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1\BSTRACT

Simulation models are often used to support decision
naking for problems \vith uncertain inputs and pararne
ers. Three types of models are used: deterministic. risk.
md uncertainty models. Risk models are popular \\'ith
'esearchers, but can be used only \\Then the joint probabil
ty distribution of the inputs and parameters is kno\vn. In
nany real-life situations~ hov,rever, this is not the case.
]ncertainty models are too restrictive for real-life situa
ions. Therefore deterministic models are then used. The
ensitivity of the results is often analyzed by changing
Ine factor at a time or by simulating a fe\v scenarios. This
laper, however, sho\vs that in case of uncertainty it might
e better to apply design of experiments (DOE) in combi
ation with regression metamodels.

INTRODUCTION

everal methods may be used to analyze the sensitivity of
Lodel output with respect to changes in input variables.
arameters, and model structure. (In the sequel \ve shall
fer to all these changes as factors.) The models ,ve haye
l mind are simulation models that support decision
,aking when no analytical models are available to
~scribe the problem and to fmd an optimal solution. In
:onomic theory three types of models are distinguished:
rtainty or deterministic, risk, and uncertainty models.
rhich type of model is used, depends on \vhat
formation is available about the real-life problem. In
se of certainty, each set of factor values invariably leads
a specific outcome. Economists speak of risk if the

;;tors are stochastic but their joint probability
~tribution is known. In case of uncertainty the joint
obability distribution is unknown. We restrict
certainty here to uncertainty of nature~ that is, \ve
;;lude situations where the managers are competing

ainst an intelligent opponent (game theory).
The fact that a model is classified as one of these three
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types does not mean that the real-life problem falls in the
sarne category. For large ec·onometric and en\-ironmental
models it is quite c·ommon to ignore the stochasti~ namre
of the actual problem. onc·e \part of) the model is
estimated. But for relatiyely simple model~. such as net
present yalue (~~\J models. users may also stick to the
deterministic analysis. There seeU1S to be a gap bet\yeen
the research c.omnllmity and the other model user~. such
as businesses and goyernmental organizations. TIle
former are more interested in risk and unc.ertainty Inodel~.

\,-hereas the latter usually stick to deterministic Il1odels.
\l/e are interested in real-life problenl~ ,,-ith unc.ertainty.
so ,,-e can perform either a risk analysis or a detenninistic
analysis of the situation.

~-\.s case study ,,-e use an inyesul1ent analysis for a gas

transmission project on the island of Jaya in Indonesia
(\ran Groenendaal. 1996). For the evaluation of this

project the \\Torld Bank's guidelines are foll()\\'ed \\\7ard
and Deren, 1991). The NPV is the criterion used to judge
the investment. This paper aims at methods that L·an he
used \\'ithin the restricted time available in applied \\'ork.

It turns out that in the base-case scenario the project is
feasible (NPV = 1.751 billion Rupiahs or 815 nlillion
US$ in 1991 prices). Ten factors playa role in the 1\P\!
calculation (also see Table 1).

In § 2 \ve re\'ie\" deterministic. risk. and wlcertainty
models in relation to robust decision making and th~ir

applicability in applied ,,-ork. In § 3 \ve use DOE and
re gression metamodels to obtain the infoffilation requir~d

by decision makers. In § 4 ,,-e present conclusions.

2 ROBUST DECISIONS

When modeling is used to support decision Illaking. the
goal is often to support the choice of a policy fro111 a set
of alternatives. Particularly in the context of long t~nn

decision making (such as large scale in\'~strn~nt

problems). the uncertainty of future circunlstaI1C~s is a
major concern. In practice. often a particular set of \'ailles
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or circumstances is chosen and the problem is analyzed
for this set only. The set is either a base-case (most
likely), or a worst-case scenario. Based on this analysis, a
policy is recommended. What decision makers want to
know, is how robust their decision is. "Robust" means
that commitments are made as late as possible, and plans
can be changed as much as possible when the future is
not as anticipated.

