
Proceedings of the 1996 Winter Sirnulation Conference
ed. J. M. Cbarnes, D. J. Morrice, D. T. Brunner, and J. J. 8~vain

TEACHING THE FUNDAMENTALS OF SIMULATION IN A VERY SHORT TIME

Ingolf Stahl

Stockholm School of Economics
Box 6501

S-113 83 Stockholm, Sweden

ABSTRACT

This paper informs about the development of the micro
GPSS system on the basis of feed-back from some 5000
students during a period of two decades, providing a
stream-lined simulation system which within ten class
room hours of teaching make students prepared to write
fairly advanced simulation programs of practical
interest.

1. INTRODUCTION

Simulation has proved to be a very powerful tool not
only in engineering but also in business administration.
Against this background it is surprising that most
business schools and quite a few engineering schools do
not give their students any substantial amount of
teaching in simulation. The main reason for this it that
student time is an increasingly scarce resource in a very
crowded curriculum. Often only a handful of hours can
be spent on simulation. This, in tum, often leads to the
teaching of simulation being limited to a very broad
overview, without allowing for any "hands on"
experience. Most teachers with this approach believe
that the learning of a simulation language or package
would take too much time. If any computer is used, it is
limited to the input of data into an already existing
model.

This approach has several draw backs compared to
allowing the students to actually work with a simple
simulation package on concrete problems. In this latter
way the student can actively learn the whole process of
doing simulation for a problem, from delimiting the
actual problem, formulating the question to be answered
by simulation, gathering data, outlining the simulation
program graphically, coding the program, verifying,
validating and documenting the program, running the
program a sufficient number of times, doing a statistical
analysis for drawing significant conclusions, and

1387

presenting the results in a form suitable for a potential
user, with a focus on the implementation aspects. In
particular, it is important to allow the students to be
involved in some kind of modelling, since the modelling
aspect, in my view, is of fundamental importance for
understanding simulation.

To allovt' for such an approach to be feasible in a
short time, a very simple simulation system is required.
Let us already at this stage exemplify the time span that
we are discussing, namely ten class room hours and all
together at most a \veek of student time including
reading and project work. (We are hence not discussing
a full semester course, involving perhaps all together a
month of student time.) The question is then what can be
accomplished in such a very short time.

I shall in this paper discuss what we have done at two
universities in Sweden: namely one business school, the
Stockholm School of Economics (SSE), and one
technical university, the Chalmer's Institute of
Technology (CIn.

At SSE all 300 students will in their third year study
simulation, having 10 class room hours of instruction in
the micro-GPSS system to be discussed below, spending
roughly 10 hours on reading and preparing shorter
exercises and spending about 20 hours on a larger GPSS
program. This course of ten hours, called Integrative
Computer Applications, has the particular aim of
integrating elements of Operations Research, Corporate
Finance, Accounting and Statistics. The focus is on a
student project, roughly 100 blocks in size, regarding
some kind of cash flow forecast and involving decisions
on the purchasing, production, inventory and borrowing
policy of a smaller corporation. An example of such a
project is presented in detail in Stahl (1996a).

At the department of Transport Technology at CIT
around one hundred students annually do roughly the
same thing, also using micro-GPSS, with the main
difference that the project work is more directly focused
on transportation technology.

1388

2. WHY GPSS?

The question then naturally arises why we in the
teaching discussed above use a version of such an "old
fashioned" language as GPSS. I shall divide this
discussion into two parts: a. Why we use a GPSS-based
language, to be discussed in this section and b. why we
use our own special version of GPSS, rnicro-GPSS, to be
discussed in the nex1 section. The discussion in this
section hence applies to all versions of GPSS, be it
GPSSIH, GPSSIPC, GPSS/R HGPSS, GPSSN,
GPSSM, SIMPC, GRAMOS-GPSS, micro-GPSS, etc.

As I see i~ the following factors are favorable for
GPSS when it comes to choosing a simulation system for
an educational task like that one specified above.

