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ABSTRACT

Techniques to visualize quantitative discrete event
simulation input and output data are presented. General
concepts connected with graphical excellence are
discussed in a simulation context.  Brief examples of
graphs and visualizations are presented from a classic
model of African port operations.

1  INTRODUCTION

Visualization is a process of using multimedia to
enhance human perception of system behavior.  When
employed with simulation, the purpose of visualization is
to explore, explain, gain insight, and support decisions.
Visualization can be described as a process which builds
up perception in stages. It is highly dependent on the
psychology and physiology of sight; however, the term is
considered broadly here as any technique which
enhances the mind’s eye of perception ranging from
ASCII text summaries to complex animation.

Computer simulation is a process of building and
using models of systems which mimic the behavior of
real or proposed systems such that that artificial behavior
can be observed and quantified to support decisions.
The simulation process has been described extensively.
Excellent descriptions can be found in Banks, et
al.(1996), Law and Kelton (1991), and Arthur and Nance
(1996).  Observation assisted by visualization and
iteration is critical to each step of the process.

To simplify discussion, we may say simulation
visualization generally involves three broad tasks in
some form: input analysis, formulation, and output
analysis.  For example, in early stages, data is collected
to support input analysis.  The first question asked is
what does the data look like.  Are observations truly
random?  Is there structure which supports a probability
distribution assumption?  Is a simple univariate
distribution assumption valid, or is some multivariate
form appropriate?  Can we see how well a statistical
model fits the hypothesized distribution? The process of
simulation is intertwined with multi-dimensional
visualization and perception.
Visualization is also critical to formulation or model
building.  Here we are interested in visualizing system
structure and behavior.  Multiple versions of conceptual
models are often required. Building model
representations which tell a story which can be validated
is critical.  Edward Tufte (1997), in his recent book
Visual Explanations, describes how we can effectively
create visual reasoning which explains dynamic
processes. Model building, verification (assuring the
model works as intended) and validation (assuring the
model matches reality for the purpose intended) are
closely linked through visualization. Validation often
involves communicating a conceptual visualization
which can range from a sketch on the back of an
envelope to a human computer interface (HCI)
representation in a simulation language.

Output analysis tasks range from data analysis, to
validation and decision support.  Output data from one or
multiple runs of a single model, or from multiple
experimental design points for a single base model with
variations, demands visual comparison.  If a statistical
relationship or response surface based on design points
exists, visualization supports interpreting that surface.
Output analysis can be ultimately framed as a series of
pattern recognition tasks where iterative experimentation
with a model and experimentation with the data yield
insight. The modeler must efficiently “mine” and control
data to be mined to uncover patterns. Efficiency is lost
when misinterpretations of data cause errors in
formulation, data interpretation or communication of
results. Visual efficiency is achieved when a graphic
based on data effectively represents all there is to know
about a data set to support the decision at hand and no
more.

In output analysis visualization provides a common
ground of experience to convey complex data efficiently
to a much wider audience which is often not versed in
statistics.  To coin a phrase from Clausewitz (1968),
visualization is statistics by other means. Visualization
advances have been made in many fields such as remote
sensing, weather forecasting, aerodynamics, process
management and computer capacity and performance
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analysis.  It is clear that these advances can be applied
generally in any simulation modeling exercise.

Edward Tufte (1983,1990,1997) has produced a series
of texts both instructive and interesting for those
pursuing the holy grail of efficient visualization.
Envisioning Information, The Visual Display of
Quantitative Information and his latest book, Visual
Explanations, are worthy of lengthy consideration as
they suggest a science of visualization.  It is important to
note that principles of good visualization must be
experienced as well as discussed.  Additional excellent
guidance may be found in Chambers et. al. (1983),
Cleveland and McGill (1988), Cleveland (1985), and
Wildbur (1989).  The human factors and human
computer interface (HCI) literature also provides a
wealth of insight into human information processing and
perception which underlie good visualization. See, for
example, Sanders and McCormack (1987).

Tufte (1983) provides the following set of concise
visualization principles of excellence:

“Excellence in statistical graphics consists of complex
ideas communicated with clarity, precision, and
efficiency.  Graphical displays should
- show the data
- induce the viewer to think about the substance rather
than about methodology, graphic design, the technology
of graphic production, or something else
- avoid distorting what the data has to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal the data at several levels of detail, from a broad
overview to a fine structure
- serve a reasonably clear purpose: description,
exploration, tabulation, or decoration
- be closely integrated with the statistical and verbal
descriptions of a data set.”