Broens (1995, p. 41) uses the term flexible planning
as opposed to robust planning. He claims that in robust
planning the plan is fixed, but has to cover as many
alternative scenarios as possible. This implies that the
intent is not to change the plan, and to stick to the original
commitment. Broens's view is not generally accepted; we
use the term robust decision to indicate that a decision has
to facilitate as many scenarios as possible, and if possible
this decision should include opportunities to alter the plan
if circumstances change during execution.

2.1 Deterministic models

When using deterministic models, analysts often rely on
some form of what-if analysis to determine the robustness
of a decision. Often they change one variable at a time,
and they analyze (main) effects. The one-factor-at-a-time
approach is popular among economists (Ward and Deren,
1991; Van Groenendaal and Vingerhoets, 1995). This
approach, however, is misleading when used to support a
decision, because it does not take into account
interactions. It is well known among simulationists that it
can easily give the decision makers the wrong impression
about the problem; in our example no single factor leads
to an NPV smaller than zero (§ 3).

In policy related studies, analysts often construct
scenarios, that is, a particular choice of factor values. The
analysts examine the differences among scenarios.
Normally, they compare results with respect to the base
case scenario. At best they use a few scenarios; see for
example Grtibler and McDonald (1996). Managers,
however, are often interested in the worst case scenario
only. It is difficult to formulate scenarios on which all
decision makers agree, especially when the evaluation
period is long and the problem complex. The result of the
analysis is then weakened by the discussions about the
likelihood or even the feasibility of scenarios; alternative
scenarios will be proposed. But even if there are no
discussions on the scenarios. this approach results only in
descriptions of a limited nwnber of futures. In
applications often two or three scenarios are used; hardly
ever, more than five scenarios are analyzed.

To avoid discussions on scenarios or neglect
interactions between factors, we propose to use DOE in
combination with regression metamodels. The advantage
of this approach is that it gives information on the whole
experimental area of interest, to be used by decision
makers.

2.2 Risk models

Instead of using a deterministic model to analyze a
problem with uncertainty, analysts may introduce a joint
probability distribution for the factors. Especially with the
growth of software (such as @RISK), this option is
becoming more and more popular. Often marginal
distributions are formulated based on minimum
information per factor: minimum, maximum, and most
likely values. The marginal distributions are then
combined into a joint distribution, assuming independent
factors (for dependent factors see the references in
Kleijnen 1996). However, such an approach will not
necessarily improve results compared to deterministic
models: garbage in garbage out. It does not produce
more useful information for the decision makers. As was
already shown by Iman and Conover (1982), if
information on the joint probability distribution of the
factors is wrong, the results obtained from rather arbitrary
assumptions on correlations between factors are useless.
Furthermore, in many cases the tail of the output
distribution is most important for decision support, but
this is also the part about which the reliability of the
information is lowest; see Kunreuther et al. (1983) for an
example.

Instead of using "objective" data, the analysts may use
subjective probabilities (expert judgements). Expert
judgements, however, will be useful only in case of a
limited number of variables and decisions that resemble
past decisions. And even then, mistakes are easily made;
see Granger and Herion (1990). Again the correlation
between factors will be a major problem.

Another approach to getting a robust overall result is
to combine the results for a set of scenarios by asking the
decision makers to assign subjective probabilities to the
individual scenarios (Draper, 1995). These probabilities
can then be used to calculate the expected scenario.

Note that in case the information on the joint
probability distribution is available but unreliable, the
analysts also need to perform a robustness analysis for the
distribution, for example, by using the Score Function
method; see Rubinstein and Shapiro (1993).

2.3 Uncertainty models

A third type of models is decision models under
uncertainty, such as stochastic dominance models
(Copeland and Weston, 1992, pp 92-6). This type relies
on the axioms of utility theory, which unfortunately are
not met in practice (Tversky and Kahneman, 1988).