1. Ease of learning. The very short time available
requires a special simulation language. We can hence
directly rule out the alternative of doing simulation in a
General Programming Language, like C++ or Pascal, or
a simulation language that is built on a GPL, like
Simula, SLX or YANSL. This point is further
strengthened by the poor background in programming,
in particular as regards the business students

2. The GPSS World View, involving temporary
components, like customers, which move through the
system to be served by various permanent servers
provides a very problem oriented approach which has
proved to have great benefits both from the modelling
point of view and of making GPSS fun to learn.

3. The provision of a great amount of automatic
output, like block statistics, server statistics, waiting line
statistics, tables, etc. This automatic provision is very
important since the novice will generally not know what
kind of output is relevant. The study of this standard
output is an important part of the learning process.
Furthermore one avoids having to spend much of the
initial time on print commands.

4. l'be block diagrams make it easy for students to
study, discuss and document the logic of a program. The
teaching can also be more visually oriented. One can
start by looking at the main structure of model before
looking at the details of the program syntax. The
availability of standardized block symbols is a great
advantage. Compared to other simulation systems with
block symbols, GPSS has the advantage of having many
blocks coming in pairs, with one block being the mirror
picture of the block doing the "opposite" thing, e.g.
SEIZE and RELEASE. The GPSS symbols are easy to
read and generally clearly distinct from each other.

5. GPSS is a "fun" language. Simple things can be
done in a simple manner. (As discussed below micro
GPSS focuses even more on this.) One important factor
in this respect is the unity of program and experiment
conditions which is an advantage for the novice, but

Stab]

perhaps a disadvantage for the professional user.
Among other special features that are regarded by some
as disadvantages, but are advantageous when it comes
allowing the student to do interesting things at a very
early stage, one can mention the concept of a facility,
providing service to only one customer at a time and
hence not needing a capacity definition.

6. GPSS allows for very compact programs. With
only a few blocks one can produce quite interesting
programs. The advantage of GPSS in this respect is self
evident when comparing with languages like
SIM:SCRIPT, MODSIM and SIMULA, but it appears
that also compared with languages like SIMAN and
SLAM, GPSS will generally lead to shorter programs.
The shorter code has the advantage among other things
of making the programs easier to "overview".

7. GPSS has, due to its long history, the great
advantage that there are many program examples and
much literature available, in fact over a dozen text
books, (StAhl 1993b and Schriber 1995), including what
many teachers regard as the best text book ever on
simulation, Schriber's famous Red Book from 1974. The
availability of well-documented programs is important
for the novice, when doing a project work, since he is
then more likely to find a text book example to build
upon.

8. There are reasons to believe that GPSS with its
more than 35 years' tradition is better debugged than
other simulation languages. The constructors of one
GPSS version can use other GPSS versions for checking
correctness. Furthennore, there has been a much higher
degree of scientific scrutiny of GPSS than of other
simulation languages. The internal mechanism of GPSS
is better documented and therefore better understood.
The user is therefore less likely to run into strange and
unwanted effects in certain situations. (Schriber and
Brunner 1995 and Stahl 1996b) .

9. Moderately limited versions of GPSS (allowing for
programs of up to 150 blocks) are available at very low
cost ($20 - $40) in several GPSS versions (e.g. GPSSIH,
and micro-GPSS). The student therefore has the
additional incentive of working in a simulation system
that he knows he can run on his own PC and continue to
use also after the simulation course is over.

10. GPSS is a good starting point for later moving
to many other simulation systems The existence of
GPSS similar packages in object oriented languages like
Simula (e.g. GPSSS and DEMOS) makes a switch to
some object oriented languages simpler. Since SIMAN
contains many basic structures similar to that of GPSS,
several of our GPSS students at CIT later learnt SIMAN
much faster than their fellow students not having taken
the GPSS course.

Teaching Fundamentals of Silllulation in a Ver.lr Short Tinle 1:389

11. Finally it should be stressed that GPSS is a
General Purpose Simulation System and that for
simulation problems, not only focused on manufacturing,
but e.g. combining physical and financial streams, and
where one wants to investigate the full implications of
uncertainty by many runs, GPSS is often more suitable
than systems that are very good for animation of
production systems, but otherwise fairly weak.