Tufte (1977) stresses the importance of viewing graphs
as much in context as possible, allowing quantitative
comparisons through labeling and scaling, facilitating the
fundamental tasks of comparison.  He prompts us to
avoid “chart junk”.  This is perhaps one of the most
important (of many) principles.  Tufte (1997)describes a
noted failure of particular graphic design:  “The visual
elements bounce and glow, as heavy lines activate the
white space, producing visual noise.”  Visual noise saps
processing capacity from the viewer and increases the
inefficiency of a visualization.

Modelers should be constantly aware of the limitations
of processing resources of the human brain-their own or
a customer.  A critical rule to follow is that of “smallest
effective difference” in displaying chart objects. Tufte
(1997) suggests we “make all visual distinctions as subtle
as possible, but clear and effective.”  Visual noise can be
created by distracting lines, shapes and colors.  In
analysis and results presentation, it should not be the
analysts intention to make bold statements of graphic
impact (e.g. heavy and light lines mixed, extensively
highlighted text, stridently different colors, boxes of this
and that, etc.).  “Good form is clear but not a spectacle.”
Tufte (1997). For a modeler, since there is the potential
to produce vast amounts of data from a simulation, it is
important to have the ability to focus on key dimensions
of display without clutter such that the analyst or
customer becomes overwhelmed or confused.

Facilitating the ability to scan, compare and perceive
repetition is a common thread in Tufte’s work.  Human
learning thrives on repetition and emphasis.  “Parallelism
connects visual elements.  Connections are built among
images by position, orientation, overlay, synchronization
and similarities in content.  Parallelism grows from a
common viewpoint that relates like to like.” Tufte
(1997).  An extremely powerful technique applicable to
many simulation analyses is the employment of “small
multiples”, producing visually distinct elements in a
visualization.  “Small multiples resemble the frames in a
movie: a series of graphics showing the same
combination of variables indexed by changes in another
variable.” Tufte, 1983. Small multiples and other related
techniques allow the viewer to scan, and control the pace
of interpretation.  Efficient visualization thrives on
clarity combined with pace of review and scan activity.

2  A VISUALIZATION EXAMPLE

A  basic model of an African port described by Schriber,
(1974) and implemented as an example in the AWESIM!
simulation language in Pritsker et. al. (1997), can be used
as a starting point to illustrate concepts and techniques.
The model is based on a crude oil transshipment port
with 3 berths and one tug servicing the port.  An existing
population of tankers uses the port.  These tankers come
in 3 sizes, and have a common interarrival rate but
different loading times while they occupy a berth.  The
tug is a resource used to berth and deberth.  Storms
arrive randomly causing the tug operation to be shut
down.  A shipper is interested in adding to the load at the
port by taking on a contract which will require an
additional 5 tankers, all of the same type, which will
cycle to and from the United Kingdom.  The problem
addressed by the model is how will this additional load
impact the residence time in port.  The AWESIM!
language permits an icon based network model of this
system, which may be seen in Pritsker.  Techniques
which could be used in input and output data analysis
will be discussed.
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2.1  Input Visualization - Plot the Data

The main input analysis task for the Africa port would be
determining the probability density function for current
ship interarrival times.  Wandering over to the virtual
shipping office (only mad dogs and modelers go out in
the noonday sun!), the logs showing historical arrival
times for the current population of tankers are examined
and analyzed  by computer. Considering manual analysis
would be uncivilized!  The laptop of today and the future
can be outfitted with an impressive array of visualization
support tools.  We take the attitude that while on such a
safari you can never use too much gun!  Consider the
likes of general statistical visualization packages such as
Statistica™, Statgraphics™, SAS™ or SPSS™
supplemented by a general purpose spreadsheet
package(s) like Microsoft Excel™, Lotus 1-2-3™, or
Quattro Pro™ which have extensive graphic support.
With the addition of macro programming, these tools
become extremely powerful.

