas
area would be blank when Root is initially opened.)
Note that the type name of the CC is given at the top
of the window and that there are several tool buttons
on the right side of this GUI. These tools are used to
either specify a CC (which contains ACs and/or other
CCs), modify a CC, or change the layout of the CC
on the canvas. A user selects a tool by clicking on the
appropriate button, and then uses the tool in the can-
vas area. To create a new component, a modeler first
selects the Component button and then clicks on the
canvas at the desired location for the new component.
A Component dialog box will open for the modeler to
enter the component instance name and type name,
and to select the kind of component. (A Component
dialog box is similar to the Array dialog box shown
in Figure 3.) In Figure 2 there are two CCs called ccl

and cc2 and an AC called acl. Note the symbols used
for these two different kinds of components and that
instance names are given on the components. As new
components are specified in a CC, they are automati-
cally added to the model tree in the Model Navigator.
Note how the components contained in Root CC are
in the model tree in Figure 1.

In Figure 2 there are, e.g., two channels between
acl and cc2. Channels are specified by using the
Channel tool. A new channel between components is
specified by first selecting the Channel tool and then
clicking inside the component where the channel orig-
inates. A Port dialog box will open to enter the name
of that component’s new output port for connection
to the new channel. Next, click inside the component
where this new channel terminates. A Port dialog
box will open to enter the name of that component’s
new input port for connection to the new channel.
The new channel and the names of the new ports au-
tomatically appear.

HiMASS-j provides scaling for components, chan-
nels, and ports. A component array consists of a
homogeneous array of components. (A component
is equivalent to a component array of size one.) A
typical element of the array is specified and shown.
After the Component Array tool is selected and the
mouse clicked at the desired location for the compo-

A Java Based System for Specifying Hierarchical Control Flow Graph Models 153

nent array on the canvas, the Array dialog box shown
in Figure 3 opens. A modeler selects the kind of com-
ponent that the array has and enters the array’s in-
stance name, type name, and either a numerical value
or a variable whose value is specified in the EF for
the array size in the dialog box. In Figure 2 there is
an array containing 3 ACs called arr. Note that the
array symbol indicates whether the components are
ACs or CCs and that the size of the array is given
with the instance name. As new arrays are specified,
they are automatically added to the model tree. Mul-
tichannels are arrays (or bundles) of channels that
have their size specified by a modeler and are created
similarly to channels. The major differences are that
multichannels are connected to multiports and that
their size must be specified in the MultiPort dialog
box.

Mame Type

T f

Aftay Size B0 Load Type
d=calable W o

~w Unspecified

Okay Cancel |

Mew Atomic Component

Figure 3: Array Dialog Box

Because model elements in a HIG can be of dif-
ferent sizes, not all channels between model elements
can be clearly represented using a purely graphical
notation. A “connection box” that is represented by
a diamond can be used to connect channels and mul-
tichannels of different sizes to model elements. A
Connection Box tool is provided to specify connec-
tion boxes on the canvas similar to how components
are specified. The major difference is that a con-
nection box is automatically given a numerical name
and thus no dialog box is needed to specify a name.
A Connection Box dialog box (obtained by using the
Edit button) is used to make the connections of the
channels entering and leaving a connection box. The
ports that the channels entering and leaving the con-
nection box are connected to are automatically given
by HiMASS-j, and it is straightforward and simple
to make the appropriate connections. In Figure 2
note the connection box named 1, the multichannels
of size 3 between the multiports of CC cc2 and the
connection box, and the channels between the (three)
elements of the array arr and the connection box.

The purpose of the Port and MultiPort tools is to
specify ports and multiports when specifying model
elements bottom up instead of top down. The Move,
Delete, and Edit tools provide the common editing
capabilities. The Open tool opens up a GUI window
of the model element’s type to either view or spec-
ify that model element. If the model element is a
CC, then a CCS window is opened; otherwise a MCS
window is opened.