3. WHY MICRO-GPSS?

The development of the micro-GPSS system has been a
gradual process, starting already in 1978. The first
versions of micro-GPSS were virtually proper subsets of
GPSS V, with the main difference being the internal
mechanism (StAhl 1996b). Having taught 200 - 300
students a year for almost 20 years, in courses with a
decreasing amount of time allotted to them, but with the
ambition of still providing the students with the same
amount of simulation knowledge, we have, however,
step by step changed the original system into the present
one, simplifying it to make it easier to learn and use.

This development of micro-GPSS can be seen as a
reaction against the development of increased
complexity of the GPSS language over time. One
measure of this increased complexity is the ever higher
number of block types. GPSS I (1961) had some 20,
GPSS III (1965) around 40, GPSS/360 (1967) 44, GPSS
V (1970) 48, GPSSIH (version 1, 1977) 58 and GPSS/H
(version 2, 1989) 62 block types. This development
towards more and more block types has in tum lead to
increased redundancy in the way that several blocks
carry out the same job. This complexity has also made
GPSS increasingly more difficult to learn and has lead to
students learning a steadily decreasing share of the full
language and therefore making more logical errors.
Although many of the developers themselves (Gordon
1979 and Henriksen 1983 and 1985) have raised critique
against this development, it has yet continued due to the
developers' interest in compatibility with older versions
of GPSS. Such compatibility is of interest to old users
who have already done a lot of programming in earlier
versions of the language, but it is of no interest to the
novice who desires to have as easy a learning process as
possible with regard to the goal of being able to do a
certain kind of simulation.

During the process of development, we have spent
much time reflecting on the design. Questions have
arisen not only with regard to how to cut out a pure
subset of GPSS/360, GPSS V or GPSSIH, but also
whether or not we should change this or that feature of
GPSS. I have in the process tried to formulate the
general principles that have guided us in this work

(StAhl 1993a). The main ones are the following, divided
into three groups, dealing with A. ease of learning, B.
ease of use and C. safe programming.

A. Ease of learning

A1. The main aim is that the students after a very short
time shall be able to do simulation projects of practical
value. First, as mentioned above, we have only a very
limited time of teaching at our disposal.. This has lead to
our aim that one should be able to learn most of micro
GPSS in less than ten hours so that one after that can do
some student projects of practical interest. Some time
should also be left for the issues of collection and
evaluation of input da~ the main principles of
experimental design, statistical analysis of the output,
aspects of implementation, etc., i.e. issues that are left
out in many courses where all time is spent on the
mechanics of a difficult-to-learn simulation language.

Al. As we want the students to focus on modelling
(and experimentation), and not on syntax detail, the
language should be such that one in the course does not
have to learn a new block type every time that a new and
different thing shall be done. It is from a pedagogical
point of view often preferable that the new aspects can be
handled using already known block types, even if the
program thereby becomes a few blocks longer.

A3. When students frequently make the same
mistake, one must always consider the alternative of
changing the syntax instead of forcing them to learn
strange features that, for example, might depend on
hardware limitations of computers in the 60's or on pure
mistakes made by developers in the early years of GPSS.
Since we, in contrast to GPSS/fL are not bound to
compatibility with earlier GPSS versions, we have in this
way over the 20 years of teaching allowed our 5000
students to change the language syntax. Some examples
are given in section 5 below.

A4. We have in micro-GPSS been very keen to keep
and increase the "fun aspect" of GPSS. If the simulation
system is fun to learn from the beginning, this will in
itself provide strong incentives for further learning. It is
here important that the language provides a possibility
for the students to do interesting things after only a very
short period of learning. Preferably the students should
already after one or two class room hours be able to write
some non-trivial simulation programs, i.e. students
should be able to do simple things in a very simple
fashion. One should not sacrifice the ease of introduction
for the sake of having sophisticated features for the
advanced user. One should in particular restrict what
appears as unnecessary details, e.g. avoid commas that
are not absolutely essential. (See section 5 below). It is

1390

important to "encourage users to forge ahead and
experiment rather than present barriers that lead to
discouragement" (Banks 1995). It should be mentioned
that this positive aspect of learning has given the micro
GPSS courses increasingly favorable student ratings,
much higher than for comparable computer courses.

