
Proceedings of the 1996 Winter Simulation ConfeTence
ed. J. 1\1. Charnes, D. J. A1orrice, D. T. Brunner, and J. J. Swain

MODELING FILE-SYSTEM INPUT TRACES VIA A TWO-LEVEL ARRlVAL PROCESS

Peter P. Ware

Department of Computer
and Information Science

The Ohio State University
Columbus, OR 43210, U.S.A.

Thomas W. Page, Jr.

Department of Computer
and Information Science

The Ohio State University
Columbus, OH 43210, U.S.A.

Barry L. Nelson

Department of Industrial Engineering
and Management Sciences
Northwestern University

Evanston, IL 60208, U.S.A.

ABSTRACT

A method for analyzing, modeling and simulating a
two-level arrival-counting process is presented. This
method is particularly appropriate when the number
of independent processes is large. The initial moti
vation for this method was the need to analyze and
represent computer file system trace data that in
volves activity on some 8,000 files. The method is
also applicable to network trace data characterizing
communication patterns between pairs of computers.

Cluster analysis with a novel stopping rule is used
to decompose the arrival process into groups. The
resulting clusters can be characterized using the time
between clusters, the time between arrivals within
clusters, and the size of each cluster. Each of these
three components is then analyzed as a univariate
problem.

The effectiveness of this method is measured by
comparing the output of a simulation driven by the
original trace data to the output of the same simula
tion driven by the input model.

1 INTRODUCTION

The motivation for this work is the desire to drive
simulations of distributed, replicated, file systems.
Much like network traffic or memory reference pat
terns, workloads presented to file systems tend to be
bursty and exhibit a high degree of locality. That is,
a file which has been accessed recently tends to be
accessed again soon. Further, accesses tend to come
in clusters; there is a burst of activity, followed by a
break, followed by another burst, etc. Figure 1 is the
access pattern for one such file.

We can drive file system simulation with one of sev
eral available sets of trace data. However, there are a
number of limitations to the use of traces. Traces are
of finite length. If the events of interest in the sim
ulation occur sufficiently infrequently (as they do in

1230

our application), then the length of the trace may be
insufficient for quality results. Despite their limited
size, traces are nevertheless voluminous and hence
cumbersome. They are highly inflexible, represent
ing only what happened over some specific interval of
time, which mayor may not be more widely represen
tative. Thus, even when in possession of trace data,
there is motivation to produce a synthetic workload
which can capture important aspects of the recorded
trace, but with greater flexibility. The work reported
here is a step along the path to building such a syn
thetic trace generator for file accesses.

1.1 Data Characteristics

Figure 2 shows the inter-arrival times for our com
puter file system trace data (Hisgen 1990). This data
totals over 2 Gigabytes, representing approximately
29 million events collected over a four day period from
114 workstations running a Unix-like operating sys
tem. This data appears very nearly exponentially
distributed. However, this view from 10,000 ft. (an
altitude from which the identity of the file being ac
cessed is obscured) is too coarse for our simulation
purposes and such a workload model would not cap
ture the critical characteristics of the arrival process.
If one zooms in closer to where one can observe the
data decomposed into a separate process per file, a
very different pattern emerges.

Figure 1 shows this arrival-counting process at a
more detailed level (access to a single file), illustrat
ing some important characteristics. The data appears
to be generated by a two-level process: one process
generating clusters of events, and within each clus
ter, a second process generating individual events. A
sequence of independent, identically distributed inter
arrival times would do a poor job of representing such
patterns.

In Figure 1, the vertical axis is a cumulative count
of the number of accesses to the file and the horizontal

Modeling Fi1e-s~ystem Input Traces 1231

Original data (4863)

Figure 1: Several Clustered Events

Figure 2: Probability Density Plot of Inter-arrival Times

impractical, yet no static parameters (say for max
imum intra-cluster gap) yield good results ovet the
entire non-homogeneous data set.

We adapt a well-known algorithm called hierar
chical clustering with single linkage, to measure the
distance between clusters. Although some of the
literature on hierarchical clustering disparages this
method, it has ideal characteristics for this type of
data, as shown in Section 3.

The final (and critical) step in hierarchical cluster
ing is to determine when clustering should be stopped
(between the extremes of one cluster per event and
one cluster containing all events). :Frequently, such
a decision is reached manually; however this is again
not practical for such large data sets. Section 3.1 in
troduces a new stopping rule designed specifically for
this application.