If a CCS window is opened for a CC other then the
top CC, then the ports for that CC are shown. (The
top CC has no ports.) For example, the canvas area
of a CCS window for a sample CC of CoC (which is
the type for the CC instance ccl of Root) is shown in
Figure 4. If no components had yet been specified for
CoC, then only the input port inl and output port
outl would be shown. In top down modeling these
ports (with their names) would have been specified
in an instance of the CC in the CCS window; e.g.,
the ports of CoC were specified in the instance ccl in
the CC Root. Note that the components in CoC are
in the model tree in Figure 1.

cc3

|
oz L Wt
inl outl

=

Figure 4: Internal View of a CC

2.2- HCFG Specifications

The MCSs in HCFGs are specified in HIMASS-j by
using a MCS GUI window and dialog boxes.- To
specify an HCFG top down, the modeler first opens
a MCS window for the top MCS of an HCFG for
an AC. This is accomplished by either (a) using the
Model Navigator to select the appropriate AC and
then clicking on the Type button, or (b) using the
Open tool on the appropriate AC in a CCS GUI win-
dow. Figure 5 shows the MCS GUI window contain-
ing a sample top MCS for the AC AtC.

One can readily see that there are a set of tool
buttons on the right side of the MCS window. The
Control State and MCS tools are used to specify CSs

154 Daum and Sargent

| ALC_ OE

File Show Options

Z
tdelay1
(i

? Pin
gyl Connection Box
MuldEdge
MCS Array
53 |
1 [g]

bolz23 Cpen
ey

Edit

Delere

Figure 5: MCS Graphical User Interface Window

and MCSs. In Figure 5 there are 3 CSs (S1, S2, and
S3) and two MCSs (mcsl and mcs2). These tools
operate similar to the Component tool in the CCS
window. New MCSs are automatically put into the
model tree as they are specified. Note the MCSs mcsl
and mcs2 in the model tree in Figure 1. (The MSC
AtC is not shown in Figure 1 since this is the top
MCS of the AC AtC and thus the internal view of
this AC.)

The Edge tool operates similar to the Channel
tool. If the (new) edge being specified starts at a
MCS, a Pin dialog box opens when the MCS is clicked
asking for the name of the (new) pin that the (new)
edge will be connected to. If this edge terminates on
a CS, then the edge appears when that CS is clicked,
and if the edge terminates on a MCS, then a Pin
dialog box opens when that MCS is clicked to spec-
ify the pin name prior to the edge appearing. (See
the edges leaving MCS mcsl and the names of the
pins of MCS mcsl in Figure 5.) If the edge speci-
fied starts at a CS, then an Edge dialog box opens.
The Edge dialog box, shown in Figure 6, provides for
several entries and selections. A modeler first selects
the edge condition for the type of edge being speci-
fied. If a TimeEdge or a BoolEdge is selected, then
the name of the time delay function or boolean func-
tion is entered into the top input box. If a PortEdge

is selected, then the associated port is selected from
the list of input ports given in the second input box
(or added if building from bottom up). The name of
the event routine is given in the third input box and
the edge priority is given in the bottom input box.
(A TrueEdge is a BoolEdge that is always true and
a null Event is an event that does nothing and these
can be specified by clicking on the appropriate but-
ton.) See the edges leaving the CSs in Figure 5. Note
that the edge attributes are given in an attribute box
located near each edge. The top entry in each edge
attribute box gives the edge priority, the second en-
try gives either the time delay function, the boolean
function, or the input port name depending on the
kind of edge, and the last entry gives the name of
the event routine. In Figure 5, the two edges leaving
CS S1 are TimeEdges, the edge going from CS S2 to
mcsl is a BoolEdge, and the edge going from CS S2
to CS S3 is a PortEdge.

To specify a time delay function, a boolean func-
tion, or an event routine, one first selects the Edit tool
and then selects the desired entry in an edge attribute
box. A dialog box for that entity will then open. See
Figure 7 for the Event dialog box, which contains a
sample event for event evl of AtC (Figure 5). The
event evl, which is for a PortEdge, receives the mes-
sage waiting at input port inl, stores the message

A Java Based System for Specifying Hierarchical Control Flow Graph Models 155

Figure 6: Edge Dialog Box

timestamp in the trace file, and sends the message to
output port outl. Helper functions are provided to
assist in the specification of events and these are the
buttons on the right side of the dialog box. (Exam-
ples of functions and event routines are given in Daum
(1997), which is a companion paper to this paper.)