A5. We have also developed micro-GPSS with the
aim of facilitating the teaching in computer labs as well
as facilitating self-studies in front of the computer,
instead of learning by lectures in ordinary class rooms or
text book studies. In this connection it is important that
micro-GPSS allows several programs to be run in a
stream, with both program listing and output presented
one screen at a time, without the student having to leave
the GPSS system.

A6. micro-GPSS was developed with the aim of
being so simple that it could be completely covered in a
pedagogical manner, with many examples in a book of
reasonable size, say a maximum of 400 pp, and hence
with a moderate price. This was accomplished with Stahl
(1990). The student should not have any need for a
difficult-to-read manual in order to find features not
covered in the text book or in class.

A7. For micro-GPSS it has been very important not
to presuppose any pre-knowledge of programming. This
is one difference between how micro-GPSS and GPSSIH
are positioned. As mentioned in Henriksen (1985), the
focus of GPSSIH is on persons with considerable
programming experience. Most of our business students
do not have any programming knowledge except
possibly some very rudimentary knowledge of (Visual)
BASIC. Even for my technical students at CIT, who
some year earlier had programming in Pascal, this
presupposition has appeared to be advantageous.

B. Ease of use

Bl. It should be very easy to do the coding of the
programs. Since there are great variations between
students as regards their preferences for input systems,
one should provide a choice between conventional
coding using an editor and coding by choices in a menu,
either GUI based or tex1 based. For easy coding by an
editor, micro-GPSS has in contrast to other GPSS
versions a completely free format so that students do not
have to worry about the fact that certain words have to
start in a certain column~ every line can start in column
1. In contrast to GPSSIH, no distinction is made between
upper-case and lower-ease letters. As regards coding by
use of a menu in an interactive dialogue mode, there are
two systems for micro-GPSS, our own GPSSMENU and
GPSSGUI for DOS and GPSSEDIT for Windows
(Nywall 1992). Finally, these input systems aim at

making syntax rules self~vident or easily available, so
that the student does not have to refer to a text book..

B2. It must be easy to read the program listing and
the output. micro-GPSS does not provide a lot of
advanced output that the novice does not know how to
read and would find confusing. In contrast to GPSS/H
the output always fits into an 80 column screen. It
should also be easy to read the extended program listing
provided by the system. micro-GPSS provides a neat and
easy-to-read program listing, with an automatic line-up
of operators and operands, independent of the
appearance of the original code

B3. Since it in teaching is important to focus on
block diagrams, it is first of all essential that every block
type has a corresponding block symbol. This is the case
of micro-GPSS, but not of GPSS/H. Furthermore it is in
this context important to have facilities for the automatic
generation of block diagrams, in micro-GPSS by
GPSSDIA, as well as systems for coding by clicking in a
menu of block symbols (see Bl).

B4. Since we also want to focus on experimentation,
it is essential that it is very easy to make replications of
the runs and also to make a statistical analysis of these
repeated runs. Running a program 20 times with
different random numbers is done by SIMULATE 20.

c. Safe programming

C1. Closely related to ease of learning, but also to ease of
use, is the principle of safe programming. We want to
minimize the risk of logical errors, i.e. that that program
produces unwanted and erroneous output. In this way a
great amount of student time spent on debugging can be
saved. If the simulation language is made as safe as
possible with regard to logical errors, this also reduces
the need for an extensive debugging system which, in
tum, requires a lot of student time to learn. To secure
safe programming we want to stress the "Lead us not
into temptation" principle, implying that the simulation
language should not be excessively permissive, allowing
constructions that with a significant probability lead to
logical errors. It is better that an unsuitable construction
leads to a syntax error message and execution stops right
away than have it lead to a difficult-to-find logical error.
micro-GPSS is therefore much less permissive than
ordinary GPSS; e.g. servers must have symbolic names,
parameter usage is restricted, etc.

C2. It is also important that the simulation language
has an extensive error trapping system with as clear
error codes as possible. This error system is very
developed in micro-GPSS. All of my 5000 students have
been asked to report on errors with no or an unclear
error message. This has lead to constant improvements.

