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ABSTRACT

The modeling of computer systems, particularly
distributed systems, is presented with an emphasis on the
system characteristics that are important to the model
and some general methods to represent them.  CPU,
memory, DASD, network I/O, load generation, and the
parameters for applications and their dynamics are
discussed.  This is followed by a plan for building  the
model, focusing on a modular approach that the inclusion
of more detail as more knowledge is obtained.

1   INTRODUCTION

With the increase in the number of distributed processing
systems and their attendant complexities, there is a
definite need to be able to model systems during their
design phases, and, in the future, to model potential
changes to already operating systems.  It has been the
author’s experience that this activity can detect problems
long before they are implemented and guide corrections.

Starting from a simple perspective, we will look at
distributed system as one or more units composed of a
CPU, memory, DASD and/or tape storage, network
connections, a suite of applications, and a workload.
The underlying approach is to treat the system as an
online transaction processing facility, though there is no
reason not to create workload generators that are internal
to the system under study, e.g. scheduled batch
processing.  The goal here is to provide an output that
correctly predicts the behavior of the system as seen by
an outside observer, not to faithfully reproduce the
internal details of the system.  Depending on the model,
there may be a need for some internal details, but not for
the entire system.  Vendors have modeled individual
components, such as DASD devices or memory, to a
high degree of precision, and, to the degree that they
have published their work or are willing to share it, great
value may be obtained in understanding the internals of
the system.
There is no point in modeling more precisely than the
system reproducibility, and it is the author’s experience
that an answer within 10-20% of the true answer is often
adequate for the overall system.  However, some
components of the system may need to be modeled more
precisely.  Few computer systems have such a constant
or systematically varying workload as to be more
reproducible than ten percent either way.  In the early
stages of the design work, the room for variance is even
greater.  Often the answers at this stage are found with
quite simple models, or even with some basic systems
engineering work that is used as sanity checks on the
designs and the model.  Thus, the process we will
develop after discussing the system components and how
to represent them, is one of putting together simple
modules that can be replaced with more detailed versions
later in the process as more knowledge of the system is
obtained.

This tutorial will not discuss particular packages or
any details of actual models.  Once the principles of the
systems are understood, their representation in a
modeling system is fairly straightforward.  The focus will
be on the system components, how they are structured
and operate with some general suggestions for
representing them in a model. We will also cover
application dynamics, and how to represent application
work in a system. Finally there will be some discussion
on how to go about building a model of a system under
design and development.

2   COMPUTER SYSTEMS COMPONENTS

2.1   CPU

Distributed system CPU can often be modeled as a single
resource with a queue and a time delay.  However, that is
not really the manner in which it occurs, and there are
times when detailed knowledge of the operating system
workings is important. For example, the cache manager
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may be modeled separately from the rest of the operating
system workload.   Detailed presentations of the UNIX
operating system can be found in two sources, Bach
(1986) and Leffler, et al (1990).  Processing in a UNIX
system occurs in one of two logical divisions, user space
or system space.  User space contains all the application
specific data, buffers, and compiled code, and system
space contains all the I/O buffers, system memory, and
operating system code.  To maintain integrity, any data
to be processed by the operating system is rewritten to
separate memory locations in system space from the user
space.  The processing in user space is only for the
application-level calculations. All work scheduling and
I/O is handled by the operating system.

Multiprocessor systems have the potential for parallel
processing, but only for user spaces.  The operating
system has only one lock on the kernel, and therefore any
system work is single-threaded through that lock.
System work takes precedence over user space work, and
a request for a system function will pre-empt any user
work in the processor.  Though system work functions
have priorities among themselves, no system call can
pre-empt any other system call; it must wait until the
current system function is complete.  Once a system
function is complete the next function will be the one
with the highest priority, but it in turn will be in the
processor for  its full time-slice or until it requests an
I/O.  This of itself does not lead to complications, but the
fact that there is only one kernel lock for the operating
system means all system calls are single-threaded
through the equivalent of one processor.  Actually,
slightly less, because of scheduling overhead and the
handling of the lock between processors.

The implications of this arrangement are that a
computationally intensive application or set of
applications will have a high degree of parallelism on a
multiprocessor system, but an I/O intensive system will
be throttled to slightly more than the capacity of one
processor, and all I/O handling will be serialized. It is
possible to have multiple I/Os outstanding, but the actual
interrupt handling is only done under the one kernel lock.