The methodology we propose uses the Johnson
translation system to fit a distribution to the inter
cluster times and intra-cluster times, and the empiri
cal CDF for the distribution of the cluster size. Each
of these can be treated as an independent, univari
ate distribution if clustering successfully identified a
two-level process.

The effectiveness of this methodology is evaluated
in Section 5 by comparing the output of the same
simulation driven by two representations of the same
input process. The simulation is first driven by the
actual trace data and then is driven by the arrivals
generated from our two-level process. The output
of the two simulations is compared to establish that
the features of the trace data that most affect the
simulation output are accurately represented by the
input model.

i

0.15
i

0.'0

Time Between events « .2)

i

0.05

I

0.0

axis is in seconds. Examining this figure, one could
manually draw circles to cluster the data and model
the time between the start of each cluster (the inter
cluster time) to form the first process. Then, within
all the clusters, one could match a distribution to the
time between each event (the intra-cluster time) to
represent the second process within each cluster. A
distribution for the size of each cluster can then be
used to terminate the second process.

An automated method for doing such clustering is
needed when a data set is composed of more than
a handful of such fin~ained patterns. The data
shown in Figure 2 is composed of nearly 8,000 such
objects (0.73% of the samples (3038) are >== 0.2 sec
onds and are not displayed). Each file may have its
own access pattern, some of which may be charac
terized by frequent long bursts, others by rare short
flurries of activity, with still others showing little clus
tering. Manual clustering of such a large data set is

2 BACKGROUND ON APPLICATION

The impetus for this work was the desire to an
swer the question, "How frequently do conflicting up
dates occur in a replicated data system using opti
mistic concurrency control?" A number of systems
have been built with this principle (see for exam
ple Bayou from Xerox PARe (Terry, Theimer, Pe
tersen, Demers, Spreitzer & Hauser 1995), Coda from
eMU (Satyanarayanan, Kistler, Kumar, Okasaki,
Siegel & Steere 1990) and Ficus from UCLA (Guy,
Heidemann, Mak, Page, Popek & Rothmeier 1990)).
However, due to differing architectures and environ
ments, it has proved difficult to answer this ques
tion in a very general way using the actual systems.
Hence, a flexible simulation was undertaken.

A replicated data object with n copies is modeled
as a finite state machine with n "normal" states and

1232 Ware, Page, and Nelson

one "conflict" state (see Figure 3). In state n, all
replicas are mutually consistent; that is, all updates
to the object have been applied to all replicas (in the
san1e order) and hence the replicas contain the same
value. If an update (write) operation occurs while the
object is in state n, the update is initially applied to
one of the replicas, and the model transitions to state
1. State 1 models the situation where only one replica
contains the most recent data value. The update then
propagates to the other replicas asynchronously, and
the model transitions up through states 2, 3, etc.,
as each additional replica is informed, until mutual
consistency is restored and the model returns to state
n. In any statei: 1 ~ i ::; n, i of the n replicas
contains the most up-to-date data, while n - i contain
stale data.

If an update arrives while the object is in any state
i: i < n, two possibilities result: either the update is
applied to one of the replicas which already contains
the latest version, or to one that does not. This is
the essential difference between weak consistency and
the traditional strongly consistent algorithms. Con
ventional algorithms prevent conflicts by restricting
updates to one of the up-to-date replicas. However,
the cost of doing so may exceed the cost of dealing
with the occasional conflict, if conflicts are sufficiently
rare and/or easy to repair. If the replica selection al
gorithm chooses one of the i replicas that is already
up to date, then the state transitions back to 1 and
update propagation resumes spreading knowledge of
the new update. However, if one of the n - i repli
cas containing an old version is selected, then a state
exists in which there is no longer a total ordering of
file versions, an update-update conflict exists and the
model transitions to the conflict state. When in the
conflict state, C, update propagations cannot in gen
eral restore a correct, where "correct" is defined as
one-copy-serializable, mutually consistent replicated
data value. Any further updates to the object while
in the conflict state will leave the file in the conflict
state. Another type of operation called "repair" is re
quired to restore a new dominant version which must
then be propagated to all of the replicas before the
file is once again mutually consistent. This operation
is ignored.

If we were to assume that updates are generated
by a Poisson process with rate A, that the replica se
lection policy is equally likely to choose any replica
for initial application of the update, and the time to
propagate an update to any individual site is expo
nentially distributed with mean 1/ j.t, then the model
becomes Markovian and is easily solved analytically.

