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ABSTRACT

An important problem often faced by simulation an-
alysts is that of choosing (or selecting) one of several
potential system designs. This can be accomplished
by comparing output from simulation models of these
systems. In order to keep from making poor deci-
sions, appropriate statistical models should be used.
We present an overview of the types of questions that
can be effectively answered using selection and rank-
ing or multiple comparison procedures, and provide
references for specific details regarding their use.

1 INTRODUCTION

A simulation analyst is often called on to compare
two or more systems. Sometimes the differences be-
tween the systems can be expressed in terms of dif-
ferent levels of certain quantitative factors, such as
the time between scheduled maintenance for a spe-
cific piece of manufacturing equipment. In such cases
experimental designs (such as factorial or fractional
factorial experiments) can be used to build metamod-
els of the relationship between the factors and the re-
sponses, leading the analyst to a better understanding
of the system and indicating good designs. In many
instances, however, the systems can be viewed as a set
of discrete, qualitative alternatives. For example, the
difference between a LIFO queue and a FIFO queue
is qualitative. At other times, even if quantitative
factors (such as service times, arrival rates, times be-
tween maintenance) give rise to the different potential
systems, the analyst may be restricted to a small set
of potential designs without the flexibility (or need) to
model explanatory relationships. This simpler setting
is amenable to analysis using selection and ranking or
multiple comparison techniques.

In this paper we begin with a brief summary of
both selection and ranking procedures and multiple
comparison techniques. We describe four basic sce-
narios where these methods would be appropriate,
and conclude with a discussion of some of the benefits
the analyst may receive, as well as pitfalls to watch
out for in setting up selection experiments. Our goal
is to provide the simulation reader with an appreci-
ation of the utility of these approaches, rather than
detailed descriptions of specific procedures.

1.1 Selection and Ranking

Selection and ranking refers to a field of statistics that
arose from directly addressing questions of interest to
the analyst. A selection procedure has the following
elements:

• a specific statement of the selection criteria
(e.g., large mean, small variance, etc.)

• rules for determining sample sizes

• an intuitive rule for the selection decision

• a probability guarantee associated with the de-
cision

Underlying these elements are assumptions regarding
the distribution of the performance measures (para-
metric or nonparametric), as well as sampling as-
sumptions (e.g., independent, identically distributed
vs. common random numbers).

There is a rich literature on selection and ranking
in the field of statistics. While the application of these
techniques to simulation is more recent, simulation is
particularly amenable to this type of analysis because
it gives the analyst a great deal of control over the ex-
perimental setting. Also, many selection procedures
require two-stage or multi-stage procedures. These
can be problematic in real-world settings where data
collection is slow, as in awaiting the results of cancer
treatments in clinical trials. However, since discrete-
event simulation typically allows one to collect a great
deal of data quickly, multiple stages do not pose the
same problem in the simulation context.
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1.2 Multiple Comparison Methods

At times it is important not only to select a system
(or systems) from among the k of interest, but also
to compare the systems’ performances quantitatively.
One method of accomplishing this is by estimating
the differences between each system’s performance
and the best performance of the rest, e.g., bound-
ing the differences µi − maxj 6=i µj for i = 1, . . ..
The resulting sets of confidence intervals are known
as multiple comparisons with the best (MCB). MCB
procedures were first developed by Hsu (1984). More
recently, selection procedures which simultaneously
allow estimation have been examined by Matejcik
and Nelson (1993, 1995), Nelson and Matejcik (1995),
Nelson and Yuan (1993), and Chen and Zhang (1993).

These procedures give the analyst the best of both
worlds: an intuitive method of determining the best
system (within some practical difference), along with
detailed information about how much better it is.
Hsu and Peruggia (1994) have proposed a graphi-
cal technique called the mean-mean scatter plot for
easy display of the results of multiple comparison
procedures. For more thorough treatments of multi-
ple comparison methods, see Hochberg and Tamhane
(1987) or Hsu (1996).