Scatter plots are extremely helpful in feeling out input
data.  One of the first tasks where observations occur
sequentially is to simply plot the data against time to get
a sense of variability and autocorrelation.  Sorting and
plotting largest to smallest to get a sense for regularity
may also be valuable, as is plotting the percent of
accumulated observations versus time.  Where more than
one variable is observed and associated to another, it
may be beneficial to look for correlation, and the
existence of  relationship(s) between members of a
group.  For example, one might wonder if there is a
relationship between arrival rates of pairs of one tanker
type and another.  It is important to note that spurious
visual artifacts may mislead the analyst; however,
carefully taking stock of potential relationships paves the
way for statistical testing if warranted.

The density of the probability of occurrence of values
of a random variable over a range can be represented by
a probability density function if the variable is
continuous, or a probability mass function if discrete
(piling up probability only at specific points).  A host of
mathematical models have been employed to represent
the probability distributions for various types of data
under the assumption that these mathematical models are
valid patterns which can effectively characterize real
world data.  One of the first pattern matching tasks a
simulation modeler faces is which model to choose.
Sometimes it is necessary to form a more general
empirical model of the data which does not conform to
an existing standard pattern; thus one choice in the
selection from standard patterns is no choice.

One of the most powerful techniques for visualizing
this pattern is the humble histogram. This is composed
by partitioning the range of observed values into sub
ranges or bins for continuous data (or exact points for
discrete data) and plotting the frequency of observations
or the fraction of observations falling in each bin. While
a variety of rules exist for choosing the number of bins, it
is recommended to try a range of bin sizes with the goal
of building a smooth distribution analog,  Law and
Kelton (1991).  By convention, this data is typically
represented as a bar or column chart.  When contiguous
end points of the sub-ranges are made the edges of the
bars, the eye perceives a pattern which can be compared
to the patterns of potential mathematical models such as
normal, exponential, lognormal, poisson, or other density
functions.  Excellent presentations of various basic
univariate patterns can be found in statistical texts.  See,
for example, Law and Kelton (1991).

A histogram from the shipping office data for all
current arrivals is presented in Figure 1.  It can be seen
that the fit clearly does not look as if distributed
exponentially as shown with the overlay. It is important
to note that larger sample sizes facilitate both the visual
strength of the pattern and the ability to detect multi-
modal patterns and irregularities in a proposed model.
Experimenting with the bin size with a visualization tool
is recommended

 y = 800 * 2 * expon (x, 0.0927286)
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Figure 1:  Histogram of Existing Ship Population
Interarrival Time Distribution.

A visual goodness of fit test can be performed by
constructing a so called P-P or  Q-Q plot for candidate
distributions for the observed data.  These plots are
based on the existence of an empirical cumulative
distribution function for the data where the data are
sorted and indexed from i=1 to n from smallest to
largest, F*

n(X(i)) = (i-0.5)/n .  The P-P plot is formed by
plotting a hypothesized, or “model” cumulative
distribution value F~

n(X(i)) vs F*
n(X(i)).   Alternatively, the

Q-Q plot is formed by plotting sorted observed values
versa values from the hypothesized distribution at
observed quantiles where the quantiles are defined as qi

=  (i-0.5)/n, i.e. x(i) (the observed data) vs. a value a
from the hypothesized distribution at that quantile, the
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values x~(i) = F-1
n(q(i)).  Excellent descriptions of these

techniques are found in Law and Kelton (1991).   A poor
pattern match is indicated by a nonlinear relation evident
in a P-P plot as shown in Figure 2 where an exponential
distribution is tested.  Residual plots or mean square
error calculations can be compared based on calculating
simple linear regressions for alternative plots.

Probability-Probability Plot of VAR1 (OUT.STA 1v*800c)

Distribution: Exponential (10.784)
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Figure 2:  P-P Plot  for the (Uniform) Interarrival Time
Distribution of Existing Ships Based on a Erroneous
Hypothesized Exponential Distribution.

Various other tools are available to build input
distributions which do not depend on classic parametric
models.  This category of tools one might call empirical
distribution builders.  Such tools also allow the user to
visually interact in the input model building process.
This type of support can be found in Riskview ProTM.
See also Wagner and Wilson (1996).

