
VISUALIZING PARALLEL SIMULATIONS IN NETWORK COMPUTING
ENVIRONMENTS: A CASE STUDY

Christopher D. Carothers
Brad Topol

Richard M. Fujimoto
John T. Stasko

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332, U.S.A.

Vaidy Sunderam

Department of Mathematics and
Computer Science
Emory University

Atlanta, Georgia 30322, U.S.A.
ABSTRACT

Parallel discrete event simulation systems (PDES)
are used to simulate large-scale applications such as
modeling telecommunication networks, transporta-
tion grids, and battlefield scenarios. While a large
amount of PDES research has focused on employing
multiprocessors and multicomputers, the use of net-
works of workstations interconnected through Ether-
net or ATM has evolved into a popular and effec-
tive platform for PDES. To improve performance in
these environments, we investigate the use of graph-
ical visualization to provide insight into performance
evaluation and simulator execution. We began with a
general-purpose network computing visualization sys-
tem, PVaniM, and used it to investigate the execution
of an advanced version of Time Warp, called Geor-
gia Tech Time Warp (GTW), which executes in net-
work computing environments. Because PDES sys-
tems such as GTW are essentially middleware that
support their own applications, we soon realized these
systems require their own middleware-specific visu-
alization support. To this end we have extended
PVaniM into a new system, called PVaniM-GTW
by adding middleware-specific views. Our experi-
ences with PVaniM-GTW indicate that these en-
hancements enable one to better satisfy the needs of
PDES middleware than general-purpose visualization
systems while also not requiring the development of
application specific visualizations by the end user.

1 INTRODUCTION

To date, much of parallel discrete event simulation
(PDES) research has focused on employing dedi-
cated multiprocessor and multicomputer platforms to
speed up simulation computations, such as the In-
tel Paragon and KSR machines. However, the use
of networks of workstations interconnected through
WAN/LANs, such as Ethernet and ATM, has evolved
into a popular and effective platform for PDES. The
advantages of these network computing environments
include (i) ready availability, (ii) low cost, and (iii)
incremental scalability. Furthermore, network com-
puting environments retain their ability to serve as
a general-purpose computing platform and run com-
mercially available software products.

However, the development of efficient parallel dis-
crete event simulation systems in network computing
environments is not without obstacles. Typically, ap-
plications execute on workstations in an open network
computing environment whereby each workstation as
well as the network itself is subject to uncontrollable
external loads. Furthermore, workstations have vary-
ing configurations in terms of CPU speed, memory,
local vs. networked disks, etc. These factors often
result in load imbalances and dynamic fluctuations
in delivered resources which can be a major source
of performance degradation (Schmidt and Sunderam
1994).

To better understand how these factors degrade
simulator performance and help develop algorithms
that mitigate them, we propose the use of Graphi-
cal Visualization (GV). GV has been shown to be a
useful aid in performing several activities associated
with parallel computing such as verification, perfor-
mance analysis, and program understanding (Krae-
mer, Stasko 1993). The usefulness of GV for these
activities stems from the highly developed image pro-
cessing system possessed by humans, which allows us
to track multiple complex visual patterns and to eas-
ily spot anomalies in these patterns. Consequently,
the textual equivalent of the information provided by
a visualization may be much more difficult for a user
to assimilate. GV systems operate in one of three
modes: (i) on-line, (ii) off-line, and (iii) a combina-
tion of (i) and (ii). In on-line mode, the GV system
collects run-time performance data from the moni-
tored system and immediately displays the informa-
tion. In off-line mode, the GV system collects and
stores (in a file) the PDES data. After the simulation
completes, the stored data can then be displayed or



Visualizing Parallel Simulations in Network Computing Environments 111
animated. On-line mode has the advantage of show-
ing the “real-time” execution of the monitored sys-
tem, while off-line mode allows post-processing com-
putations to be run on the collected data which pro-
vide a more detailed analysis of the monitored system.