The simulation of such an arrangement is actually
much more simple than might be first supposed.  One
models a multiple-server queue, and increases  the CPU
time to account for the single-threading through the
kernel lock.  This does not lead to inflated CPU
utilization times, because when a user process is waiting
for the kernel lock, it goes into a spin-loop checking for
the availability of the lock.  Thus the CPU is being
utilized, though not directly for productive work.  In I/O
intensive functions, cache management may need to be
modeled separately from the rest of the CPU
usage(Nelson, Keezer, and Schuppe, 1996).  One can
treat it as a separate resource with a capacity equal to
that of one processor on a multiprocessor system.

Though the additional detail of modeling the various
work-spaces and the queueing for the kernel lock might
provide a slightly more accurate value for CPU
processing, in the author’s experience, the above
technique was adequate for design and development
phase work.  However, the exact nature of the workload
sharing must be kept in mind.  In cases where their is a
master processor and the remainder are slaves, the
master processor must be separately modeled, because its
workload is different.  By the time truly accurate answers
are required, the system under development is usually up
and running and can be measured and modified faster
than a model.  The exception would be a model to do
what-if planning for an existing system.

As a side note, MVS systems can be readily modeled
as multiple-server systems, but without the concerns over
the kernel locks.  MVS has matured to the point that
there are thousands of kernel locks, and with fourteen
levels of interrupts, system functions can be pre-empted
for more critical system functions, and all processors are
equal in capability.

2.2   Memory

UNIX was developed in a compute-intensive
environment, and most systems come with sufficient
memory as not to be memory constrained.  In the case of
applications with extremely large memory requirements,
however, memory will have to be tracked.  It is possible
to allocate more memory for a process than is available
as physical memory.  This is called virtual memory. In
principle, it is not necessary to be concerned about
virtual memory; it is a programming constraint.  What is
important is the actual use of physical memory.

Memory is managed by keeping the most active
portions in physical memory and putting the inactive
portions out on specially allocated DASD, to be brought
into physical memory as necessary (paging out and
paging in, respectively).  Physical memory is also used
as the cache for I/O, those portions being handled
separately by versions of UNIX that use separate caches.
Some versions of UNIX, e.g. Solaris and SunOS
from Sun Microsystems, do not partition off  a separate
cache allocation, but simply use as much memory as
necessary for the function.

Memory is modeled as a pool from which allocations
are withdrawn as necessary.  When the pool is depleted
or reaches some set level of empty pages, the least-
recently used pages are paged to disc and freed for reuse.
It is not necessary to track locations, simply the amount
left.  One can allocate precisely or with a distribution,
and when the page out to reuse space occurs, add some
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distributed increment back into the pool.  When
allocating memory, allocate the entire amount necessary,
then let the paging process replenish the pool; this is
what occurs in the actual system.  The actual details will
vary with the system under study, and the modeler must
maintain communications with the development staff to
help determine what the necessary parameters are.  One
area that requires care is the termination of an
application.  The amount of physical memory recovered
is not equal to the total allocation, but only that part in
physical memory.

2.3   DASD

It has been the author’s experience that storage I/O, and
in particular DASD I/O, is a major potential bottleneck
in UNIX systems.  DASD I/O is inherently slower than
processing, with one I/O typically taking ten
milliseconds, while processing speeds are measured in
nanoseconds per instruction.

There has been a lot of progress in the last several
years, since the development of the SCSI controller, in
improving DASD performance.  At one time a DASD
I/O required the complete attention of the central
processor. Data was  moved  to the system buffer for a
write or the buffer allocated for a read; the data was
transferred to or from the disc a block at a time, and then
the results transferred back to the calling program.  With
the advent of SCSI controllers, the data is transferred to a
system buffer and the I/O commands issued to the
controller.  The controller then executes the I/O and puts
the results in a system buffer, reading and writing
multiple blocks with DMA (direct memory access).  At
the completion, the SCSI controller then issues an
interrupt for the system to process the result.   This is
quite similar to the manner in which MVS DASD
functions, with DASD controllers and channel processors
functioning similarly to SCSI controllers.