Most methods using probability or utility are rejected
by practitioners. They prefer simple methods, such as
one-factor-at-a-time or "switching" values (factor value
that causes the NPV to become negative; see Gittinger,
1982, pp 371-3), in combination with the worst case
scenario.
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combination 1 2 3 4 5 6
..,

S 9 10 11 12I

factor

1 investment costs + + - + 4- 4- - - - + - -

2 construction time - + + - + + + - - - -+ -

3 reserves West Java + - + + - + + + - - - -

4 real GVA - + - + + - + + + - - -

5 energy prices - - + - + + - + + + - -

6 relative gas/oil price - - - + - + -I- - + + 4- -

7 purchase prices + - - - + - -t- + - + + -

8 coal prices + + - - - + - + + - + -

9 other costs + + + - - - + - + + - -

10 discount rate - + + + - - - + - + + -

Table 1: A Plackett-Burman design for ten factors in the NP\r simulation model

For a robust decision the worst case approach is probably
the best of the naive methods, because then the actual
result will always be better. A problem is ho"r to fllld the
worst case scenario. Moreover, the worst case approach
seems rather pessimistic. As Broens (1995) points out,
too much attention is given to the worst case: all other
information is left unused. Furthermore, the \vorst case is
usually chosen from the likely scenarios; unlikely
scenarios are excluded, despite the fact that information
on these scenarios might be useful.

A fmal problem is that risk and uncertainty models
often require the problem to fit into a certain fonn, for
example, dynamic programming. Many real-life problems
do not meet this requirement.

In summary, many methods for sensitivity analysis do
not meet the needs of practitioners. These models are
either too rigorous and do not result in the infonnation
required by the decision makers, or they require too much
information, which is not available. When uncertainty
about factors is a real problem and no information on the
joint probability distribution can be obtained, DOE
combined with regression metamodelling can be a
solution, as we shall show next.

3 DESIGN OF EXPERIMENTS

Whatever experimental approach is used, the first
problem is to fmd the appropriate experimental area. Our
approach is to start with a base case scenario, that is, a
scenario based on the most likely values of the factors. In
our investment case study the values concern the amount
of gas reserves available in West Java, the growth paths
for the Indonesian economy, energy prices, etc.; see
Table 1. The base case scenario we obtained through
interviews with experts in the various Indonesian
ministries and industries involved in the project. For this
scenario the project is feasible; that is, it has a positive
NPV. Once we had this information, we discussed with

our counterparts to "'hat extend the factors ~ould deyiat~

from their base case values. Our analysis fo(usses on
those conditions that "'ill jeopardize the positiye adyis~

for the investment proje(t (\"hich follo,,'s frOlll th~

positive value for the NPV in the base (ase). TIle reLL"on
for this focus is that decision lllakers are Illore interested
in \"hat can cause the project to beCOllIe infeasihIe than in
\"indfall profits. Hence all results in our s~I1sitiyity

analysis are expected to be ,,,orse than the bas~ (ase
result. Identifying the base ca"e values ,,,ith the 10
dimensional unit vector e = (+ 1, + 1, ... ,+ 1), th~

situation "'here all factor vl.Yues deyiate froIu their bas~
case value is (-1,-1, ... ,-1). Opposite to popular belieY~, (
1,-1, ... ,-1) is not necessarily the ,vorst case scenario,
because of interactions: see Tables 1 and 2, cOIubinations
2 and 12 .

Sensitivity analysis should result in infoffilation on
both main effects (as the one-factor-at-a-tinle approach
does) and interactions. Moreover, \ve ,,,ant to execute a
minimum nwnber of sllnulation runs. Therefore ,\'~ apply
a Plackett-BlU711an design (Kle~inen and Van
GroenendaaL 1992, pp. 175-7). These designs require a
nunlber of runs equal to a multiple of four. Hence, for ten
factors a design with twelve runs is used. The design ,ve
use is given in Table 1, where + is interpreted as + 1 and 
as -1: we use standardized factors (see Kleijnen and Van
GroenendaaL 1992, pp 177-9). Every column in that tahle
represents the input scenario of a slluulation run. It is
easily checked that the colunms of this design lllatrix are
orthogonal: CD TD) -1 = 12 -1/ ,vhere D is the 12x 10
design matrix, the superscript T denotes the transposed
matrix, and / denotes the lOx 10 identity matrix.
Furthermore, the design satisfies one linear constraint: the
sum of the fust eleven ro\vs of D equals IUinus ro,,,
twelve. The augmented matrix X = (e I2 : D), has the
same properties as D has.