Teaching Fundamentals of Simulation in a Very Short Tinlt> 1391

C3. Closely connected with the idea of Cl is the aim
that students should not run into surprises and
unexpected logical errors due to not having learnt the
full language. It is of special importance that the
language does not have any reserved words, in particular
reserved words that lead to strange logical errors. We
must avoid problems such as, e.g. that SEIZE XIDI and
SEIZE XJD1 in GPSSIH lead to completely different
results. Unless the student knows that XIDI is a reserved
word with special meaning in GPSSIH, he can make a
serious logical error.

4. SELECTION OF MICRO-GPSS BLOCKS

On the basis of the principles discussed above we have
developed a GPSS version with much simpler syntax.
For example, instead of the 62 block types of GPSSIH we
have arrived at only 22. These 22 block types can be
seen in figure 1 below. The question is then how we
arrived at these 22 block types. This is discussed in
detail in StAhl (1992b), but the main ideas are as
follows:

With few block types there is less to learn. It is also
in line with the "modelling'~ principle of point A2 above.
Speaking, to the contrary, for the inclusion of more
block types is the idea that short and compact programs
in general are preferable to longer programs as regards
solving a specific task. With a new block type, one can
sometimes with one block do what would require several
blocks to do wl.th the earlier existing block types. This is
one factor that has lead to the continued increase in the
size of the GPSS language mentioned above.

Figure 1: Menu of micro-GPSS blocks

A critical issue is then when to adopt a new block
type, if this leads to shorter programs. Our general
principle was that we started with a quite small
ucompulsory" core set of block types. We would extend
this set with another block type only if this adoption
would lead to significantly shorter programs as regards
applications that appear to have a frequent usage. When
establishing what kind of applications have a fairly
frequent usage, the only alternative available to us was to
look at the examples in existing GPSS text books. If
applications were not dealt with in these text books they
were not regarded to be in frequent usage. Furthermore,
we did not adopt a new block type, like LOOP of "old"
GPSS, if the use of one block of such a type could easily
be replaced with two blocks of already adopted types.

Another consideration speaking for limiting the
number of block types was our interest in easy-ta-use
programs for coding via a dialogue men~ with, for
example, block symbols on which to click. With 62 block
types like in GPSS/H, the menu itself would hardly fit
readably into one computer screen. The 22 block
symbols of micro-GPSS fit nicely into the left fourth of
the screen as seen in figure 1, produced by GPSSGUI. A
final consideration favoring the limitation of the number
of blocks is the possibility for the micro-GPSS user to
create his own new block types from one or several
existing block types (StAhl 1993c).

The set of 22 block types has proved to be quite
powerful and micro-GPSS programs are in general not
longer than corresponding programs in other GPSS
dialects. The reason for this is that th~ increase in the
number of blocks due to fewer block types is
compensated by some new micro-GPSS features. The
most important one is that for collecting statistics in a
queue, e.g. in front of a facility, we can just add ',Q'.
Thus the micro-GPSS block SEIZE SAL,Q does the
same thing as the following blocks in ordinary GPSS:
QUEUE SALQ, SEIZE SAL, DEPART SALQ.

We have hence been able to rewrite 99 percent of the
programs in leading GPSS text books with almost the
same amount of code (at most 20 percent difference). For
example, for the 29 programs in Schriber's famous "red
book" from 1974 the average number of blocks used is
virtually the same (18.6 in Standard GPSS and 18.8 in
micro-GPSS).

5. SOME OTHER MICRO-GPSS FEATURES

It should first be mentioned that of the 22 block types,
five do not exist in "old GPSS", namely ARRIVE,
GOTO, IF, LET and WAITIF. ARRIVE, the natural
counterpart of DEPART, replaces QUEUE and has
(almost) the same syntax~ GOTO replaces TRANSFER

1392 Stabl

6. TWO PROGRAM EXAMPLES

To give some idea of the simplicity of micro-GPSS
we shall present two program examples. The first
program, which will produce block statistics, facility
statistics, queue statistics and a table on waiting times so
that we, for example, can say what percentage of the 30
patients had to wait more than two hours for the doctor. I
have not found any other simulation language which
with so little code can do so much. The program is run 5
times with different random number streams. This is a
program that students can write already after two hours
of teaching.