As we have seen, however, a Poisson process is a
poor model of the bursty arrival process typical of file

. ,
'-~

Figure 3: State 'Transition Diagram For An n Replica File

system access, and it is precisely the pattern of rapid
updates that makes conflicts more likely. Hence it is
critical that the input process accurately capture this
characteristic.

3 CLUSTERlNG

The hypothesis is that file access data (and many
other types of workload) are effectively modeled by
two-levels of processes; the first generating bursts,
and the second generating events within bursts. In or
der to fit distributions for these processes for a given
data set, it is necessary to "cluster" the data into
bursts. We consider a form of agglomerative hier
archical clustering, as described, for example, in Jain
(1991), but simplified by the fact that our application
requires clustering in the time dimension only.

The data is in the form of an arrival process.
Thus, each event has a time at which it occurs, and
the events are totally ordered by their time. Let
T1 , T2 , ... ,Tn be the sequence of access times for a
particular file. The basic algorithm for agglomerative
clustering is as follows:

1. Start with each event T i in a cluster by itself a.nd
initialize the iteration counter i to O.

2. Construct the inter-cluster distance array in
which the jth element is the distance between
cluster j and cluster j + 1.

3. Find the smallest element of the distance array
(if the smallest value is not unique, randomly
choose one from the set of smallest distances).
Say the kth distance is chosen. Combine clusters
k and k + 1.

When n, the number of event times, is large, and i
is not too close to n, then (1) will be nearly constant
for values of i close together. Therefore, the local in
crease in Hi will be approximately linear, in expected
value, and the second derivative approximately 0, for
a process without clusters.

Our stopping rule looks for the behavior expected
of a Poisson process. When the behavior of Hi de
parts significantly for what is expected, then we as
sume that we are no longer combining intra-cluster
event times, and have started to combine clusters.
Using the second derivative test avoids the need to
specify a value of A.

If we apply this rule to a Poisson event process,
then it is likely to break the data up into a small
number of very large clusters, since (1) does change
rapidly for i near n. This implies that we should
first subject our data sets to a Poisson-process test
to determine if clustering is needed. If the hypothesis

gap which should be very much larger than the great
est intra-cluster gap. At that point the slope of the
Hi curve turns dramatically upward. We need to be
able to recognize this point in an automated fashion.

Many clustering stopping rules have been proposed
in the statistical and application literature. For ex
ample, Milligan & Cooper (1985), describes and tests
30 such rules! Most of these rules are based on the
relative variability within clusters to between clus
ters. Our method exploits the fact that our data is
an arrival counting process. Specifically, we compute
a finite-difference estimate of the second derivative
of the Hi curve, and end clustering when this deriva
tive is significantly different from o. The following
argument justifies this approach:

Suppose that the file-access process is completely
random, meaning that no clusters physically exist.
Such a process is often well modeled as a Poisson
process with arrival rate A events per unit time. In
other words, the inter-event times G i = Ti+1 - Ti ,

i = 1,2, ... ,n -1, are independent and identically ex
ponentially distributed random variables with mean
1/A. Because of the nature of the single linkage
distance measure, the heights H 1 ,H2 , •.• ,Hn - 1 will
therefore be the order statistics (sorted values) of
G1 , G2 , ... ,Gn - 1 . Thus, the smallest inter-event gap
will determine the first cluster, the second smallest
gap the next cluster, and so on. Using known results
for the order statistics of the exponential distribution
(e.g., Devroye (1986))), the expected increase (finite
difference first derivative) of Hi over Hi- 1 is

]VIodeling File-s.ystem Input Traces

4. Repeat steps 2 and 3 until all events are part of
a single cluster (we examine earlier termination
conditions below).

The above method produces a sequence of cluster
ings starting with each event in a cluster by itself,
and terminating with all events in a single cluster. If
this model is a good representation of the data set,
then in between these degenerate cases lies one or
more appropriate clusterings. The difficulty lies in
automatically deciding which intermediate clustering
is the best one. If we can determine that we have
reached the point where any further iterations would
combine clusters which should remain distinct, then
we should terminate the algorithm and report the re
sulting clusters.