Of great concern was that parallel discrete event
simulators by their very nature are long-running,
complex, communication/computation sensitive sys-
tems. Consequently, we believe that any PDES visu-
alization system must: (i) support “on-line” as well
as “off-line” modes of operation, (ii) minimize the
amount of computation perturbation such that the
GV system does not become a performance bottle-
neck or mask other performance bottlenecks, (iii) be
easy to use and integrate into the existing system,
such that new errors are not easily introduced into the
PDES simulator, (iv) support PDES specific views,
and (v) be robust to endure long-running PDES sim-
ulations.

In this case study, we modify an existing general-
purpose GV system, called PVaniM and used it to
conduct a series of visualization experiments on an ex-
isting Time Warp system, called Georgia Tech Time
Warp (GTW) in a network computing environment.
PVaniM was chosen because it supported more of the
above PDES visualization system requirements than
any other GV system to our knowledge. Of particu-
lar importance was its ease of use, low system pertur-
bation, and robustness. However, PVaniM’s default
graphical views did not provide enough insight into
the execution of the GTW system. This was due to
the fact that all PDES systems are essentially mid-
dleware that support their own applications. We de-
fine PDES systems as middleware because they typ-
ically reside above the operating system and a com-
munication substrate (e.g., PVM) yet support their
own applications. We contend that complex net-
work computing middleware such as Time Warp sys-
tems requires its own middleware-specific visualiza-
tion support. Middleware-specific views focus on il-
lustrating the operation of PDES middleware. They
may be used with all simulation applications and
allow the user to see how various applications per-
form on the PDES middleware. It is worth noting
that middleware-specific views are not simply a set of
application-specific views. Application-specific visu-
alizations for parallel simulations refers to customized
views whose appearance is tied to simulation model
data. These types of views are typically provided by
visual interactive simulation systems, such as those
described in Section 4 of this paper.

Our experiments demonstrate that by enhancing a
general-purpose network computing visualization sys-
tem with middleware-specific views, one is able to
better satisfy the requirements and needs of PDES
middleware. Specifically, we document how we have
used a GV system to locate performance aberrations,
and gained greater insight into how to optimize an
existing Time Warp system for a heterogeneous net-
work computing environment.

The remainder of this paper is organized as fol-
lows. Section 2 describes PVaniM’s visualization
model, as well as its implementation. Section 3 details
our distributed GTW system. Section 4 discusses re-
lated visualization systems. Section 5 presents the
enhancements made to PVaniM necessary to visual-
ize the GTW system. This newly enhanced visualiza-
tion system is called PVaniM-GTW. Section 6 then
describes the the results from our effectiveness study
and Section 7 presents our conclusions as well as di-
rections for future work.

2 OVERVIEW OF PVANIM

PVaniM is an experimental visualization environ-
ment developed for the PVM network computing
system (Topol et al. 1996 and 1997). The pur-
pose of PVaniM is to modify and enhance tradi-
tional visualization techniques used in multiproces-
sor and multicomputer visualization environments in
order to enable their use in network computing envi-
ronments. PVaniM supports both on-line and post-
mortem views. PVaniM’s on-line visualization sup-
port consists of the following types of views:

Environment Views provide information re-
garding the network computing environment in which
the parallel application executes. Information such as
the workstations used by the parallel application, the
external loads present on these workstations, and the
amount of memory utilized by the individual tasks
are displayed. Performance Evaluation Views
provide insight into the performance of an applica-
tion and help locate bottlenecks in the application.
Debugging Views provide insight into the activi-
ties of the application (e.g., message passing behavior
between tasks) to help locate program bugs. Inter-
action Views provide support for outputting results
and for interacting (i.e., providing data input) with
the parallel application.

PVaniM also supports Postmortem visualization.
PVaniM’s implementation may be found in (Topol
et al. 1997).

3 GEORGIA TECH TIME WARP (GTW)

Time Warp is a well known synchronization proto-
col that detects out-of-order executions of events as
they occur, and recovers using a rollback mechanism.
We assume that the reader is familiar with the Time
Warp mechanism as originally described in (Jeffer-



112 Carothers, Topol, Fujimoto, Stasko, and Sunderam
son 1985). Georgia Tech Time Warp (GTW) is our
optimized version of the Time Warp protocol, which
executes on both shared-memory multiprocessors and
network computing environments.