HiMASS-j provides scaling for edges, MCSs, and
Pins. A multiedge is an indexed array of edges. There
are two multiedges in Figure 5. One connects between
multipins on MCS mcs2 and MCS mcs1, and is size 2.
The other multiedge is from CS S3 back to itself, and
is also size 2. Note that the size of multiedges leaving
CSs are given in square brackets in the attribute box.
(The edge attributes of multiedges leaving CSs are
also indexed.) A MCS array is a homogeneous array
of MSCs similar to a component array. Connection
boxes are also available for connecting multiedges.

The purpose of the Pin and MultiPin tools is to
specify pins and multipins when specifying model el-
ements bottom up instead of top down. The Move,
Delete, and Edit tools provide the common editing
capabilities. The Open tool opens up a GUI window
of a MCS.

2.3- Experimental Frame

HiMASS-j currently provides EF support for speci-
fying the initial CSs of the ACs, the initial values of
the instance and type variables, the sizes of the arrays
of model elements that use variable scaling, and the
types of model elements at runtime which allows the

= Event Editor: evl | -]
File Show
Message m = inl.receivel); |-
Model . trace ("Message " +
"timestamp:" + m.nowl); Send Message
outl.sendim) ;

Get EF Variable
i+ GetRandom Variahle

Figure 7: Event Dialog Box

model structure to be changed. These specifications
are aided by dialog boxes and require no program-
ming. A modeler can specify default values for all of
these EF parameters.

3- HiMASS-j SOFTWARE

HiMASS-j is an object oriented software system writ-
ten entirely in Java (Arnold and Gosling 1996). It
has been developed and tested on both SUN work-
stations running Solaris and Pentium based personal
computers running Linux and Windows 95. Due to
the platform independent nature of Java, HIMASS-j
can run without the need to recompile on a wide
variety of machines, including several Unix architec-
tures and Apple Macintosh computers. Hi-MASS-j
makes extensive use of object-oriented programming
features supported by Java such as encapsulation, in-
heritance, polymorphism, and overloading, and spe-
cific Java features such as serialization and platform
independence.

HI-MASS-j was implemented using the SUN Java
Development Kit (JDK) version 1.1.2, available from
http://java.sun.com, and the Java Generic Library
(JGL). JGL is currently free and available at
http://www.objectspace.com/jgl.

A user of HI-MASS-j needs to be familiar with
modeling using the HCFG Model paradigm and a
basic understanding of the Java syntax. HiMASS-j
can be run with any JDK 1.1.2 or newer compatible
Java enabled web browser that connects to our site
at http://www.cat.syr.edu/"srg/. Alternatively,
HIMASS-j can be downloaded from the above site and
run with any JDK 1.1.2 or newer compatible Java de-
velopment system that includes a Java compiler, such
as the SUN JDK.

3.1- Design

HI-MASS-j includes over 800 kilobytes of sources in
over 160 Java classes in three packages (Arnold and
Gosling 1996). Package srg.himass.vim contains the
portion of HIMASS-j used for specifying a HCFG

156 Daum and Sargent

Model via VIM, package srg.himass.sim contains the
simulator, and package srg.util contains various util-
ity classes.

The design of the VIM part of HIMASS-j follows
(somewhat- freely)- the- Model-Viewer-Controller
(MVCQC) paradigm (Gamma et al. 1995). A Model is
the logical representation of an object. In HiIMASS-j,
a Model contains the information that will be needed
by the simulator. A Viewer is the visual represen-
tation of a Model. Viewers in HIMASS-j are, e.g.,
the CCS canvas and the ellipse representing a MCS
instance. Controllers register changes in a Viewer,
such as a mouse click, and modify the correspond-
ing Model accordingly. Java’s new Delegation Event
Model that was introduced with JDK 1.1 supports
this approach.

HiMASS-j makes an important distinction between
instances and types of model elements (e.g. CCs,
ACs, and MCSs) in the HCFG Model paradigm as
discussed in Section 2. In this section we will refer
to these as Element Type and Element Instance. Re-
call that every Element Instance has exactly one type
that describes it and that an Element Type can have
many Element Instances (which provides for reuse).