When data is sorted by time of occurrence, it is
possible to consider the sequence of observations as a
realization of a time series.  Under the assumption that
the process underlying the data is weakly stationary, i.e.
a stochastic dependence relying only on relative position
in the sequence, it is possible to see temporal structure
using the sample autocorrelation function (SACF) where
the autocorrelation function (ACF) is defined as ρk = γk /
γ0 where γk and γ0 are the autocovariances at lag k and
zero respectively where k ranges from 0 to n, the sample
size. An approximate two standard deviation confidence
interval for the sample ACF at lag k is plus or minus
2n1/2 .  See Abraham and Ledolter (1983).  The SACF is
commonly represented graphically with bars.  It is
particularly helpful in discerning periodic or seasonal
fluctuations in an input or output process.  The SACF is
now widely available in a variety of statistical software,
or can be computed and plotted directly in a spreadsheet.
The SACF for the sequence of interdeparture times for
the existing ship population is shown in Figure 3.  In this
example using Statistica ™ software, it is seen that there
apparently is autocorrelation in the interarrival series
which cannot be explained by random variation (all
autocorrelations fall outside confidence intervals defined
by white noise variation).
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Figure 3:  An example SACF graph indicating
statistically significant autocorrelation patterns in the
arrival series suggesting a simple Uniform probability
density function model would not be appropriate..

2.2  Output Data Visualization

Visualization of simulation model output data is used to
represent model results in a way that is understandable to
analyst and customer.  Each has separate needs.  The
analyst requires speed and strong exploration support.
The customer requires clear, understandable, interpretive
graphics.  These needs may not always overlap well.  An
analyst, well versed in model design and behavior, can
dispense with niceties of display in the output
exploration phase for personal use, but cannot do so
when communicating results.  In the communications
phase, all the attributes of excellence previously
addressed must be evident.  The focus here is on
techniques for the visual exploration of output data.
Techniques discussed under input data are relevant here.
Histograms and scatter plots are the essentials of output
analysis. Scatter plots can be used to display clustering
and linear relations in two, three, or more dimensions.
Variations on simple scatter plots are widely available
for the display of multivariate data.  Suggestions include
engineering plots (multiple 2 dimensional plots
organized in columns and rows by variable), and 3
dimensional representations which can include dynamic
interaction in various software packages. See Chambers
et al. (1983) and Cleveland and McGill (1988) for
excellent examples and principles.  The SACF can be
used to highlight autocorrelation and subjectively
validate model results.  See Sargent (1996).  The SACF
can also be represented in higher dimensions through
cross correlations at time lags similar to the SACF.  This
is particularly true when spatial attributes can be mapped
to output variables and the concepts of small multiples
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are employed.  P-P and Q-Q plots can help in
characterizing output, and the principles behind their use
can be used to compare different model or run output.
Output visualizations serve to characterize risk -
variability and stability as well as periodic (“seasonal”)
temporal behavior.  With increased speed of
input/output, computation, and increased storage
capacity, possibilities for visualizing stored output data
have expanded greatly.

It is believed there are three levels of output
visualization, each requiring greater time, effort and cost
for the modeler.  Basic off the shelf exploratory  visual
exploratory data analysis (VEDA) techniques, either in
the simulation graphical user interface (GUI) itself, or in
the supporting software, represent the first level.  The
second level is represented by modest custom design and
programming using visualization tools.  This level, in
most cases, would be used  more for communication.
The idea is that levels one and two are within reach of
sophisticated computer literate analysts.  The third level
includes custom designed data visualizations which are
generally characterized by moderately high effort, art and
cost.  The third level includes techniques such as custom
3D and virtual reality displays as well as simulation
animation.  This level is used almost exclusively for
communication in the areas of decision support,
validation and training. In the third level, the value of the
visualization is justifiable in its own right. Animation
techniques arguably cross levels two and three, but
generally require a specific decision on incurring
additional cost of production; therefore, are placed in the
third level.