2 SAMPLE SCENARIOS

We describe four basic scenarios for selection and
ranking problems: choosing adequate systems, choos-
ing good systems, choosing better systems, and
choosing the best system. Several of the proce-
dures we discuss are detailed in Goldsman and Nel-
son (1994). Discussions written for simulation ana-
lysts can be found in chapter 13 of Banks, Carson
and Nelson (1996), chapter 10 of Law and Kelton
(1991), or chapter 7 of Thesen and Travis (1992). For
broader coverage of selection and ranking procedures,
see Bechhofer, Goldsman and Santner (1995), Gib-
bons, Olkin and Sobel (1977), Gupta and Panchep-
akesan (1979), or Mukhopadhyay and Solanky (1994).

It is important to note that although the terms
adequate, good, better and best have an implicit order-
ing, your goal should not be to force every problem
into one of selecting the best system! Philosophically,
selection procedures have been developed to provide
appropriate methods for addressing real-world prob-
lems. As the examples show, each of the four scenar-
ios is of interest in itself.

2.1 Choosing Adequate Systems

Sometimes you may have some threshold value which
can be used to classify a system as acceptable (meet-
k

ing or exceeding this threshold) or unacceptable (fail-
ing to meet the minimum standard). Consider the
following example:

Example 1a: Several different investment strategies
will be simulated to evaluate their expected rate of re-
turn. You intend to implement the strategy with the
highest expected rate of return, but only if its expected
return is larger than a zero-coupon bond that offers a
known, fixed return.

The goal is to select the best investment strat-
egy (system) only if it is better than a standard—if
no better strategy is found, you will continue with
the standard. The output of the standard in this
example is a known (fixed) quantity, not a random
variable. This problem can be modeled as an in-
difference zone selection problem. If the true best
system is chosen by the analyst, we say a correct
selection has been made. Indifference zone meth-
ods guarantee that the probability of correct selec-
tion is sufficiently high as long as the difference be-
tween the performance of the best and second best
system is at least some user-specified amount—the
smallest practically-significant difference. (If the per-
formances of the best and second-best systems differ
by less than this amount, they are considered equiv-
alent for practical purposes.)

Bechhofer and Turnbull (1978) devised a two-
stage procedure for selecting the best system rela-
tive to a given standard (e.g., Example 1a) when the
responses are normal with a common unknown vari-
ance. Their procedure requires that a sample two or
more be taken from each system in the initial stage for
variance estimation purposes. Law and Kelton (1991)
recommend that a sample size of at least twenty be
utilized to obtain a sufficiently accurate estimate dur-
ing the first stage without wasting observations un-
necessarily.

The slight variation in the problem statement of
Example 1b (Goldsman and Nelson, 1994) indicates
that the indifference zone approach is not the only
way to formulate the problem.

Example 1b: Several different investment strategies
will be simulated to evaluate their expected rate of re-
turn. The strategy ultimately chosen may not be the
one with the largest rate of return—since factors such
as risk could be considered—but none of the strategies
will be chosen unless its expected return is larger than
a zero-coupon bond that offers a known, fixed return.
You are interested in identifying all strategies which
outperform the zero-coupon bond.

Here you are asked to identify a subset of the
potential systems (strategies) which you believe con-
tains all those better than the standard. (This is one
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type of subset selection procedure.) A correct selec-
tion is said to have been made only if the selected
subset indeed contains all adequate strategies, and
the procedures are constructed so that the probabil-
ity of a correct selection is high. Gupta and Sobel
(1958) considered several variations of this problem,
including subset selection based on means for nor-
mal populations (either known or unknown common
variance) as well as gamma scale parameters and bi-
nomial success probabilities.

2.2 Choosing Good Systems

Sometimes you may be faced with a large number of
alternatives. Rather than performing detailed analy-
ses of all alternatives, you wish to first pare down this
list to a more manageable size by identifying those de-
signs worthy of further scrutiny. This is often referred
to as a screening problem: you are interested in identi-
fying which designs have the better performance with
respect to a certain criteria, which have similar per-
formance, and which are clearly inferior and can be
eliminated from further consideration.