The HiMASS-j design combines the MVC para-
digm and the Element Type/Instance distinction. In
using VIM, a modeler interacts with Element Instance
Viewers and Element Type Viewers.- Clicking the
mouse, e.g., in a CC, will cause the Component In-
stance Viewer (ComplIV) to generate an event that
will be delivered to the Component Instance Con-
troller (ComplIC). The ComplIC takes the appropriate
action (e.g., add a port) and notifies the Component
Instance Model (CompIM) which in turn changes its
state, changes the ComplV to visually represent the
change, and notifies the Component Type Model
(CompTM). The CompTM then changes state (e.g.,
adds an external port), visualizes the change in the
Component Type Viewer (CompTV) which the mod-
eler sees as the CC canvas, and notifies its other In-
stances to update their Viewers as well. Figure 8
shows part of the relationship among Component In-
stance and Type Viewers, Controllers, and Models.

Element Type Models and the model files used
by the simulator are closely related but not identical.
An Element Type Model contains all the information
that is necessary to completely specify this element.
However, this information can not be used directly by
the simulator. The method body of an event routine,
e.g., is saved as a String by an Event Model Type.
To be understood by the simulator as actual code, it
has to be written to a file, compiled into binary code,
and then loaded.

When a modeler saves a model, all Element Mod-
els are written into files (serialized) along with their

update graphics
ComplV ComplM
FA ComplC change
interaction state notify|type
update graphics
CompTV |= CompTM
notify other ¢ +
instances
date graphics
ComplV | < i grep ComplM

Figure 8: Component Instance and Type Models,
Viewers, and Controllers

Viewers. When the model is reloaded, new objects
of the various Model Type and Instance classes will
be created and initialized with the saved fields that
specify the different elements. When the executable
model is generated, HIMASS-j generates a new Java
class for each Element Model Type of the model:
Strings describing event routines, time and boolean
conditions become actual functions that can be exe-
cuted, Strings representing Type names become part
of the new class name, etc.

The produced Java class files are thus independent
of the VIM part of HIMASS and can be executed by
any software that implements a simulator for HCFG
Models and that accepts condition and event routines
specified in Java syntax.

3.2- Edge Conditions and Event Routines

A modeler can specify the HIG and HCFGs of a
model by VIM. The HIMASS-j system uses the in-
formation provided to the GUI to automatically gen-
erate Java classes that the simulator uses to initialize
and execute the model. No knowledge of a program-
ming language is required for this. However, there is
no way to use VIM to specify the different edge con-
ditions and event routines used in models. Method
bodies, i.e. the code of time and boolean functions
and event routines, must be specified by text. Since
the simulator is implemented in Java, it makes sense
to specify the method bodies of condition functions
and event routines in Java as well and that is what is
implemented in HIMASS-j.

The specification of condition functions and event
routines is aided by helper functions, such as for send-
ing and receiving messages, declaring and retriev-
ing variables, and creating pseudo random numbers.
Since helper functions print their outputs in the Event
and Condition dialog box windows, the modeler can
modify this code as required. Figure 7 shows a sim-

A Java Based System for Specifying Hierarchical Control Flow Graph Models 157

ple event routine that was developed using the helper
functions. Alternatively, a modeler can write the code
from scratch; thus maximum flexibility is maintained.

4- SUMMARY

A brief description of most of the basic VIM capabil-
ities of HIMASS-j for specifying HCFG Models was
presented. Some of features not discussed include
specifying messages, the model initial conditions, and
data collection, and specifics on specifying event rou-
tines, time delay functions, and boolean functions. A
companion paper by Daum (1997) illustrates the use
of HIMASS-j in modeling a specific system, including
the specification of event routines and edge condition
functions. Some other papers on modeling using the
HCFG Model paradigm are Farr et al. (1995) and
Sargent (1997).

A brief overview of the design of HIMASS-j was
presented. HiMASS-j differs from an earlier proto-
type called HI-MASS (Fritz, Sargent, and Daum 1995)
for specifying and simulating HCFG Models.- In
HiMASS-j both the HIG and the HCFGS are spec-
ified via VIM, there is a clear distinction between
types and instances of model elements, the model tree
is displayed, there is a model navigator, the use of
parameters is permitted in the model elements, and
reuse of model elements is easy. In HI-MASS the HIG
can be specified via VIM (with less capabilities than
in HIMASS-j), the HCFGs are specified via text, no
model tree is displayed, parameters are only permit-
ted at the HCFG level and within the HCFG (e.g.,
in event routines), and reuse of model components is
limited. The computer language of HI-MASS is C++
which differs from Java used in HIMASS-j.