When \ve execute the hvelve simulation runs of this
design, \ve get twelve values for the NPV. This is
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sufficient infoImation to obtain OLS estimates of the
main effects only~ that is, we fit the frrst-order
metamodel:

where ~ I denotes the response for combination i, %lit are
elements of the matrix X, ~ is an independent and
identical distributed error te:m; and the underscore
denotes random variables. However, if interactions are
important, then these estimates are biased. In the sequel
we assume that there are only two-factor interactions.

Let PM = (PO' PI' ... , PIO)T be the vector of
coefficients of model (1), and let
p... = (PI 2' ~I 3' ... ,Pp 10)T be the vector of two-factor
interactions. Let the' matrix of independent variables
associated with p... be denoted by V (with
V = (VI' ... ,V9) E R 12)(4S and VI = (XIXI+

I
, ... ,xIX

IO
)

where, e.g., %1%2 denotes the 12-dimensional vector with
elements x)]x)1' j = 1, 2, ... , 12). Then the expected value
of Q. is

M

(4)

comb. NPV comb. NPV

1 -1,252.8 13 -1,268.0
2 -3,033.8 14 -67.9
3 -1,132.5 15 -1,006.0
4 -1,210.0 16 -1,084.0
5 -1,301.7 17 -1,339.6
6 359.0 18 -2,639.2
7 -997.8 19 -1,362.2
8 454.2 20 -1,353.7
9 -602.6 21 -2,045.6
10 -175.6 22 -1,324.4
11 -1,341.7 23 -278.1
12 -2,985.3 24 1,750.9

Table 2: NPV results (in billions of Indonesian Rupiahs)
for the Plackett-Burman design and its foldover

Note that the rank of V is eleven, which implies that up to
eleven two-factor interactions can be estimated. Next
eleven independent columns from V have to be selected,
to form the matrix (say) VI that corresponds with the
interactions. The remaining columns of V are combined
in the matrix (say) VA' The resulting alias matrix
(VI

T VI) -I VI
T VA for the eleven interactions can be fOImed

in the same way as we did for a in (2).
Note that if unbiased estima~ors of more than eleven

interactions are needed, the design must be further aug
mented (beyond the foldover); that is, more simulation
runs are required.

The results of the twenty-four simulation runs are
shown in Table 2. In this table, combination 13 is the
"foldover" of combination 1, ... , combination 24 is the
foldover of combination 12 (hence combination 24 is the
base case scenario). Because we analyze only factors that
cause a decrease in the NPV, there are many negative
entries in Table 2. Since each minus value of a single
factor lowers the NPV, these negative effects are
mitigated only if interactions have positive influences. In
case the interactions strengthen the main effects, the
results of the simulation will be even more negative. The
base case gives the NPV result 1,750.9.

The analysis of the data of Table 2 starts with the OLS
estimation of the frrst-order approximation in (1) using
the design with 24 runs. The estimates tt tt tt ttPo, PI' P3' Ps'
P6' P7' and P8 are significant at the level a = 0.05. The
adjusted coefficient of determination R~) is 0.88. Be
cause D TD = 241 (see eq. 4) is a diagonal matrix, the
estimates of the main effects do not change when we
delete or add main effects.

(2)

(1)

(3)

Po
~M + ~ = Zp +~.

PA

L IO P= X + E~I h=O h iJa -I'

where 12 -1 X T V is called the alias or bias matrix, which
shows how the main effects are confounded with the
interactions; see Raktoe, Hedayat, and Federer (1981).
Hence the estimator for the main effects would be
unbiased if either X TV = 0 or P

A
= O.

Unfortunately, X TV = 0 does not hold for the
Plackett-Burman design. Fortunately this equality can be
achieved by applying the fo/dover theorem (see Kleijnen,
(1987, p. 303): add -D to the original design matrix D.
Hence, twenty-four instead of twelve simulation runs are
executed. The resulting design is a resolution IV design;
that is, no main effect is confounded with any other main
effect or any two-factor interaction; the two-factor
interactions, however, are confounded with each other
(Kleijnen, 1987, Chapter 25). (Obviously, since there are
1 + 10 + 45 effects and only 24 lUllS, unbiased
estimators of all main effects and two-factor interactions
are impossible.) Adding two-factor interactions to (1) and
applying the foldover technique leads to