3.1 Reflector Thread

We create a reflector thread which executes on each
host. Its task is to marshal or “reflect” event-
messages to and from other GTW systems running
on the other host machines. From the view of the
other GTW kernels residing on a machine, the reflec-
tor thread looks like any other kernel. When an event-
message is scheduled for an LP on another machine,
that event-message is given to the reflector thread
residing on the sending machine. Once in the reflec-
tor thread’s hands, the event-message is packaged up
and sent to the destination machine using the PVM
message passing system where the reflector thread on
that machine receives it and places it in the incom-
ing message queue of the GTW kernel that processes
events for the destination LP.

3.2 Background Execution Algorithm

In a multi-user computing environment, users will
“nice” or execute long running jobs “in background”
allowing their CPU intensive jobs to obtain CPU cy-
cles without hogging CPU resources from other users
on the system. When the CPU is lightly loaded, the
“niced” job will be given more CPU cycles and re-
ceive less cycles when the CPU is loaded. Likewise,
in a cluster computing environment we anticipate the
need for Time Warp programs to share CPU resources
among other tasks in a similar fashion. However, a
Time Warp program that is well-balanced when ex-
ecuting on dedicated hardware may become grossly
unbalanced when executing on machines with exter-
nal computations. LPs that are mapped to heavily
utilized processors will advance very slowly through
simulated time relative to others executing on lightly
loaded processors. This can cause some LPs to ad-
vance too far ahead into the simulation future, re-
sulting in very long or frequent rollbacks. Thus, it
is essential that any Time Warp simulation running
in “background” take into account the external work-
loads that are sharing the same CPUs.

To mitigate the problems caused by external
workloads in the cluster computing environment as
well as to allow Time Warp programs to co-exist with
other running programs, we developed a background
execution (BGE) algorithm that: (i) dynamically al-
locates additional CPUs during the execution of the
distributed simulation as they become available and
migrates portions of the distributed simulation work-
load onto these machines, (ii) dynamically releases
certain CPUs during the simulation as they become
loaded with other, external, computations, and off-
load the workload to the remaining CPUs used by
the distributed simulation, and (iii) dynamically re-
distributes the workload on the existing set of proces-
sors as some become more heavily or lightly loaded by
changing, internal or externally induced workloads,
and at the same time maintain efficient execution of
the Time Warp program (i.e., limit the amount of
rolled back computation). For a detailed explana-
tion of our BGE algorithm, we refer the reader to
(Carothers et al. 1996).

4 RELATED VISUALIZATION SYSTEMS

Several simulation systems have utilized visualization
in one form or another. Many of these systems are
referred to as Visual Interactive Simulation (VIS) sys-
tems (Okeefe 1987). These systems typically provide
support for interaction with the simulation model, vi-
sualizations of model data, and other model related
activities. An excellent example of a VIS system is
DISplay (Mascarenhas et al. 1995). The DISplay sys-
tem is an application-independent visualization and
user-interaction toolkit for use in distributed comput-
ing environments. With DISplay, a user may create
application-specific displays and interaction facilities
that may be used with both parallel simulations or
computations.

The WITNESS (Thompson 1993) VIS system pro-
vides a visual model builder to reduce the time and
complexity of simulation creation. WITNESS also
provides graphical reporting elements such as his-
tograms and pie charts that may be displayed while
the model executes.

The SIMAN/Cinema (Glavach and Sturrock
1993) system provides a large number of graphical ca-
pabilities including barcharts, histograms, and plots.
Furthermore, the Cinema system provides CAD sup-
port and dynamic status displays and animations may
be viewed in real time or in a postmortem fashion.

The XTracker (Bellenot and Duty 1995) system
provides graphical visualizations of the execution of
parallel simulations. XTracker provides Gantt-like
charts of simulation activities on a per node basis and
can also display event messages as traffic between ob-
jects.

Finally, (Graham et al. 1996) proposes a visual
environment for distributed Time Warp simulations.
This system displays information on how individual
LPs behave as a means of monitoring simulation per-
formance.



Figure 1: PVaniM-GTW Graphical User Interface

5 PVANIM-GTW

PVaniM-GTW, shown in Figure 1, is composed of
several default PVaniM views and GTW middleware-
specific views. These views are updated every t sec-
onds, where t is the user selected sampling interval.
The sampling interval can be dynamically changed
at runtime by sliding the sampling interval interface
bar located at the bottom of the PVaniM-GTW win-
dow. The sampling interval has a range of one to sixty
seconds. We have found that sampling intervals less
than 1 second may excessively perturb the monitored
program.

The following provides a brief description of both
types of views and the insights each contributes to the
understanding of GTW’s behavioral characteristics
and the BGE algorithm. We then describe how the
PVaniM-GTW visualization system monitors GTW.

5.1 Default Views

To provide a rich selection of information views with-
out overcrowding the PVaniM window space, we dis-
play some of the information in toggled views. A
toggled view can display two different system met-
rics. Clicking the mouse on the toggled view’s title
causes the view to change the system metrics being
displayed. In the view’s title, the performance metric
in all capital letters is the one currently being dis-
played. The list of PVaniM default views includes
the following:

Located in the upper left corner of the PVaniM-
GTW window, the Host List view identifies the host
machines used by the application and the placement
of the tasks on these hosts. The Memory Usage
view is positioned in the upper right hand corner. It
illustrates the aggregate amount of memory utilized
by the PVM task on each host. Located to the left of
the Memory Usage view, the Load view provides
insight into the aggregate load on the host machines
by providing a graphical view of the average number
of jobs in the run queue of the host. A novel fea-

Visualizing Parallel Simulations in
ture of this view is ints ability to account for exter-
nal loads as well as PVM task loads. Located below
the Host List view, the Task Summary view char-
acterizes the percentage of time a task spends per-
forming application-specific computation, denoted in
green, the percentage of time a task spends perform-
ing PVM sends, denoted in yellow, and the percent-
age of time a task spends in PVM receives, denoted
in red.

The typical inference drawn from the Task Sum-
mary view is that the program is running well if the
task is “in the green”, meaning that most of its exe-
cution time is being spent doing application specific
computation. While this is true for most conserva-
tive computations, this view can be misleading for
optimistic simulations if used without additional in-
formation. The problem is that this view leads one
to believe that all computation (shown in green) is
good. The fact is that for optimistic simulations, this
is simply not true. Because optimistic computations
allow out-of-order execution, some computation time
will be spent rolling back to put the simulation in a
causally correct state.

The lesson here is that designers and users of vi-
sualization systems need to be very cautious and con-
servative in the inferences they draw from a particular
default graphical view, when being used on an opti-
mistic parallel simulation. Moreover, the addition of
application or middleware-specific views may be nec-
essary to give a more accurate picture of the system
being monitored, as in the case with our GTW sys-
tem.

The Messages sent / bytes sent view, which is
located below the Task summary view, illustrates
how much message traffic a task has incurred over
the last statistics sampling interval. Positioned below
the Messages sent view, the Task Print view dis-
plays PVaniM and application specific text messages.
Positioned above the sampling interval selection bar,
the Total matrix / interval matrix communi-
cations view gives insight into communications pat-
terns among the active hosts, either cumulative or
interval communications patterns.

5.2 Middleware Specific Views

In addition to PVaniM’s default set of graphical
views, we included the following set of five GTW spe-
cific middleware views. To fit the additional views
in PVaniM’s window space we implemented many of
these views as toggled views.

Processor Advance Time (PAT) values:
This view is located to the right of the Host List
view. The processor advance time is defined as the
amount of wall clock time needed to advance the sim-

 Network Computing Environments 113



114 Carothers, Topol, Fujimoto, Stasko, and Sunderam
ulation a single unit of simulation time. When the
PAT values among the host processors differ, there
exists a load imbalance. The BGE algorithm migrates
clusters of LPs to the appropriate machines such that
the PAT values across all machines should be about
equal. Consequently, this view gives an immediate
indication regarding how well the BGE algorithm is
balancing the load. For processors not in use, their
PAT value is zero.

Clusters / Primary Rollbacks (PRBS): Po-
sitioned to the right of the PAT view, this is a tog-
gled view that displays either how the clusters are
distributed among the active hosts or the percentage
of events processed that are rolled back during the
sampling interval due to a late arriving application
message (a.k.a straggler message).

Secondary rollbacks (SRBS): Located to the
right of the Cluster / PRBS view, this toggling
view (shared with the Load view) shows the per-
centage of the events processed that are rolled back
during the sampling interval due to the processing
of an anti-message. This view provides insight into
how far an erroneous computation has spread by in-
dicating the fan-out of LP communication links along
which messages are scheduled in the application being
simulated.

Aborted events: Right of the SRBS view,
this toggling view (shared by the Memory Usage
view) shows the percentage of events processed that
are aborted during the sampling interval. In the GTW
system, a fixed number of event buffers are allocated
during initialization and manages those buffers to
avoid costly memory allocation system calls during
runtime. An event is aborted if the scheduling of a fu-
ture event fails because all event buffers are currently
in use. This approach is used to prevent a processor
from becoming overly optimistic. Usually, events are
aborted because a slow GVT calculation process or
a general lack of event buffers due to the large set of
pending events. Like rollbacks, aborted events have a
detrimental effect on system performance and should
be avoided whenever possible.

5.3 Monitoring GTW

To avoid any unnecessary perturbation of GTW, we
had to consider not only the level of detail in which
the system is monitored, but how GTW should be
monitored. The monitoring support for standard
PVaniM was designed with an emphasis on ease of
use and requiring minimal programmer effort. Essen-
tially, all that is required by the developer is to add
an extra header file (GTW is written in C) which
provides macros that replace standard PVM routines
with calls to PVaniM’s monitoring library. The mon-
Table 1: Perturbation Results

Performance Metric GTW P-GTW Difference
Exec. Time (sec.) 375.89 382.70 +1.81%
Number of Rollbacks 40996 38719 -5.55%
Events Rolled Back 886761 732434 -17.40%
Events Cancelled 11611 10113 -12.90%
Events Aborted 4896250 4859281 -0.76%
Avg. Rollback Dist. 21.63 18.92 -12.53%

Figure 2: PCS Application Before BGE (Toggled
Views)

itoring library performs all activities related to gath-
ering monitoring data and then performs the actions
associated with the standard PVM routines.

PVaniM-GTW continues PVaniM’s policy of ease
of use. All monitoring, including monitoring for
middleware-specific visualizations, is performed in-
side macros that replace standard PVM routines.
The routines now perform both generic monitoring
support as well as gather middleware-specific moni-
toring data. The middleware-specific monitoring data
is gathered directly out of user space. Registration
functions are used to provide the macros with the ad-
dress of middleware-specific information such as the
number of primary and secondary rollbacks, the num-
ber of aborts, PAT values, etc.

6 EVALUATION

The GTW application used in our evaluation exper-
iments is a simulation of a personal communication
services (PCS) network. A PCS network provides
wireless communication services for nomadic users.
For a detailed explanation of the PCS model, we re-
fer the reader to (Carothers et al. 1995). The PCS
simulation is configured with 4096 LPs into 64 cluster
of 64 LPs each. In all experiments, we used a combi-
nation of 4 SGI Indy workstations processors and 4
Sun Ultra1 workstations, giving a total of 8 machines
used in all experiments.



Visualizing Parallel Simulations in Network Computing Environments 115
Figure 3: PCS Application After BGE

Figure 4: PCS Application After BGE (Toggled
Views)

6.1 Perturbation Results

In our perturbation experiments the machines were
unloaded by other users and the local area network
was lightly loaded. To minimize the potential of
masking any of PVaniM-GTW’s overheads, we turned
the BGE algorithm off. In this mode, the BGE data
was collected for use by PVaniM-GTW, but LP clus-
ters were never migrated. To maximize PVaniM-
GTW’s potential for perturbing the simulation, we
set the sampling interval to one second which is cur-
rently it’s smallest possible value, as well as enabled
PVaniM’s tracing which is used solely by its post-
mortem views. Each simulation run processes about
27,000,000 events.

The results of our perturbation experiments are
shown in Table 1. Here, we observed that PVaniM-
GTW only increases the execution time by less than
2.0%. Should the sampling interval be increased to 5
or 10 seconds, there would be even less an effect on
execution time.

In examining the other performance metrics,
aborted events accounted for most of the overhead.
Of the 27,000,000 events processed, about 5,000,000
(15%) where aborted. We observe the PVaniM-GTW
monitored runs producing about the same number
of aborted events as the non-monitored runs (only
differs by less than 1%). However, in examining
the rollback performance metrics, a much different
picture emerges. In the case of events rolled back,
the PVaniM-GTW monitored runs are 17% lower
than the non-monitored runs and the number of can-
celled events is 13% lower. At first glance it ap-
pears PVaniM-GTW is grossly perturbing the roll-
back performance metrics. However, closer examina-
tion of the data reveals that rolled back events ac-
count for only 3% of the GTW’s overhead computa-
tions. Consequently, for these experiments, rollback
performance metrics have little effect on overall per-
formance. Thus, in this case, perturbation of these
statistics is acceptable.

6.2 Using Combinations of On-line Views

The most significant contribution made by this visu-
alization system is its ability to enable the end-user to
draw inferences and make conclusions about the fac-
tors effecting the performance of our GTW system
and the BGE algorithm. Using PVaniM-GTW , we
are able to make the following observations about the
BGE algorithm’s “hows” and “whys” and provide a
behavioral picture of our GTW system and the BGE
algorithm. In particular, the following scenario de-
scribed below (shown in Figures 1- 4) demonstrates a
case where the GTW system and BGE algorithm do
not perform as expected.

Figures 1 and 2 show the GTW system at ini-
tial start-up before any LP-cluster migrations have
been issued by the BGE algorithm. Here, we observe
that because of the difference of processing power, the
PAT values for host machines 4− 7 (Suns) are much
lower than for SGIs. Please note, host 8 (stthomas)
is the BGE Policy Program and does not have a PAT
value or LP clusters assigned to it. What is surpris-
ing, as shown in Figure 2, the Sun workstations are
not rolling back, but instead aborting a large number
of events (30% of all events processed are aborted).
We determined the reason for this behavior lies with
GVT being computed at a slow rate, particularly slow
for the Suns. Because of this, the Suns are exhaust-
ing their supply of memory which prevents them from
becoming “overly optimistic” and ensuing a cascade
of rollbacks. We are currently examining techniques
to speedup the time between successive GVT calcu-
lations.

Now, to bring the PAT values back into equilib-
rium as well as mitigate the large number of aborted
events, the BGE algorithm migrates several clusters
off the SGI machines and onto the Suns. However,
these LP-cluster migrations cause an unexpected side
effect. The minimal communication pattern estab-
lished at start-up (see Figure 1) has been corrupted



116 Carothers, Topol, Fujimoto, Stasko, and Sunderam
by migration of LP-clusters (see Figure 3), resulting
in an increase in remote communications. Because of
this increase, new computations are introduced into
the GTW system which the BGE algorithm had not
considered. Consequently, we observe multiple migra-
tion rounds before the PAT values are brought into
equilibrium (shown in Figure 3). This phenomenon
was unexpected since we were already grouping the
LPs into clusters with a high degree of communication
affinity. We did not anticipate the inter-cluster com-
munications playing such an important role in BGE
algorithm performance. We are currently modifying
the BGE algorithm to consider inter-cluster commu-
nication patterns in the determination of which clus-
ters to move and where to move them.

With the PAT values being about equal, we ex-
pected to see a sharp drop in the number of aborted
events. To our surprise, this expectation did not come
true. Shown in Figure 4, the number of aborted
events for the Sun workstations is still quite high,
about 25%, down from 30%. The culprit for this
phenomenon was the same as before: the time be-
tween successive GVT calculations is still too slow,
despite the migration of workload off the slower SGI
workstations. We believe by re-integrating the reflec-
tor thread’s functionality into the GTW kernel for
uniprocessor platforms will sufficiently accelerate the
rate of GVT calculations to reduce the likelihood of
aborted events and ultimately improve GTW’s per-
formance.