Much has been said about the sometimes substan-
tial speed sacrifice one has to accept when executing
programs in Java instead of C+4. However, we be-
lieve that Java’s disadvantage in this regard will di-
minish in the future. Next generation just-in-time
compilers have a potential for significant speed in-
creases of Java applications. In addition, efforts are
under way to build a Java front end to the GNU com-
piler (Bothner 1996) that would allow ahead-of-time
compilation of Java applications into native code pro-
viding for performance equal to C++ applications.

REFERENCES

Arnold, K. and J. Gosling. 1996 The Java Program-
ming Language. Reading, Mass.: Addison Wesley.
Bothner, P. 1996. A Gce-based Java Implementation.
Available at http://www.cygnus.com/ bothner.
Cota, B. and R. Sargent. 1992. A modification of
the process interaction world view. ACM Trans.

Model. Comput. Simul., 2, 2, 109-129.

Daum, T. 1997. An HCFG Model of a traffic inter-
section specified using HIMASS-j. In: S. Andrat-
dottir, K. Healy, D. Withers, and B. Nelson, eds.,
Proc. of the 1997 Winter Simulation Conference.

Farr, S., A. Sisti, D. Fritz, and R. Sargent. 1995.
A simulation model of a surveillance radar data
processing system using HI-MASS. In: C. Alex-
opoulos, K. Kang, W. Lilegdon, and D. Golds-
man, eds., Proc. of the 1995 Winter Simulation
Conference, 1364-1370.

Fritz, D. and R. Sargent. 1995. An overview of hier-
archical control flow graph models. In: C. Alex-
opoulos, K. Kang, W. Lilegdon, and D. Golds-
man, eds., Proc. of the 1995 Winter Simulation
Conference, 1347-1355.

Fritz, D., R. Sargent, and T. Daum. 1995. An overview
of HI-MASS (Hierarchical Modeling and Simulation
System). In: C. Alexopoulos, K. Kang, W. Lileg-
don, and D. Goldsman, eds., Proc. of the 1995
Winter Simulation Conference, 1356—-1363.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides.
1995. Design patterns: Elements of Reusable Object-
Oriented Software.- Reading,- Mass.:
Addison-Wesley.

Sargent, R. 1997. Modeling queueing systems using
hierarchical control flow graph models. Forthcom-
ing in Mathematics and Computers in Simulation.

Zeigler, B. 1984. Multifacetted Modelling and Dis-
crete Event Simulation. London: Academic Press.

AUTHOR BIOGRAPHIES

THORSTEN DAUM is a graduate student at Otto
von Guericke University in Magdeburg who is work-
ing towards a degree in simulation and computer
graphics. His interests include the development of vi-
sual interactive modeling systems for simulation and
Java software. He is a visiting researcher with the
Simulation Research Group and CASE Center at Syra-
cuse University.

ROBERT G. SARGENT is a Professor in the
L. C. Smith College of Engineering and Computer
Science at Syracuse University. He received his ed-
ucation at the University of Michigan. Dr. Sargent
has served his profession in numerous ways and has
been awarded the TIMS (now INFORMS) College
on Simulation Distinguished Service Award for long-
standing exceptional service to the simulation com-
munity. His research interests include the methodol-
ogy areas of modeling and discrete event simulation,
model validation, and performance evaluation. Pro-
fessor Sargent is listed in Who’s Who in America.

	A JAVA BASED SYSTEM FOR SPECIFYING HIERARCHICAL CONTROL FLOW GRAPH MODELS
	ABSTRACT
	1 INTRODUCTION
	2 SPECIFYING HCFG MODELS
	2.1 HIG Speci cation
	2.2 HCFG Speci cations
	2.3 Experimental Frame

	3 HiMASS-j SOFTWARE
	3.1 Design
	3.2 Edge Conditions and Event Routines

	4 SUMMARY
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 150
	head1: Proceedings of the 1997 Winter Simulation Conference
ed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson

