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ABSTRACT

There has been considerable interest in investigat­
ing time series in the fields of economics, business,
and engineering. This paper illustrates that dynamic
simulation can be used as an instructional tool to
introduce time series concepts. We design two simu­
lation models using SIMULINK to represent dynamic
models for autoregressive moving average (ARMA)
time series data given by a state-space representation.
SIMULINK is a program for simulating dynamic sys­
tems. It offers a graphical user interface that allows
easy development of block diagrams and hierarchi­
cal models. This paper presents an overview of how
SIMULINK can be used for time series modeling.

1 INTRODUCTION

Time series modeling is widely used in economics,
business, and engineering. The topic is often covered
in undergraduate courses in statistics or operations
research. Many graduate programs in these areas of­
fer an entire course on time series modeling and time
series analysis.

Dynamic simulation is a powerful tool for introduc­
ing time series concepts. In this paper we will investi­
gate time series modeling using SIMULINK (Simulink
1994). SIMULINK is a program for simulating dynamic
systems. A part of its appeal as a learning tool is that
it offers a visual (or graphical) user interface that al­
lows the development of block diagrams and hierar­
chical models. The result of the simulation model can
be viewed in real-time as the model progresses.

We consider practical areas of time series modeling
application (Section 2), design a simulation model
of the time series process (Section 3) and demon­
strate it on two illustrative examples (Section 4). The
model can be obtained until December 1997 from
http://www.eng.auburn.edu/,,-,nembhard.
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2 PRACTICAL PROBLEMS

A time 8erie6 is commonly defined as a sequence of
observations taken sequentially in time on a variable
of interest (e.g., Box, Jenkins, and Reinsel 1994).
The variable is usually discrete, observed at equally
spaced intervals, and adjacent observations are typi­
cally dependent. Time 8erie8 modeling is concerned
with representing the behavior of the process by a
mathematical model that can be extended into the
future. Time 6erie6 analY8is is concerned with tech­
niques for analyzing the variable dependence.

Examples of time series in economics and business
may incillde a daily series of corporate stock prices
and a monthly series of the level of inventory in a fac­
tory. Examples of time series in engineering include
an hourly series of uncontrolled chemical concentra­
tion and a minutely series of random disturbances.
Box, Jenkins, and Reinsel (1994) identify and illus­
trate the use of time series models in four important
practical problems: forecasting time series; estima­
tion of transfer functions; analysis of effects of un­
usual intervention events to a system; and discrete
control systems.

With this broad applicability, there is considerable
interest in time series. Recently, there has been more
interest in representing time series in the state space
form because it lends itself well to simulation analysis
as well as to other modeling involving numerical com­
putation. The state space representation provides a
convenient way to represent complex mathematical
systems.

In Appendix A, we show how the ARMA time se­
ries can be represented in the state-space form as a set
of equations that describe a dynamic process. We will
use this representation in examples of characteristic
time series shown in Section 4 of this paper. Sev­
eral other characteristic patterns are shown in Mont­
gomery, Johnson, and Gardiner (1988) (Chapter 1)
and Box, Jenkins, and Reinsel (1994) (Chapter 4).
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3 CONSTRUCTING SIMULINK MODELS

(SP CD OJ N
Clock Step Input Constant Sine Wave

~ ~ 00 ~00

Random Signal Pulse From
Number Generator Generator Workspace

I
II,J--.J ",

-.J,

Figure 2: SOURCES Block Library
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4 SIMULINK SIMULATION OF THE TIME
SERIES

Once the model has been designed and the parame­
ters specified, 6tart is chosen from the 6imulation pull­
down menu to make the model run. The progress of a
simulation run can be viewed in real time and the fi­
nal results made available in the MATLAB workspace.
Analysis of the results can be accomplished by select­
ing built-in options from the SIMULINK menu or by
entering commands in the MATLAB command win­
dow. In the next section, we construct a SIMULINK

simulation model for the ARMA time series.
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SIMULINK is a simulation program designed to model
and analyze dynamic systems and can be executed
on the Sun, Macintosh, or PC platform. A typi­
cal session starts by invoking SIMULINK and defin­
ing a model or loading a previous model. To fa­
cilitate model definition, SIMULINK has a graphical
user interface containing block diagram windows that
provide libraries of functional blocks. The parame­
ters of each block are evaluated in MATLAB which
is an interactive environment for numeric computa­
tion. (SIMULINK and MATLAB are written in C by
The MathWorks, Inc.)

The standard block library is shown in Figure 1.
The SOURCES, SINKS, and CONNECTIONS libraries al­
low input and output representation. The DISCRETE,

LINEAR, and NONLINEAR libraries allow the represen­
tation of the system or process. The EXTRAS library
provides software demos and other help.

II.J::J

Figure 1: Standard SIMULINK Block Library

Opening any of the libraries shows a subsystem of
blocks. For example, the SOURCES library contains
the RANDOM NUMBER block (see Figure 2). To define
a model, blocks are simply copied from the libraries
to draw a block diagram of the system. Such a model
is shown for the ARMA Process in Figure 3. Most
blocks have an input environment as shown in Fig­
ure 4.

Next, parameters of the simulation run may be
specified. These parameters include when to start
and stop the simulation run, limits on the step size
taken during numerical integration, and method of
integration (i.e., algorithm) desired.

In this section, we present the SIMULINK simulation
model that represents the state-space form of the
ARMA process. As stated above, Appendix A gives
the state-space form of the ARMA time series. Sim­
ulation is a powerful tool for solving these equations.
Simulation can also approximate solutions to system
equations that are intractable by analytic methods.

Figure 3 shows the block diagram of a SIMULINK

model that simulates the ARMA process. The STAN­

DARD NORMAL RANDOM NUMBER GENERATOR block
provides random shocks from a N(O, 1) distribution.
At the STANDARD DEVIATION block the output of the
random shock is multiplied by the standard devia­
tion. The LINEAR FILTER block provides the dis­
crete state-space form of the linear filter process. The
LEVEL block provides the process level (mean). The
SUM block combines the linear filter with the process
level; the output of the sum block is an ARMA(p, q)
process. The ARMA process is plotted during the
simulation run via the GRAPH block.
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Figure 3: Block Diagram of an ARMA Process Simulation Model
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The ARMA (1, 1) process is a special case of the
ARMA (p, q) process of Equation (A-I) that has been
widely used in practical economic and engineering ap­
plications. For comparison with previous results, we
will consider the following ARMA (1, 1) process used
by Montgomery, Johnson, and Gardiner (1988):

4.1 Example 1: ARMA(1, 1) Model

Selecting any of these blocks reveals an input envi­
ronment for the model parameters. For example, Fig­
ure 4 shows the input environment for the first four
blocks of the model: the STANDARD NORMAL RAN­

DOM NUMBER GENERATOR (Figure 4(a)); the STAN­

DARD DEVIATION (Figure 4(b)); the LINEAR FILTER

(Figure 4(c)) and the LEVEL (Figure 4(d)).
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with 0'2 = 4. By Equation (A-2) the mean (level) of
the process is 25. By Equations (A-3) and (A-4), the
matrices for the discrete state-space representation of
the disturbance are
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(1)Yn == 10 + 0.6Yn-l + Un + 0.9Un-l
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Figure 5: Two realizations of the ARMA(I, 1) process
Yn = 10 + 0.6Yn-l + Un + O.9Un-l

D = [0] .C = [1 0]

with 0'2 = 9: By Equation (A-2) the mean (level) of
the process 18 5.56. By Equations (A-3) and (A-4),

Consider two continuous stirred-tank reactors in se­
~ies UB~d ~o transform a comonomer (which is a chem­
Ical bUlldmg block used to make film for products like
plastic bags and cups). The disturbance in the sys­
tem can be represented by the ARMA (2, 2) process

4.2 Example 2: ARMA(2, 2) Model

The standard deviation is specified in the Fig­
ure 4(b) window, the values of the matrices in the
Figure 4(c) window and the mean in the Figure 4(d)
window.