6.3 Sensitivity Tuning of BGE algorithm

Another area in which the PVaniM-GTW visualiza-
tion system proved instrumental is in the design and
selection of the BGE algorithm’s sensitivity param-
eters. In the original BGE algorithm for an LP-
cluster migration to be considered effective, it must
have reduced the difference in PAT values between
the source and destination processors by an amount
greater than the user-defined migration, sensitivity
factor, Sm. In experimenting with different settings
of Sm, we observed that if the Sm was set too low,
the BGE algorithm was overly sensitive to PAT value
differences and would always issue LP-cluster migra-
tions. To mitigate this problem we increased Sm.
However, in by making the BGE algorithm less sen-
sitive, the PAT values, reported by PVaniM-GTW,
were never brought into complete equilibrium and
consequently the load across the host machines was
not properly balanced. It appeared that there was no
happy medium.

However, closer analysis of the BGE algorithm
combined with the PAT value view generated by
PVaniM-GTW revealed that we were attempting to
make two orthogonal decisions using the single Sm
sensitivity parameter. The issues in question are as
follows: (i) are the PAT values in a global sense suf-
ficiently out of balance such that any cluster migra-
tion is necessary, and (ii) is a given LP-cluster mi-
gration effective? These issues, while seeming sim-
ilar, must be considered separately. To this end,
we modified the BGE algorithm to include a global
sensitivity parameter, Sg , that examines the global
difference in PAT values and determines whether
or not GTW’s workload is sufficiently out of bal-
ance to consider any LP-cluster migrations. Oper-
ationally speaking, Sg , is a percent difference thresh-
old. Thus, for any LP-migrations to be considered,
(PATmax − PATmin)/PATmin > Sg , where PATmin
is the minimum PAT value and PATmax is the max-
imum among all host machines. Likewise, Sm is also
a percent difference threshold.

To experiment with the setting of Sg and Sm we
again employed the use of PVaniM-GTW. With the
addition of Sg , we could clearly see from the PAT
value view that GTW was not overly sensitive to
small load imbalances. Also, when a load imbalances
did occur, we visually observed the BGE algorithm
responding by migrating the appropriate LP-clusters
and the PAT values being brought into equilibrium.
Based on our experimental analysis using PVaniM-
GTW’s view, the proper settings for Sg range be-
tween 10% and 15% and for Sm range between 0.5%
and 2% for the PCS model. A more comprehensive
set of experiments is needed to establish a relation-
ship between the model characteristics and the set-
ting of the BGE algorithm’s sensitivity parameters.

7 CONCLUSIONS

This article has investigated the use of graphical vi-
sualization to provide insight into the execution of a
simulator developed for network computing environ-
ments. Specifically, our investigation has focused on
the augmentation of a general-purpose network com-
puting visualization system with middleware-specific
visualizations and has resulted in the PVaniM-GTW
visualization system. The synergies provided by the
general-purpose graphical views combined with the
newly developed middleware-specific views have en-
abled us to provider more insight into PDES middle-
ware than a generic network computing visualization
system. Moreover, the end-user is able to utilize the
new insights provided by the system for any simu-
lation application without the expense of developing
his or her own custom application-specific visualiza-
tions for purposes such as performance analysis and
understanding simulator execution. We believe sys-
tems such as PVaniM-GTW that employ middleware-



Visualizing Parallel Simulations in Network Computing Environments 117
specific views provide a cost-effective compromise be-
tween both extremes of the visualization tool spec-
trum. In this case study, PVaniM-GTW has enabled
us to identify performance problems with the GTW
system and weaknesses of the BGE algorithm.

ACKNOWLEDGMENTS

This work was supported by U.S. Army Contract
DASG60-95-C-0103 funded by the Ballistic Missile
Defense Organization, U. S. Department of Energy
Grant No. DE-FG05-91ER25105, and Army Re-
search Office Grant DAAH04-96-1-0083

REFERENCES

Bellenot, S., and L. Duty. 1995. XTracker, A graph-
ical tool for parallel simulations. In Proceedings
of the 9th workshop on Parallel and Distributed
Simulation, 191-194.