In output data visualization, one of the most important
goals should be to show comparisons and relative risks in
a simple display, as well as show attributes of
stabilization and variability over time.  Box plots
attributed to Tukey (1977), represent an excellent
technique for representing multivariate simulation output
data.  These plots have evolved into many forms.
Generally, the box plot depicts the upper and lower
quartiles as the top and bottom of a rectangle, and the
median is shown as a horizontal line through the
rectangle (when the boxes are aligned vertically).  Lines
extend above and below the box to terminate in
“adjacent values” defined as the largest observation
greater than or equal to 1.5 times the interquartile range,
Q(.75)-Q(.25), and the smallest value  less than or equal
to 1.5 times the interquartile range.  See Chambers et al
(1983).  Values outside the adjacent values are plotted
separately.  Multiple box plots can be shown on one plot
to compare the distributions of different variables, or the
same variable in different time or other dimensional
blocks called “strip” box plots.  See Chambers et al.
(1983).  Ideas for maximizing the information value of
reduced box plots through minimizing chart ink have
been presented by Tufte (1983).  Box plots are readily
available in statistical packages.  It is interesting that the
same general result can be achieved by adapting so
called “high-low-close” (HLC) and “high-low-open-
close” (HLOC) charts found in a spreadsheet package.
For example, “high” and “low” can be set at simple
maximum and minimum and “open” and “close” can be
set to Q(.25) and Q(.75).  For example, the times in port
for each of the three current tanker types and the
additional tanker type are shown as a before and after
plot using the Statistica™ software in Figure 4. Times in
port without the additional ships (“NO”) are depicted on
the left while times for four ship types (“YES”) are
shown on the right. As in this example, box plots are
very good at comparing different experimental design
points.  In this case we can readily visualize increased
magnitude and variability of port time by making a quick
scan facilitated by the graph.  Additionally, strip box
plots can be employed to show the distribution across
runs or within one long simulation run of a particular
simulation to indicate when steady state is achieved.  See
Welch (1983).
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Figure 4: Comparative Box Plots For Ship Time In Port
For Runs With and Without New Ships in the System.

Output data for both line and scatter plots can often be
manipulated to better represent output process dynamics
in a way that is more visually appealing than simply
showing the value of state variables at points where the
state changes.  For example, we might view Q(t), the
number in a queue at time t, only at points where the
state changes.  This results in a line graph with numerous
vertical and horizontal segments which can be visually
tiring and distracting.  An alternative might be to capture
smoothed data when the model is running by using a
moving average or a standard forecasting technique such
as exponential smoothing.  Such smoothing may be
extremely helpful in visualizing complex dynamics and
variability.  For example, we might use a smoothed value
such as Si+1=ααxi+1 + (1-αα)Si to represent a smoothed
series within the simulation where the subscript
represents a sequence number for an event change point.
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This series can be sampled at discrete equally spaced
times.  This is a simple technique which allows
computationally efficient smoothing of observations on
many variables.  While such processing creates a lagged
approximation of the true process, it is intuitively
appealing and understandable.  The αα value is typically
set to a small value between 0.0 and 1.0, normally
between .1 and .3.  Larger values of αα cause the
smoothed series to “track” more the latest data more
tightly.  Smoothing methods allow the eye to scan and
interpret large scale dynamics more readily.  Such series
can be averaged or smoothed across realizations
produced by multiple runs.  An unsmoothed vs.
smoothed example for the time in port all waiting ships is
shown in Figure 5.
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Figure 5: Overlays of Exponentially Smoothed Time in
Africa Port for Existing Ships (Top) and Existing Ships
With New Ships Added (Bottom).

This example also depicts the design points before and
after the additional ships are added.  It is easy to sense
the variability in these runs.   In a way, smoothed data
plots perform a lot of the visual summarization for the
brain, decreasing workload, and making communication
easier. It is believed that smoothing represents a
corollary to the “smallest effective difference” principle
espoused by Tufte, (1997).  There is a caution here that
the modeler must be aware that the techniques may hide
important artifacts; therefore it is advisable to see the
data both ways.
Visual exploratory data analysis (VEDA) of
simulation output data analysis is often aided by
awareness of human workload reduction techniques.
There are many methodologies for displaying
multivariate data, such as Chernhoff faces, stem and leaf
plots, engineering plots, etc. See Chambers et al. (1983).
In general, multivariate display of data is a difficult
problem.  When the modeler is familiar with a VEDA
technique, it may prove valuable for analysis where there
is great familiarity with the data and there is expected
behavior to look for in the output.  On the other hand,
often the techniques do not work well in communication
to others not familiar with data and technique.    Use of
any high dimensional display (3 or higher) takes
particular care in educating the customer.  Users are well
advised to avoid too much “gee whiz!” factor inherent in
these displays.  For repetitive use, where the customer or
decision maker accepts a specific technique, particularly
where the technique is offered with data to the customer
for manipulation, it is more valuable.  Unfortunately
many displays seem to overload the brain.  The more
structure, or clutter which must be interpreted in such a
display (icons, text, multiple white space activating lines
etc.), the harder it is to build a true intuitive
visualization.  In essence, the viewer’s mind must work
through the visual grammar of the display as well as the
data itself.