The discs themselves have also been improved, with
on-board caches and processors, some of which could
run DOS.  Discs can perform prefetch for sequential data
and store the results in the cache to speed up the transfer
of data and reduce the potential for hardware delays.
Details of  typical disc operations are given in Ruemmler
and Wilkes (1992,1993).

 When modeling I/O for applications, the two most
important operations are read and write.  Open and
closes generally are not of major importance, even
though they can have high overhead, unless there are
many of them relative to the other activities.  The major
impact of an open command is to increase the response
time on a first return from a transaction, if it opens a file.
The major impact of a close command is to increase the
response time on the last return, if it closes a file.
Read operations are all handled similarly, but there
are three main types of writes, synchronous,
asynchronous, and DASD fast write.  A synchronous
write holds the program until the I/O results return to the
program.  This increases response time by the time of the
entire write operation.  Asynchronous writes do not wait
for a return, and, once the write has been set up, the
program continues.  DASD fast write occurs on discs
which have non-volatile storage (storage that maintains
its contents in a power outage or power down).  In this
case as soon as the data reaches the on-board cache of
the disc, a result is returned, eliminating the need to wait
for the completion of the physical I/O.

UNIX stores data in memory in a cache as mentioned
above.  Before a physical I/O is performed, a check is
made to see if the data is in cache.  If so, then the I/O
consists of a simple transfer from cache to the user space.
Generally, cache hits are approached on a percentage
basis, which leads to a probability for modeling
purposes.   If the I/O is intensive, and the number of files
are small relative to the amount of cache allocated, in
some versions of UNIX, the cache manager must be
explicitly modeled as a significant contributor to
response time.

Details on programming UNIX I/O can be found in
Nelson, B. L., Keezer, W. S., and Schuppe, T. F. (1996).
As a first step in the earliest models, one can replace the
details of the I/O with a branch to either a cache hit or a
physical I/O with a distribution of possible response
times. Generally a skewed distribution with a mode close
to the minimum response time is adequate.  Separate
provision may be made for the CPU involvement. The
next complexity would be to break down the I/O into
disc fixed overhead, seek time, rotational delay, and data
transfer time.  Finally, one can model I/Os with a high
degree of precision using the methods in the referenced
paper.

As RAID (redundant arrays of inexpensive discs)
devices become more common for servers, the models
will simplify.  RAID architecture separates the physical
I/O from the requested logical I/O with large caches, and
performance times for cache misses tend to be more
uniform.  With the very large caches seen on some RAID
controllers, cache hit percentages can routinely run in the
90-99%.  RAID controllers can also reduce CPU
overhead values since mirroring and other management
functions can be handled in hardware in some products.

2.4   Network

Networks have been the subject of intense simulation
activity for years.  For the purposes of this tutorial,
networks are simply a combination of CPU and memory
overhead and a time delay, possibly distributed.  The
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details of network protocols are usually not important in
modeling the interaction of applications in systems.
Results are mostly dependent on how long a transmission
takes, regardless of protocol.

3   WORKLOAD COMPONENTS

3.1   Load Generation

Creating a realistic workload for the system is a critical
part of the model.  Because of the complexity of the
transaction interactions at a resource level, small changes
can sometimes have major effects.  Arrival rates,
transaction mixes, and transaction sources are important.
The sources of transactions are other systems, internal
schedulers, and external users.

The easiest to handle are the internal schedulers.  One
can simply generate transactions similarly to the schedule
in the system under study.  The other two sources are
more difficult.  Transactions from other systems can be
handled in two different ways.  If the other systems are
part of the model, then their requests will naturally arise
from the execution of the model.  If the request-
generating systems are external to the model, then they
need to be handled similarly to external users.

The three main parameters to consider with external
users are how many are there at one time, what
transactions are they submitting, and how long do they
think between transactions.  The number of users can be
handled as an arrival rate problem, based on the average
session time and the arrival rate.  The simulation of
transaction choices can depend on how many
transactions there are from which to chose.  If there are a
number of repetitive transactions, such as those from
data entry clerks, then each of these could be simply
modeled as separate generators with correct arrival rates.

If, as in the author’s experience, there are a large
number of transactions, and the choices of the next
transaction are varied, a transition matrix has proven to
be a good method for generating the arrivals.  Each user
is generated as an entity and then chooses a transaction
starting at a given place in the matrix.  The choices are
based strictly on probability of a transition from the last
transaction to any given transaction.  A corresponding
pair of matrices with the user think times as a mean and
standard deviation is used to generate the delay between
transaction submissions.  The details of the method may
be found in Keezer, Fenic, and Nelson (1992).