Screening has its place in simulation settings in
two basic scenarios. First, it may be that several cri-
teria will influence the final decision, and trade-offs
among these criteria may be difficult to quantify. In
this situation the screening procedure represents a
‘first cut’ at the decision process: ‘good’ alternatives
will be identified (for future study) and unfavorable
alternatives will be stricken from further considera-
tion. However, since the final decision may be made
based on other criteria, you are not interested in un-
necessarily restricting the result to the identification
of a single system. Consider the following example:

Example 2a: You are designing a data warehouse
for the municipal government of a large city where
the database will distributed across several geographic
locations. A team of MIS analysts has identified 15
potential alternatives for allocating portions of the
database to various locations. Fast response times are
desirable, but issues of cost, ease of implementation,
and political considerations also play a role. Your goal
is to identify designs with low response times from
which the ultimate decision will be made.

Second, it may be that the number of potential
systems is so large that doing careful analyses of each
is prohibitively costly or time-consuming. A pilot
study will indicate which alternatives are worth fur-
ther investigation, which may include more detailed
simulation modeling in addition to a more compre-
hensive analysis of the performance output.

Example 2b: The result of a brain-storming session
has left you with 20 possible physical layouts for a job
shop. You are interested in finding a design which
yields a high system throughput as the primary crite-
ria. However, the final choice of the design will de-
pend on secondary factors such as cost, ease of imple-
mentation, etc. Your charge is to simulate the alter-
natives and identify a small set of candidate designs
for further consideration.

Either of these scenarios lends itself to the screen-
ing approach called subset selection, which was pio-
neered by Gupta (1965). The goal is to select a subset
of the systems which contains the true best system
(e.g., that with the lowest response time in Example
2a). A correct selection is said to have been made
only if the selected subset indeed contains the true
‘best’ system. Subset selection procedures guarantee
that the probability of success is sufficiently high for
any configuration of the means. Note that the size of
the selected subset is a random variable, and depends
on the actual values of the underlying means and the
common variance. The size of the selected subset will
tend to be small if a few alternatives are much better
than the rest, and tend to be large if all alternatives
have roughly equal performances.

The basic procedure of Gupta (1965) uses bal-
anced data collection—a common sample size from
each system. Gupta and Huang (1976) propose a
procedure which works in the unbalanced case. A
single-stage procedure for binomial systems was pro-
posed by Gupta and Sobel (1960). Sanchez (1987a,
b) proposed a sequential procedure which yielded the
same subset more efficiently. Applications for obser-
vational data, where sample sizes are unknown and
uncontrollable, were considered by Sanchez and Higle
(1992) and Kannan and Sanchez (1994).

2.3 Choosing Better Systems

One reason simulation is such a valuable tool for
decision-making is its use in studying the performance
of prospective systems. At times a system is already
in place, so you may not be interested in selecting
the best system (or a subset of the best) unless it is
better than the status quo (also called a default or
control). This is similar to the screening problem of
Section 2.2. However, instead of systems being de-
fined as ‘good’ relative to other alternatives, there is
a default system which must be beaten. In this case
the alternatives under consideration must yield suffi-
cient proof that they are better than the status quo
in order for us to recommend a switch.

Example 3a: A manufacturer of high-density pres-
sure laminates is examining the operation of one
of their presses. Carriers for the laminates cycle
through the press operation, but periods of blocking
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and starving occur because of material handling is-
sues and imbalances on the line. Management is
considering installing additional conveyors and/or
altering several of the work-in-process buffers, but
these changes would require shutting down produc-
tion. Your simulation models will determine the rec-
ommended action.

An indifference zone view of Example 3a means
you would NOT be interested in selecting a new sys-
tem if it is considered equivalent in performance to
the default. The indifference zone procedure of Paul-
son (1952) (described in Bechhofer et al., 1995, or
Goldsman and Nelson, 1994) allows one to select the
best but assumes that the common variance among
the populations is known.

As Example 3b illustrates, at times one may be
interested in identifying all designs better than the
control, rather than a single best design.

Example 3b: A mail-order firm has a simulation
model of their current order-filling and distribution
process. They are considering a move to a different
distribution system. You have been asked to model
ten alternative designs which are under considera-
tion. These result from looking at alternative distrib-
utors (common carriers, less-than-truckload distribu-
tion) and dispatching rules. Management is inter-
ested in improving the average customer wait time.
They will keep their current system unless one or
more of the alternatives result in better customer ser-
vice: if so, the choice of the system to implement may
depend on secondary factors such as cost and ease of
implementation.

Gupta and Sobel (1958) describe a procedure for
normal systems (with a common, known or unknown
variance), as well as a procedure for binomial systems.