This gives the OLS estimator ~ =(z TZ)-I Z TY where
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Figure 1: Scatter plot of NPV regression predictions and simulation realizations

in the West Java resetves (factor 3). Moreover, it
strengthens the effects of some of the changes in prices
(factors 5, 6, 7, and 8). Therefore we restrict the search
for interactions to these six variables (factors 3-8). After
testing several alternative specifications of the
metamodel, the following model showed the best test
results:

Its R:~, is 0.98. The hypothesis H : A =A =A =
lUlJ 4 0 1-'34 1-'3S 1-'36

~38 =0 yields F 13 = 10.81, which is significant even at
the 0.5% level (Fl~'OOOS = 6.23).

The validity of 'the metamodel (5), relative to the
underlying simulation NPV model, can be tested through
cross-validation: eliminate combinations one by one, re
estimate the regression model, and use that model's
prediction Y-I for the simulation result for the i-th
combination eliminated; see Kleijnen and Van
GroenendaaI (1992, pp. 156-7). To indicate the quality of
these predictions y we use a scatter plot; see Figure 1. If
(5) \vere perfect, the scatter plot would be a straight line
through the origin with an angle of 45 0

. Actually, the

Once the significant main effects are known, the sig
nificant two-factor interactions may be detennined. There
are many possible ways to augment (1) with individual
interactions. So detennining which individual interactions
are significant, is problematic, without making further as
sumptions or executing more simulation runs. A popular
assumption is that there are only interactions between
factors with significant main effects. Estimating this
model and testing it against the model without interac
tions shows that there are indeed some significant
interactions: the F-statistic is 3.14, which, however, is
barely significant (F 1

6
3;0.05 =2 .92). (Note, that not

rejecting Ho does not prove that there are no interactions.)
Taking into account those interactions that are related

to significant main effects is indeed a reasonable ap
proach, when no other information is available (the
simulation model is then treated as a black box).
However, in our case-study we derive clues from the
simulation model itself and from the intermediate
simulation results that lead to the outputs in Table 2. We
know that in the simulation model, economic growth
plays an important role. Nevertheless, Indonesia's
economic growth (factor 4) has no significant main
effect, ~4' This seems odd, and is also contrary to what
economic theory tells us. Studying the detailed simulation
results of the twenty-four simulation runs shows that
economic growth does strengthen the effect of a change

y= -1051.6 + 142.5%1 +461.2'x3 +659.2,Xs +

+447.2%6 +242.7%, +236.4%8 +

+226.0%3%4 + 112.1%3'xs -107 .7'x3%6 +

+ 128 .6%3'x8'

(5)
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correlation coefficient between Y-I and y 1 is 0.996, which
we fmd satisfactory.

4 CONCLUSIONS

Practitioners often stick to simple methods, such as
changing one factor at a time, studying a few scenarios or
the worst case scenario only. We think that design of
experiments (DOE) in combination with regression
metamodelling can be a fruitful method for problems
with uncertainties that do not fit into the standard
uncertainty models and that have no reliable information
on the joint probability distribution. In many areas these
circumstances are the rule rather than the exception. Then
detenninistic models in combination with DOE and
regression analysis will provide the decision makers \vith
the information they require. They want to know
explicitly what the most important factors are, and how
these factors are related. These factors deserve special
attention during project execution. Decision makers will
use this infonnation, when monitoring the progress of the
project, and when designing adjustments whenever prog
ress is not as expected.

We illustrated DOE and regression analysis by a large
practical investment problem. It might be argued that our
interpretation of interactions is not supported by a
complete statistical analysis, since not all two-factor
interactions were systematically checked. However,
analysts who understand their problem will in many cases
be able to qualitatively derive which interactions are the
most important ones, as we did. The resulting metamodel
may be statistically sound and supported by kno\vledge
about the problem at hand. After all, mathematical
statistics is only an auxiliary science.

The results obtained for our case-study, using DOE,
allow the estimation of the main effects for the ten factors
that influence the NPV plus the important interactions
between factors. The results have given the Indonesian
Government clear insight into the robustness of the
project.
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