3.2   Applications

There are two ways to model applications, create a sub-
model for each different transaction of the application(s)
or parameterize the transactions and use a generic sub-
model.  If the transactions are complex the impact on the
system may vary greatly with small changes.  In such a
case the individual sub-model approach is necessary.  In
the author’s experience this creates a high maintenance
effort and large amounts of code, since in the design and
development phases, changes are constantly being made
in response to model results or to programming
problems.

The author has used parameterization to simulate
relational database transactions successfully (Keezer, in
preparation). For standard applications, there are five
basic parameters, system id (if the model consists of
more than one system), CPU used, memory used, the
number of DASD I/Os, and the number of network I/Os.
To parameterize transactions, create tables with one
column for each system in which the transaction occurs,
e.g.,

system ID
CPU
memory
DASD I/O
network I/O
others as needed.

One may then index into the table to obtain the necessary
parameters.  The distribution of the work in the generic
sub-model would be via a set of indexed loops. The
indices would be for the number of DASD I/O’s, the
number of network I/Os, and their total plus one or two
for distributing the CPU.  The CPU data should only
include the requirements for processing, not for the
system calls.  Those are provided by the system call
simulation.  The parameterization of relational database
procedures is not as simple, though the method is much
the same.  In relational databases there are both the
various tables and the operations on them by the
transactions to parameterize.  The details are beyond the
scope of this tutorial.

Unless there is a known large skew in the way
resources are consumed, The most straightforward
method of modeling their consumption is to divide the
total CPU requirement by the total DASD and network
I/Os plus one, and the DASD I/Os by the network I/Os.
One then models a cycle of CPU consumption followed
by a DASD I/O, and occasionally one of CPU
consumption followed by a network I/O.  The final pass
is the remaining CPU consumption.  The memory is
allocated at the beginning of the sub-model, similarly to
the way most transactions work, unless it is known that
additional allocations of memory are done inside the
transaction.  In which case the additional memory
allocations can be done intermittently as were the
network I/Os.
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 It is not desirable to group CPU consumption and
I/Os together unless it is known to occur in the real
transaction.  This is because it will create artificially long
blocks of resource utilization, penalizing short
transactions compared to reality and making long
transactions look better than reality.

4   BUILDING THE MODEL

4.1   Input Data

Because of the high susceptibility of simulation models
to GIGO (garbage in, garbage out), considerable
attention needs to be paid to the input data for the
models.  The data can be thought of as occurring in four
types, runtime input, application parameters,
configuration data, and system data.  Runtime inputs are
such values as the number of processes, the active
transactions, the number of users, the arrival rates of
transactions, and the batch scheduling.  Application
parameters include the amount of CPU required, the
number of I/Os, the amount of memory, and the number
of network I/Os. Configuration data are items such as the
number of drives on a system, the number of systems in
the model, the network delays, the amount of memory
and cache, and the number of files stored on DASD.
System data include the CPU speeds, the various
parameters for the physical I/O to DASD, backplane
speeds, and controller speeds.

System data require the greatest attention during their
creation.  System data appears in every calculation, and
small errors can be multiplied many times.  There are a
number of sources for system data, among them
benchmarks, manufacturers' literature, e.g., Sun
Microsystems’ white paper (1992), published literature,
e.g., Alexander, et al, (1994),  and experience.  Any
values based on the modeler’s experience should always
be subject to review in light of further data.
Manufacturers’ data and published literature sometimes
require careful analysis to obtain the numbers actually
required.  Frequently the desired values have to be
derived from reported values, and often the conditions of
their generation are not necessarily similar to those being
modeled.