The next program will illustrate a problem that appears
to be much more difficult to program in many "modern"
simulation systems.

"At a small store customers arrive at a rate of every
4 to 10 minutes (7 ± 3 minutes~ assume a rectangular
distribution for all time data.) In the store there are two
people working, Boris and Naina. Customers first go to
Boris and choose the goods and find out how much they
have to pay. This takes between 3 and 7 minutes. Next
they go to Naina to pay for the goods and obtain a
receipt. This also takes between 3 and 7 minutes.
Finally, they return to Boris to pick up their goods after
presenting the receipt, which is then stamped. This takes
between I and 3 minutes. There is one waiting line in
front of Boris and one in front of Naina. Customers
returning to Boris to pick up the goods have to start at
the end of this line again.

The program should be written so that times spent by
customers in the store can be easily measured. How
many customers will spend more than 15, 20, 25
minutes, etc. in the store? Assume that the store is
closed after eight hours and that the mentioned statistics
refer to customers having left the store at this closing
time. Calculate also by repeated runs whether there is
any significant risk (e.g. happening in one out of ten
cases) that a customer has to spend more than an hour in
the store."

but with a simpler syntax. Instead of TRANSFER ,BYE
(with BYE as B operand) and TRANSFER .4"BYE
(with BYE as C operand), micro-GPSS uses GOTO BYE
and GOTO BYE,.4, with BYE always as A operand.

LET replaces ASSIGN and SAVEVALUE (and
BLET in GPSSIH). IF replaces TEST and GATE blocks
with an address, while WAITIF replaces TEST and
GATE blocks without an address. In contrast to TEST,
IF works with a "straight logic", namely that we proceed
to the address in the C operand, if the stated condition is
true (not false as in "old" GPSS). In micro-GPSS we
write IF Pl<O,BYE instead of TEST GE Pl,O,BYE as in
"old" GPSS versions, when we go to BYE ifPl<O.

Among the many improvements as regards the block
syntax , one can here mention that the PRINT statement
is much more versatile in micro-GPSS, allowing us e.g.
to write PRINT 'PROFITS ',X$PROF. Matrix handling
as well as reading and writing the contents of the matrix
to or from a file is also handled in a very compact and
simple manner in micro-GPSS. Furthermore, the
production of an output graph can be handled by a single
block. Standard Numerical Attributes can be given easy
to-remember names. The SELECT block has a more
understandable syntax.

Also as regards control statements, micro-GPSS
requires a lot less learning. Instead of the 34 control
statements of GPSSIH, micro-GPSS has only 13, where
CAPACITY replaces STORAGE for the definition of
capacity and SEEDS replaces RMULT, since it changes
the seed, not the multiplier. SIMULATE has, as
mentioned, an A operand determining the number of
runs. Micro-GPSS also has facilities for automatic
statistical analysis (e.g. of Student's (-distribution) and
for optimization. It has several built-in statistical
functions. Micro-GPSS also allows for animation by a
very simple interface to Proof Animation (Stahl 1992a).
and for simple tracing and step by step animation
through the block diagram.

The whole of micro-GPSS syntax is presented in
Stahl (1990). A shorter introduction to micro-GPSS is
provided in Stahl (1995) for which there is a tutorial
diskette with restricted versions of the micro-GPSS
system and GPSSDIA as well as 49 program examples.
This contains roughly the material covered in the ten
hour course presented above.

Due to these and several other simplifications, micro
GPSS is much easier to learn than traditional GPSS. We
have thus with micro-GPSS been able to cover the same
material in 10 hours that required 22 hours when using
"old" GPSS. Micro-GPSS has also in tests compared
favorably as regards learning time with other systems
such as SIMAN and WITNESS.

Program 1

simulate
qtable
generate
seize
advance
release
terminate
start
end

5
doc,O,lO,20
18,6
doc,q
25,5
doc
1
30

Teaching Fundamentals of Simulation in a Verv Short T'. lme 1393

7. HOW TO PROCEED FROM MICRO-GPSS

This problem has been solved in micro-GPSS in ten
minutes by students who have studied micro-GPSS for
three hours. I have at earlier WSCs asked sales
representatives of various modern animation based
simulation packages to solve this problem and it has
taken them over half-an-hour to do so in their system.
The difference is that in GPSS you only need a simple
sequence of three SEIZE-ADVANCE-RELEASE while
these other systems require Boris to be located 'at one
spot and the program must then for each customer keep
track of whether she comes to Boris for the first or the
second time, something which is difficult, obviously not
only for the novice.