Carothers, C., and R. M. Fujimoto. 1996. Back-
ground execution of time warp programs. In Pro-
ceedings of the 10th Workshop on Parallel and
Distributed Simulation, 12-19.

Carothers, C., R. M. Fujimoto, and Y.-B. Lin. 1995.
A case study in simulating PCS networks using
time warp. In Proceedings of the 9th Workshop
on Parallel and Distributed Simulation, 87-94.

Glavach, M. A., and D. T. Sturrock. 1993. Intro-
duction to Siman/Cinema. In Proceedings of the
1993 Winter Simulation Conference, 190-192.

Graham, J. H., A. S. Elmaghraby, I. Karachiwala,
and H. Soliman. 1996. A visual environment for
distributed simulation systems. Simulation Digest
25(3):13-22.

Jefferson, D. R. 1985. Virtual time. ACM TOPLAS
7(3):404-425.

Kraemer, E., and J. T. Stasko. 1993. The visual-
ization of parallel systems: An overview. Journal
of Parallel and Distributed Computing 18(2):105-
117.

Mascarenhas, E., V. Rego, and J. Sang. 1995. DIS-
play: a system for visual-interaction in distributed
simulations. In Proceedings of the 1995 Winter
Simulation Conference, 698–705.

O’Keefe, R. M. 1987. What is visual interactive sim-
ulation? (and is there a methodology for doing it
right?). In Proceedings of the 1987 Winter Simu-
lation Conference, 461–464.

Schmidt, B. K., and V. S. Sunderam 1994. Empiri-
cal analysis of overheads in cluster environments.
Concurrency: Practice & Experience 6(1):1-33.

Sunderam, V. S. 1990. PVM: A framework for paral-
lel distributed computing. Concurrency: Practice
& Experience 2(4):315-339.
Thompson, W. 1993. A tutorial for modeling with
the WITNESS visual interactive simulator. In
Proceedings of the 1993 Winter Simulation Con-
ference, 228-232.

Topol, B., J. T. Stasko, and V. S. Sunderam 1997.
The dual timestamping methodology for visual-
izing distributed applications. In Proceedings of
the IASTED International Conference on Parallel
and Distributed Systems - Euro-PDS ’97, 81-86.

Topol, B., J. T. Stasko, and V. S. Sunderam 1996.
Monitoring and visualization in cluster environ-
ments. Technical Report GIT-CC-96-10, Georgia
Institute of Technology, Atlanta, GA.

AUTHOR BIOGRAPHIES

CHRISTOPHER CAROTHERS is a Research
Scientist and Ph.D. candidate in the College of Com-
puting at the Georgia Institute of Technology.

BRAD TOPOL is a Ph.D. candidate in the College
of Computing at the Georgia Institute of Technology.

RICHARD FUJIMOTO is a Professor in the Col-
lege of Computing at the Georgia Institute of Tech-
nology.

JOHN STASKO is an Associate Professor in the
College of Computing at the Georgia Institute of
Technology.

VAIDY SUNDERAM is a Professor of Mathemat-
ics and Computer Science at Emory University.


	VISUALIZING PARALLEL SIMULATIONS IN NETWORK COMPUTINGENVIRONMENTS: A CASE STUDY
	ABSTRACT
	1 INTRODUCTION
	2 OVERVIEW OF PVANIM
	3 GEORGIA TECH TIME WARP (GTW)
	3.1 Re ector Thread
	3.2 Background Execution Algorithm

	4 RELATED VISUALIZATION SYSTEMS
	5 PVANIM-GTW
	5.1 Default Views
	5.2 Middleware Speci c Views
	5.3 Monitoring GTW

	6 EVALUATION
	6.1 Perturbation Results
	6.2 Using Combinations of On-line Views
	6.3 Sensitivity Tuning of BGE algorithm

	7 CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES
	AUTHOR BIOGRAPHIES

	page1: 110
	head1: Proceedings of the 1997 Winter Simulation Conferenceed. S. Andradóttir, K. J. Healy, D. H. Withers, and B. L. Nelson