A second issue is how to compute distances between
clusters. The statistical literature provides a large
number of distance measures that are reasonable in
various situations (Kaufman & Rousseeuw 1990). We
employ one of the oldest measures, known as single
linkage or nearest neighbor: The distance between
two clusters is the minimum distance between any
member of one cluster and any member of the other.
Translated into our context, the "distance" between
two clusters is the absolute value of the difference be
tween the two closest event times. For example, if
cluster j is {Tm, Tm+l, ... ,Tm+r}, and cluster j + 1
is {Tm+r+l, Tm+r+2, ... , Tm+r+s}, then the distance
between them is Tm+r+l - Tm+r. Notice that employ
ing single linkage implies that clusters will always be
formed from sequential event times, a property that
we obviously desire. In fact, the single linkage dis
tance measure is criticized in the clustering literature
for its tendency to form clusters that look like chains,
but this is precisely the type of clusters for which we
search.

3.1 Terminating the Algorithm

Define the random variable H to be the smallest value
of the distance array chosen in each iteration. That
is, Hi is the distance between the two clusters selected
for merging in the i th iteration of the clustering algo
rithm; it is monotonically increasing as the distance
is always positive. Thus, the slope of the Hi curve is
always nonnegative.

Intuitively, if the data is truly bursty, the early el
ements of the Hi sequence should be relatively small
since we are combining clusters which are part of the
same burst. At some step we will merge the last pair
of clusters that are indeed part of the same burst. The
next value of Hi represents an attempt to combine
two clusters which are separated by an inter-cluster

1
E[Hi - Hi-I) =),(n - i) .

1233

(1)

1234 Ware, Page, and Nelson

of a Poisson process is rejected, then we apply the
clustering algorithm.

On the other hand, if we apply this rule to a de
terministic, completely regular process, it will place
all observations in a single cluster, since the sec
ond derivative will be zero at all stages. Therefore,
a single-cluster outcome should alert us to a data
set that represents a regular process. However, the
methodology continues to work as the inter-arrival
times within one large cluster are fitted with some
univariate distribution.

time

ith cluster

~.~..-.......
Yj Yj+l Yj+2

i + 1at cluster
.

4 MODELING AFTER CLUSTERING

There are four steps in modeling and generating data
after the sample data is clustered:

1. DATA ANALYSIS: Extract the observed inter
cluster times, intra-cluster times, and cluster
size, as represented by the random variables
{Xt, ... ,Xn }, {Y1, ... ,Ym }, and {D1, ... ,bn },

respectively. Here n is the number of clusters
and m = E~=l Di - n;

2. MODELING: Fit distributions to the observed
inter-cluster times, intra-cluster times, and
cluster-size data. Our software uses the Fittrl
package (Swain, Venkatraman & Wilson 1988) to
determine the parameters of the Johnson trans
lation system (Ord 1972, Johnson 1949) for each
of the random variables.

3. GENERATION: Use the parameters selected by
Fittrl for random-variate generation of ...\"", Y,
and D. (Though D is discrete, we fit a contin
uous distribution and then round to the nearest
integer to obtain the cluster size.)

4. SYNTHETIC TRACE: Use the generated values to
form a two-level process. After an inter-cluster
gap interval Xi, a new process is started. This
process generates D i events with the time be
tween events given by Yj, ... ,Yj+D i , and then
terminates. Note that for the i th cluster, j =
1 + E~~ll (D i - 1).

At each interval Xi a new process is started. This
process generates D i events with the time between
events given by Y and then terminates. Figure 4
shows this two-level process with the i th process gen
erating Di = 4 events with the time between events
given by Yj, . .. ,Yj+2. The i + 1st cluster is shown
starting X i+1 time units later.

Figure 5 shows data generated for file 4863.

Figure 4: A two-level Process

5 VALIDATION EXPERIMENT

The purpose of this experiment is to test the hypoth
esis that the clustering method presented for generat
ing file access traces which mimic the bursty behavior
of the actual trace captures the characteristics of the
trace data essential to the replicated file system simu
lation. If the results of driving a significant simulation
experiment with the synthetic data are reasonably
close to those generated with the original trace data,
we will conclude that the hypothesis is validated.

5.1 Method

Twenty files out of 853 files that were accessed dur
ing the busiest two hour period of the data were se
lected at random. The clustering algorithm was run
and then distributions fit to the inter-cluster gap, the
intra-cluster gap, and the number of events per clus
ter. These distributions were then used to generate
synthetic workloads for each file.