As discussed above, students can proceed fairly far in
simulation after ten class room hours of micro-GPSS.
The most clear proof that our business students after
these studies can do fairly interesting simulation is given
by the project work mentioned in section 1 above. The
students here write a GPSS program involving on
average one hundred blocks regarding the operations of
a smaller corporation. An example of such a project with
the micro-GPSS program is presented in Stahl (1996a).

The question is then what long term benefits the
students can have of this. Even if the students never do
any more simulation there are clearly several valuable
lessons to be learnt. One clear benefit is that simulation
illuminates the connection between the actual physical
processes and its counterparts in the accounting system.
This has a pedagogical merit and has appreciably
increased our business students' understanding of the
relationship between accounting procedures and the
physical and financial flows in a company. Another

Program 2

simulate
qtable
generate
arrive
seize
advance
release
seize
advance
release
seize
advance
release
depart
terminate
generate
terminate
start
end

20
store,0,5,20
7,3
store
boris
5,2
boris
naina
5,2
naina
boris
2,1
boris
store

480
1
1

benefit is that the students in the course get a clearer
understanding of concepts such as pseudo-random
num~rs, exponential, normal and Erlang distributions,
expe.nmental design, etc. than they could get by just
reading about it. They also become better informed
?uyers of simulation services, knowing that simulation
~n certai? situations can be a powerful, but yet fairly
InexpensIve, tool.
. M~y of our students have, however, proceeded in
s~mula~on. We have at SSE an optional longer course in
SImulatIon, focused on a larger project done in a
Swedish corporation. In this course, the remaining parts
of micro-GPSS are covered as well as Proof Animation
with the micro-GPSS interface to this. There is also a
focus on verification, validation, documentation and
implementation. Quite a few of these student projects
have been continued on a consultant basis or as a
Master's thesis. It should be mentioned that all students
have stayed with micro-GPSS. There has obviously not
been any need to migrate to GPSSIH, in spite of the fact
that we supply a program GPIDv1 which can translate
almost any micro-GPSS program into GPSSIH code.

Most of these projects have been fairly small in size,
200 - 300 blocks. The longest micro-GPSS program is
500 blocks. This gives an idea of how we see micro
GPSS positioned. Since micro-GPSS, as well as
GPSSIH, in contrast to e.g. HGPSS (Claeys et aJ., 1995),
does not allow any hierarchical structure, we see micro
GPSS JX>sitioned as not only a pure teaching device, but
also as suitable for rapid prototyping in simulation, for
smaller models in line with Woolsey's "Quick and dirty"
approach. When it comes to larger models than the 300
500 blocks discussed here, object oriented simulation
languages like SIMULA or MODSIM III are clearly
preferable. However, before committing oneself to a
major effort in such a language a rapid prototype in
GPSS can be a suitable starting JX>int, as in cases like
that of the Swedish ice-breaking operations (Jennergren
et al. 1995).

8. FURTHER INFORMATION ON MICRO-GPSS

Micro-GPSS is available on the PC and Macintosh as
well as on SUN and VAX. workstations.

A demonstration diskette with scaled down versions
of the micro-GPSS interpreter and GPSSDIA and with
50 progr~ examples is available free of charge,
together WIth a short tutorial, from the author. Professor
R. Born (1995) has produced a very pedagogical
computer slide show to accompany this tutorial.

More information on micro-GPSS and its use in the
discussed ten hour course at the SSE is also available on
the web at WWW.HHS.SE/5e/7784.htm.

1394

REFERENCES

Banks, J. 1995. Semantics of Simulation Software.
In ORIMS Today, December 1995, pp. 38 - 40.

Born, Richard. 1995. Computer Slide Presentation to
Accompany Ingo/f Stahl's Simulation Made Simple
with micro-GPSS. Northern Illinois University.
DeKalb.