Runtime inputs are under the control of the modeler as
are the configuration parameters.  Application
parameters are somewhat more difficult.  During the
design phases, frequently only guesses can be made for
those values.  This is where the experience of the
modeler and the developers becomes important.  Usually
reasonable estimates may be made of the parameters,
and, with the cooperation of the developers, the actual
values may be obtained from test runs of the programs.
4.1.1   Benchmarks

The most critical system values should be obtained from
benchmarks.  Generally published benchmarks can
provide some of the data, but custom benchmarks that
perform work similar to that being modeled are the most
desirable. Published benchmarks do not always stress the
systems under test in the manner that the modeled system
will, and they frequently do not provide the data
necessary to determine unpublished but important values.
Additionally the output from the benchmarks becomes a
source of validation and calibration of the model.  DASD
and network I/O are the two most obvious needs for
benchmark data.  When designing benchmarks one needs
to structure the programs to access data  with and
without cache hits.  Additionally one should  use
multiple configurations and multiple load levels and test
as many operations as possible.  Where possible use
different data layouts and access patterns.  This may
appear to be a lot of work, but in the process much of the
behavior of the systems being considered will be
revealed, providing guidance in what is and is not
feasible to do with the new system.  It can save
considerable modeling effort, if the data is extensive.

The values to be obtained include CPU utilization,
both system and user, I/O response time, interrupt
counts, average I/O rates, I/O sizes, memory use, and the
configuration used during the benchmark.

4.2   Putting It Together

Modeling systems in the design and development phase
of a project requires many iterations of the process, each
time refining some piece or pieces of the model in light
of better information.  It is important to start as simply as
possible.  The model WILL become more complex,
faster than desired usually.  There will be times when
some important value or a group of values will not be
reliable.  The answer usually lies in one of two places,
the developers have not adequately described what they
are doing, or there is some important feature of the
operating system or the hardware that is not correctly
modeled.  The former is a communication problem and
requires patient, careful questioning.  The latter requires
research and going over all the available information,
such as operating system descriptions, manufacturers
literature, and published data, often with very intense
analysis to obtain the values desired. A more detailed
discussion of working with developers is in McBeath and
Keezer(1993).

The first thing to do is some standard systems
engineering and analysis, estimating overall loads for a
configuration.  This includes processor utilizations and
I/O rates, as well as network throughputs.  A good guide
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in this is Jain(1991). Many designers have not done this
before starting development.  Remember, the cheapest,
fastest simulation is the one that doesn’t need to be built.
Many designs implicitly assume that resources are
unconstrained until proven otherwise.  Find the obvious
constraints the easy way.

Once the overall numbers indicate the system may be
able to perform, the first iteration of the model may be
started.  This iteration should be as simple as possible,
with no details on consumption of resources.  The load
can even be one or two general transactions.  The idea is
to obtain a first feel for the behavior of the system.  If
there are surprises at this stage, GOOD!  Everybody
stands to win once they are analyzed; early problems are
far easier to solve than later ones.

The overall structure of the model should be as
modular as possible.  Each system in the model should
be represented by either a sub-model or a generic system
model with a table of parameters for each system being
studied.  Within a system, each function should be as
independent as possible.  The whole purpose of this is to
allow for easy change as designs change.  It also makes
the job of trying various alternatives easier.  One can
even start as simply as a single system, with the
interactions with other systems modeled as distributed
delays.  Later, the various systems can be combined for a
more detailed look at the overall combination.  The
internal divisions of a system are a load generator, the
CPU, memory, DASD, and a network connection.

Unless it is definitely known ahead of time, one can
model the dynamics of the various components using
distributions as approximations.  Exponential arrivals,
log-normal processing and network times, and triangular
DASD responses will provide a good high level
approximation for overall dynamics.  Other than a
reasonable estimate of the mean and dispersion, the
inputs do not have to be created yet, but some first
answers can be obtained.  If various functions are
modeled as sub-models, then as more detail is needed
and the necessary supporting input data is generated
those functions can be replaced easily.

The outputs of interest include resource utilization,
throughput-response curves for various systems, and
overall transaction response times.  Throughput-response
curves are very useful and sensitive for validating and
calibrating components of a model against benchmark
data, and the process of making the model reproduce the
benchmark results can lead to insights into the operation
of the systems that are not necessarily documented.

5   CONCLUSION

Just as in manufacturing, simulation studies of computer
systems during the design phase and throughout
development can provide considerable assistance to the
developers, revealing potential problems and finding
better ways to distribute work.  It  is important to keep
everything as simple as possible.  The model should
never be more complex than the development concepts it
supports, and generally does not need to be as specific as
the development efforts.    In this area, knowledge of
computer systems is as important as simulation
technique; the simulations flow in a straightforward
manner once the systems are understood.
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