Next a simulation experiment was performed twice
for each file: once driven by the actual trace data, and
then driven by the corresponding synthetic workload
model. A discrete event simulation of the replicated
filing model presented in Section 2 was run repeatedly
as J..L (the rate at which updates are propagated from
the most up-to-date replica) was varied from .001 to
1000. The number of replicas was fixed at 5. Each
simulation run was terminated when the 95% confi
dence interval of the mean time to conflict (the mean
time to absorption where conflicts are considered an
absorbing state) was less than 5% of the mean. This
results in a pair of curves for each file: one generated
using the trace data and the other generated using
the synthetic load model. Each curve plots the mean
time to conflict as a function of the update propaga
tion rate.

Modeling File-system Input Traces

Ale: 4863 Generated

01g1n8 5 _
~ed. 5-

10L-_~_-..I.a......-_--'- ..J.--_--">J

0001 001 01 1 10 1000
~e"e

Figure 5: Generated Data Corresponding to File 4863 (see
Figure 1)

Table 1: Summary Statistics For The Inter-arrival Times
Of The Original and Generated Data for File
4863

Statistic Original Generated
mean 29.66 29.95

std. dev. 116 114
median 0.0021 0.0032

coef variation 3.93 3.83
lexis ratio 459.642 439.98
skewness 5.35 5.33

count 57 3307

5.2 Single File lliustration

Figure 5 shows the results of generating data for a sin
gle file. Visually comparing this to Figure 1 suggests
similar patterns of clustering. The summary statis
tics in Table 1 show the original data and the gen
erated data are close according to several measures.
The mean and standard deviation are within 1%.
The other values show the distributions are similar.
Note the wide variability of the inter-arrival times as
shown by the large standard deviation (".I 116).

Figure 6 shows the results of running the simula
tion with both the empirical and synthetic trace data.
The mean time to conflict as a function of update rate
is close for both data sets, lending support to the hy
pothesis that the generated data captures important
characteristics of the empirical trace.

5.3 Results

The results of running the experiments are presented
in Table 2. This table gives the relative error ex-

Figure 6: Mean Time to Conflict for the Original and
Generated Data for File 4863

pressed as a percentage when comparing the conflict
rate of the simulation using empirical data versus gen
erated data. Generally, the results are satisfactory.
Most results were within 30% of the original data.

The results that differed more than 30% come from
two sources of error. The first is a basic limitation
in using empirical data: the inter-arrival times are
fixed even though the data suggests that smaller or
larger values may exist. In this particular experi
ment, the mean time to conflict is closely related to
the minimum inter-arrival time. A smaller minimum
inter-arrival time causes conflicts to occur more of
ten. Since the generated data can have smaller inter
arrival times, the mean time to conflict tends to be
smaller for the generated data, especially as the up
date rate increases.

The other source of error is introduced by the sen
sitivity of the method to any errors in the cluster
size distribution. The size of the clusters affects how
many of the intra-cluster arrival times are generated.
Since these are the predominant cause of conflicts
(the intra-cluster times are typically an order of mag
nitude smaller then the inter-cluster times), chang
ing the number such events can drastically affect the
mean time to conflict. For our eventual file system
research, this is not problematic as the nature of file
systems will tend to treat clusters as a whole. For
other purposes, this aspect needs refining.

6 SUMMARY

This paper presents a methodology for analyzing,
modeling and simulating certain arrival-counting
processes. The method is appropriate when (1) the
number of such processes is too large to analyze man
ually, and (2) the processes resemble two-level pro-