Claeys, F. , H. Vangheluwe and G.C. Vansteenkiste.
1995. HGPSS: A Hierarchical Extension to GPSS. In
Proceedings of the 1995 European Simulation
Multiconference, ed. M. Snorek, M. Sujansky and
A. Verbraek. Prague.

Gordon. G. 1979. The Design of the GPSS Language in
Adams, R.N. and Dagramici, A. (eds) Current
Issues in Simulation. Wiley, N.Y.

Henriksen, lO. 1983. State-of-the-Art GPSS. Paper
presented at the 1983 Summer Computer Simulation
Conference, 1983, Vancouver, B.C, Canada.

Henriksen, lO. 1985. The Development of GPSS/85.
Paper presented at the 18th Annual Simulation
Symposium, Tampa, Florida.

Jennergren, L.P., L. Lundh, U. Tornqvist and S.
Wandel. 1995. Icebreaking Operations in the
Northern Baltic. In Miser, H.I. (ed) Handbook of
Systems Analysis: Cases. Wiley, N.Y.

Nywall, I. 1992. GPSSEDIT Manual. Mimeo. Karlstad
College, Karlstad, Sweden.

Schriber, T. l 1974. Simulation Using GPSS, Wiley,
N.Y.

Schriber, T. I. 1995. Perspectives on Using GPSS. In
Proceedings of the 1995 Winter Simulation
Conference, ed. C. Alexopoulos, K.Kang, W. Lileg
don and D. Goldsman, 110-117. Piscataway, New
Jersey: Institute of Electrical and Electronics
Engineers.

Schriber, T. l and D. T. Brunner. 1995. Inside
Simulation Software: How It works and Why It
Matters. In Proceedings of the 1995 Winter
Simulation Conference, ed. C. Alexopoulos, K.Kang,
W. Lilegdon and D. Goldsman, 451-456.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

StAhl, I. 1990. Introduction to Simulation with GPSS:
On the PC, Macintosh and V~ Prentice Hall
International, Hemel Hempstead, U.K., 1990.

StAhl, I. 1992a, Animation with micro-GPSS and Proof
In Visualisierung und Prtisentation von Model/en

und Resultaten der Simulation, ASIM, Heft. Nr. 31.
StAhl, I. 1992b, Principles behind the Design of an

Easy-to-Learn Simulation Language: Implications for
the Selection of Block Types. EFI Research Paper
6485.

Stall]

StAhl, I. 1993a, Principles Behind the Design of an
Easy-to-Learn Simulation Language. In Roberts, R.S.
and S. Monroe (eds) Simulation Applications in
Business Management and MIS. SCS, San Diego.

StAhl, I. 1993b. GPSS Will Prevail - Some Reasons for
the Resilience of the GPSS Simulation Ideas. In
GPSS-Users' Group Europe - Gruendungveranstal
tung, ASIM Heft Of. 36, Magdeburg.

Stahl, I. 1993c. Recent Developments of micro-GPSS.
In GPSS-Users' Group Europe - Gruendundgveran
staltung, ASIM Heft nr. 36, Magdeburg.

StAhl, I. 1995. Simulation Made Simple with micro
GPSS: A Short Tutorial with Seven Lessons,
Stockholm School of Economics, Stockholm.

StAhl, I. 1996, Simulation of the Business Operations of a
Small Furniture Company. In Javor, A., A. Lehman
and I. Molnar (eds) Modelling and Simulation,. ESM
496. Budapest

Stahl, I. 1996b. Steps Towards a Better Internal GPSS
Mechanism. In this volume.

AUTHOR BIOGRAPHY

INGOLF STAHL is Professor at the Stockholm School
of Economics, Stockholm, and has a chair in Computer
Based Applications of Economic Theory. He was visiting
Professor, Hofstra University, N.Y., 1983-1985 and
leader of research project on inter-active simulation at
the International Institute for Applied Systems Analysis,
Vienna, 1979-1982. He has taught GPSS for twenty
years at universities and colleges in Sweden and the
USA. He has on the basis of this experience led the
development of the micro-GPSS system. He is also
consultant in simulation to Swedish banks and industry.