To keep this example brief, we made only two simu­
lation runs of 50 time periods. The state-space repre­
sentation of the process was used for each of the runs
yielding two different realizations of the ARMA(1, 1)
process. Specifying random streams 1, and 2 (in the
Figure 4(a) window) result in Figures 5(a) and 5(b),
respectively. Of course, to make better probabilistic
statements about the process we must make addi­
tional replications. To do so, we could change the
random number stream manually for each run or use
a small MATLAB program to implement them in a
batch.

Yn 5 + 0.9Yn-l - O.8Yn-2

+ Un + 0.6Un-l + O.2Un-2 (2)
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5 SUMMARY

(a)

Dynamic simulation using SIMULINK is a very pow­
erful tool and has been frequently used in the chem­
ical engineering, electrical engineering, and applied
physics disciplines. Part of the motivation for this
paper is to increase the exposure of dynamic simula­
tion software as a teaching tool within the industrial
engineering and operations management disciplines.

This paper illustrates that dynamic simulation can
be used as a learning tool for time series concepts. We
developed a SIMULINK simulation model for the state­
space representation of a general ARMA time series
process. We illustrated the use of the model on exam­
ples of an ARMA (1, 1) process and an ARMA (2, 2)
process. (They can be down-loaded from the internet
address given in Section 1.) The model can, of course,
be used to represent other types of systems such as
those with cyclic, ramp, and impulse characteristics.
It can also be used to illustrate other concepts in the
statistics area such as forecasting, prediction, model
identification, and maximum likelihood estimation of
parameters.

Dynamic simulation has also been used as a re­
search tool to investigate control and monitoring poli­
cies for noisy dynamic systems (Nembhard 1996 and
Nembhard and Mastrangelo 1996). Future plans
include exploring its application in organizational
learning and in the economic design of Kalman fil­
tering models.
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Using the same methods as given in Example 1,
two simulation runs were made of this process. The
graphical results from these runs are shown in Fig­
ure 6.

APPENDIX A: STATE-SPACE REPRESEN­
TATION OF THE TIME SERIES

A state-space representation lends itself well to simu­
lation analysis. It provides a convenient way to repre­
sent complex mathematical systems that include mul­
tiple inputs or outputs, nonlinearity, or time-varying
components. A state-space representation is used
in the simulation model to represent a stationary
stochastic auto-regressive-moving average (ARMA)
model. The ARMA (p, q) process can be represented
as a time series (Montgomery, Johnson, and Gardiner
1988) by

20 -___.__--,...------r----,---,

-1 al--_--L-__L-_--'------'~--

o 10 20 30 40 50

(b)

p q

Yn == e+L <PiYn-i - Un - L 8;Un-;
i=1 ;=1

(A-I)

Figure 6: Two realizations of the ARMA(2, 2) process
Yn =5 + 0.9Yn-1 - 0.8Yn-2 +Un +0.6Un-1 +0.2Un-2

where Yn is the current observation and is regressed
on previoas realizations Yn-1, Yn-2, ..., Yn-p; ¢1,
¢*J, •.. , ¢p are the unknown process parameters; 'Un,

'Un-I, ..., Un-q are the independent random vari­
ables; and 81 , 82 , ..• , 8q are a finite set of weights.
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The mean of the ARMA (p, q) is REFERENCES

e
J.' = p' (A-2)

1 -l:i=1 <P,
The expanded form of Equation (A-I)

Yn == e+ <P1Yn-1 + <P2Yn-'J + ·.. + <PpYn-p - Un

- 81Un-1 - 82'Un-2 - .•• - 8q'-'n-q

allows the state vector to be written as
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Zn-1 + -81 Un-l (A-3)
o
o

There would be little reason to use p or q are
greater than 2 in a simulation model because time
series model identification methods often show little
differentiation between second-order and third-order
processes. Further, many industry processes can be
represented by first or second-order models.

Yn == [1 0 ... 0 0 0 o 0] zn-[80]Un .

(A-4)
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