Examples 3a and 3b may also be analyzed using
multiple comparison methods. When comparing to
a control (or default) system (say, k) we construct a
total of k − 1 simultaneous confidence intervals for
µi − µk for all i 6= k rather than (k choose 2) si-
multaneous confidence intervals for all pairwise com-
parisons. Furthermore, if we know that only differ-
ences in a specified direction are of interest then one-
sided confidence intervals can be formed. (In Exam-
ple 3b we are interested only in systems with smaller
customer wait time.) Procedures for multiple com-
parisons with a control (MCC) when variances are
equal can be found in Miller (1981). A procedure
valid when variances are unequal appears in Tamhane
(1977). These cases and others are also discussed
in Hochberg and Tamhane (1987), Hsu (1996), and
Miller (1981).
2.4 Choosing the Best System

Problems with a single well-defined objective may
fall naturally into the category of ‘choosing the best.’
Consider the following scenario:

Example 4: For the purpose of evaluation prior
to purchase, a multinational company has developed
simulation models of six different computer network
infrastructures. The single measure of system perfor-
mance is the time to failure (TTF), so that larger
TTF is better, and a highly reliable system is de-
sired. The six systems arise from variations in pa-
rameters affecting the TTF and time-to-repair distri-
butions and the internet service providers. From a
practical standpoint, differences of less than about 12
hours are considered equivalent. The goal is to select
the system with the largest TTF and/or estimate the
differences in the TTF’s associated with the systems.

Bechhofer (1954) considered the case of known,
common variances in the first published work de-
scribing the indifference-zone approach. A proce-
dure for unknown common variances is given in Bech-
hofer, Dunnett and Sobel (1954). Dudewisz and Dalal
(1975) and Rinott (1978) considered the case of un-
known, potentially unequal variances. Damerdji et
al. (1996) have begun looking at this problem in the
transient system context by considering the case of
selecting the best system when the performance vari-
ances are known (possibly unequal) but the perfor-
mance means and distributions are unknown.

Example 4 can be analyzed using a combined se-
lection and ranking/MCB approach. In the simula-
tion context, Matejcik and Nelson (1993, 1995) dis-
cuss the case for independent sampling. They extend
these results in Nelson and Matejcik (1995), where
common random number streams can be used to im-
prove the efficiency and reduce total sample size re-
quirements. (Both these procedures are provided in
detail in Goldsman and Nelson, 1994.) Yang and
Nelson (1991) and Nelson and Hsu (1993) considered
control variate models for multiple comparisons with
the best. Goldsman, Nelson and Schmeiser (1991)
compare selection, multiple comparison, and an in-
teractive approach to identifying the best system.

A nonparametric approach to the network TTF
problem is also possible. Rather than attempting
to select the system with the largest mean TTF,
we might wish to select the system that is the most
likely to yield the largest actual TTF. In this case,
the problem is formulated mathematically as finding
the multinomial category associated with the largest
probability of occurrence. (Since we are dealing with
probabilities, the indifference zone is expressed in
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ratio rather than difference terms.) A single-stage
indifference-zone procedure was proposed by Bech-
hofer, Elmaghraby and Morse (1959). More efficient
procedures were proposed by Bechhofer and Golds-
man (1986) and by Miller, Nelson and Reilly (1996).
Bechhofer and Goldsman use closed, sequential sam-
pling to allow experimentation to end when one pop-
ulation becomes sufficiently ahead of the other, while
Miller et al. make use of pseudo-replications to im-
prove efficiency.

3 BENEFITS

Selection and ranking is useful because it directly ad-
dresses questions of interest to the analyst. This is
best illustrated in contrast to the most widely-used
analysis method for analyzing multiple systems: the
Analysis of Variance (ANOVA). Consider the scenario
in Section 2.4 (Selecting the Best). If n observations
(e.g., n batch means) are collected for each of the k
systems, then an ANOVA could be conducted to test
the following hypothesis:

H0 : mean performances are all equal

for the k systems

HA : mean responses are NOT all equal

for the k systems

How interesting are the results? If you reject the null
hypothesis, you are still faced with the problem of
determining which system to recommend. The fact
that H0 is rejected is not in itself surprising—the sys-
tems the simulations are modeling differ in real terms,
and in most situations the time and effort required to
build the simulation models would not have been allo-
cated if it was felt the systems were interchangeable.