One useful technique is to build up multiple images
from time varying data from simulations. Here,
familiarity with the organization and scaling of the data,
and an inherent understanding of the overall format is
critical to derive value.  Alternatively, data represented
or mapped to a grid can be displayed in multiple surface
or contour plots.  Although surface plots often are
pleasing to look at, they are often difficult to interpret,
particularly for subtle variations, and should be avoided
for complex process display.  In some instances, surface
plot usability can be improved by smoothing techniques
and combining them with other displays..

An image display, built using the IDLTM language, for
100 runs of Africa Port output is shown in Figure 6 and a
comparable shaded surface plot for the same data is
shown in Figure 7.  For the image representation, time is
represented on the horizontal axis and run number for
100 runs is displayed on the vertical axis.  From left to
right, the first image shows 80 hour observations on a
smoothed observation of ship time in port where new
tankers are inserted into the system at the 8640 hour
point.  The image represents a gray scale picture
composed of pixels representing time in port on a scale
of 0 (black) to 200 (white) hours.  Note the dramatic
occurrence of high times (whiter grays) in system which
occur for long periods after the new ships are inserted.
In this sort of display it is not the absolute numerical
value of the smoothed observations, but the patterns
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which can be seen by scanning the images.   This
relatively simple technique can form the basis for
exploring and comparing the output data space in search
of intuition concerning behavior.  Relationships between
runs and types of data can be seen fairly well with
practice, particularly when the interactive display of
actual values is readily available.  This type of technique
has shown promise in depicting the stabilization point(s)
for large steady state models as this example depicts.
Additionally, mapping colors to data values can be used
to highlight specific ranges. Almost any data can be
displayed as such an image.  Data may be composed of
histogram data, SACFs, response surfaces etc.
Additionally, coupling this presentation and various
other plots or spatial maps can greatly enhance
perception of the model behavior and data space which is
facilitated by scanning small multiples.  The ability to
slice, fly through and otherwise interact with the model
data is greatly enhanced.  Such image generation might
be classified as a level three technique by some analysts;
however, simple contour plots often are readily available,
and can be manipulated to achieve similar visual impact.

Figure 6: Image built from exponentially smoothed
observations of all ship times in port.  The image shows
model results without new ships for 100 runs arranged
top to bottom for 200 consecutive 80 hour observations
arranged in horizontal sequence from left to right.
Dramatic increase in striated brightness indicates
insertion of new ships at 8640 hour point.   Indistinct
edge shows stabilization after insertion of new ships.
Figure 7:  Shaded surface plot of data shown in Figure 6.
X axis is sample number, Y axis is run number and Z
axis is smoothed time in port.

Other level three techniques include enhanced graphic
designs, virtual reality displays, and animation.  While
this capability is within the reach of many modelers, it
may not be cost effective to pursue.  Virtual reality
displays are displays of output data where the viewer can
interact with 3D constructs based on data value.  These
techniques have analysis value; however, the usability of
the methods is very similar to any high dimensional
display mentioned previously.  They can be difficult to
interpret, and often require both a strong computer and
display system, not to mention a strong stomach.  This
area is very rapidly evolving and is perhaps the brightest
star on the horizon.  The greatest drawback to their
widespread use today is cost and usability.

One cannot leave a discussion of visualization without
mentioning animation.  Principles for effective animation
have been proposed by Swider et al. (1994).  These
principles are very much aligned with overall graphics
principles.  Admonitions are to manage both the
animation and the users training and approach to the
tasks at hand for which the animation is designed and to
“avoid overloading the user with too much visual
information.” Additionally, the interaction of color,
contrast, movement, scale, time passage and complexity
are often hurdles to effective use.

3  SUMMARY AND CONCLUSION

Effective visualization in building and analyzing
simulation models can be viewed at a level of importance
which increasingly matches the importance of a sound
knowledge of statistics and probability in modeling
simulation input and output. This brief tutorial represents
a small introduction to the general topic.  Of note is that
many of the sources represented in the biography are
both entertaining and informative.  There is an inherent
pleasure in viewing “excellent” graphics.  It is hoped that



Visualize a Port in Africa 77
the reader comes away with a sense that numerous
options exist to be explored, and that a few principles of
excellence will improve the caliber of future efforts.

Products or services mentioned herein may be
trademarks or registered trademarks of their respective
companies.
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