Sample size also complicates matters. If H0 can-
not be rejected, it may be that the sample size is
too small to detect differences of reasonable interest.
On the other hand, for sufficiently large sample sizes
we are likely to reject H0 even for tiny differences in
the mean responses, even if they are not of practical
importance. The problem with this hypothesis test-
ing approach is that it does not directly address the
types of questions raised in Section 2: which system
(or systems) should be chosen? This can make it dif-
ficult to explain the results to management or other
decision-makers.

In contrast, both the indifference zone and sub-
set selection approaches provide statistical underpin-
nings for decision rules which are quite intuitive. For
example, if your goal is to select the single system
with the largest mean, a natural decision rule to ac-
complish this is: ‘Choose the system which yields the
largest sample mean as best.’ In the subset selec-
tion context, the corresponding decision rule would
be ‘Choose the systems which yield sample means
sufficiently close to the largest sample mean,’ where
‘sufficiently close’ is determined by the sample size
and desired probability guarantee.

The selection procedures are also typically easy to
implement, in the sense that determining the sample
sizes may require only a few table look-ups. Some
of these are standard statistical tables. The sources
mentioned at the beginning of Section 2 also have ta-
bles needed for the selection and ranking procedures
they describe.

4 POTENTIAL PITFALLS

Poor Timing. The time to think about selection
and ranking is before collecting the data, not after.
This will insure you that your sample sizes are suffi-
cient to allow you to make a reasonable probability
guarantee without wasting resources unnecessarily by
simulating longer than necessary.

Loss of information. Not all problems relating to
comparing multiple systems should be analyzed using
one of the above approaches. As we mention in Sec-
tion 1, experimental designs can be used in efficient
ways if the relationships between system performance
can be expressed as a function of several quantitative
factors. Earlier in this volume, Kelton (1997) pro-
vides an overview and list of references relating to
experimental design in the simulation context.

Ignoring system variance. Another pitfall to be
aware of is the reliance on comparisons of means for
most of these procedures. Complex simulation mod-
els often exhibit highly non-linear behavior, and this
often translates into quite different variances for dif-
ferent system configurations. In such cases, selecting
systems with respect to mean performance alone is
questionable.

One alternative is to use a nonparametric proce-
dure to select the best, such as the multinomial proce-
dure for selecting the system with the largest proba-
bility of yielding the largest outcome (Bechhofer and
Goldsman, 1986). Alternatively, procedures of Sec-
tion 2.1 (selecting adequate systems) or Section 2.2
(selecting good systems) could be used to identify a
subset of systems with adequate/good means with the
final choice based on low variance, or vice versa. Re-
cent literature in the industrial quality field pioneered
by Taguchi (1986) suggests that combining the mean
and variance into a loss function is often more ap-
propriate. However, this so-called robust design ap-
proach has concentrated on choosing appropriate lev-
els for quantitative factors, rather than selecting from
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among qualitatively different systems. (See Ramberg
et al. 1991, Sanchez, 1994, or Sanchez et al., 1997 for
robust design methods in the simulation context.)

Using the wrong method. We have cited only a
small portion of the literature in the selection and
ranking and multiple comparisons area. Procedures
have been developed for numerous other situations.
Some of these make use of other goals, such as com-
pletely ranking the systems, selecting the best k of n
systems, or selecting all best systems in the case of
ties. Other procedures make use of different underly-
ing assumptions, such as gamma or exponential dis-
tributions. Bayesian procedures have also been pro-
posed. This means that even if your problem does not
exactly fit one of those described above, an appro-
priate procedure may already have been developed.
However, the large number of procedures available
also means there are many opportunities to use the
wrong one, so care must be taken in specifying the
problem.

5 SUMMARY

We have described a framework for selection and
ranking in the simulation setting. These procedures
are easy to describe, intuitive in nature, and their im-
plementation often requires only a minimal amount
of analysis in conjunction with some table look-ups.
Simulation is a setting amenable to the use of these
techniques provided that the performance evaluation
criteria are clearly specified a priori so that appropri-
ate procedures can be used.
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