1236 Ware, Page, and Nelson

Table 2: Relative Errors at Each Update Rate for Each File

Update rate (l/seconds)
1000File .001 .01 .1 1 10 100

5503 -26.48 -12.77 9.67 1.97 0.16 0.00 0.00
5479 -22.44 -9.81 9.85 1.04 0.05 0.00 0.00
3781 -18.25 -12.68 -11.21 -11.85 -18.69 -4.99 0.24
5260 -5.72 -0.12 0.42 2.85 0.12 0.00 0.00
4863 -5.51 -5.96 -7.79 -7.72 -7.35 -3.60 -0.54
7187 -4.79 -2.74 1.66 -0.06 0.00 0.00 0.00
5570 -3.96 -5.46 -1.75 -0.07 0.00 0.00 0.00
0524 -1.84 -2.14 -1.33 -0.84 -4.03 -12.30 -3.81
5488 -1.26 2.03 3.87 -2.51 0.01 0.00 0.00
7324 -0.19 0.53 -2.18 0.48 0.11 0.00 0.00
5580 1.76 6.50 17.19 1.56 0.07 0.00 0.00
5155 4.66 15.03 24.04 2.22 0.16 0.00 0.00
7174 8.84 8.48 11.89 1.07 0.12 0.00 0.00
1087 32.94 33.39 33.10 29.38 33.67 33.48 1.45
5532 46.40 57.34 42.45 6.51 0.68 0.06 0.00
0098 52.78 53.17 42.52 -15.05 -5.57 0.27 0.05
6491 54.63 59.42 46.22 4.74 0.35 0.00 0.00
5043 161.63 160.16 42.54 -17.41 -9.91 -4.14 -0.07

cesses. Trace data from both computer file systems
and from communications networks typically fit these
characteristics. In the case of file system traces,
the data is decomposed into separate traces for each
file accessed; for network traffic, communications be
tween distinct pairs of source and destination sites
constitute an appropriate decomposition. The pur
pose of this input modeling effort is to be able to
generate synthetic traces that exhibit similar "bursti
ness" to the original recorded data.

The method first uses hierarchical clustering to
group the data into bursts. A novel stopping rule
is presented which allows the method to use different
stopping parameters for each file. This is in contrast
to previous work (see for example Jain & Routhier
(1986)) which required a single stopping rule be ap
plied to the whole data set.

A simple simulation modeling effort is described
whose goal is to predict the frequency of concurrent
updates in a lazy-update propagation replicated dis
tributed file system. The system is very sensitive to
the burstiness of the update traffic. Hence the simula
tion is a good test of the degree to which the method
captures this characteristic of the trace data.

Preliminary results lead us to believe that the
method does a good job at rnodeling file system trace
data.

6.1 Limitations and Follow-up 'Work

A limitation that should be noted is that no attempt
has been made to model the time varying nature of
the workload. It is well known that file system work
loads are highly cyclical. For the purposes of our
simulation application however, we are more inter
ested in the worst case scenario which is represented
by the busiest sections of the trace. Hence, no work
is planned in this area.

As of yet, we have not attempted to model the
mix of file operations. The experiment reported uti
lizes only update events. Further work is required to
generate an appropriate distribution of event types
(read, lookup, create, etc.). Similarly, identity of the
site making the file system access has been ignored to
this point.

A longer range goal of this work is to produce a
flexible file system load generation tool. Given a set
of trace data for an existing system, the tool should
be able to generate events which mimic the behav
ior of the existing system. But further, it should be
parameterized so that it can be tuned to generate
predictable workloads for file systems for which no
trace data are available, either because they do not
yet exist, or because instrumenting them to gather
the traces is infeasible. For example, one might wish
to generate a trace for a file system which mimics an
existing one, but has 10 times as many users access
ing 5 times as many files. The work presented here is
a step along that path.

REFERENCES

Modeling File-systenl Input Traces

AUTHOR BIOGRAPHIES

1237

Devroye, L. (1986), Non-Uniform Random Variate
Generation, Springer-Verlag, New York, NY.

Guy, R. G., Heidemann, J. S., Mak, W., Page, Jr.,
T. W., Popek, G. J. & Rothmeier, D. (1990), Im
plementation of the Ficus replicated file system,
in 'USENIX Conference Proceedings', USENIX,
pp.63-71.

Hisgen, A. (1990), Dec firefly trace data, Data ob
tained from author on 8mm tape.

Jain, R. (1991), The Art of Computer Systems Per
formance Analysis: Techniques for Experiment
Design, Measurement, Simulation and Modeling,
John Wiley & Sons, Inc.

Jain, R. & Routhier, S. A. (1986), 'Packet trains
measurements and a new model for computer
network traffic', IEEE Journal on Selected Areas
in Communications SAC-4(6), 986-995.

Johnson, N. L. (1949), 'Systems of frequency
curves generated by methods of translation',
Biometrika 36, 149-176.

Kaufman, L. & Rousseeuw, J. (1990), Finding Groups
in Data: An Introduction to Cluster Analysis,
John Wiley & Sons, Inc, New York, NY.

Milligan, G. W. & Cooper, M. C. (1985), 'An exami
nation of procedures for determining the num
ber of clusters in a data set" Psychometrika
50(2), 159-179.

Ord, J. K. (1972), Families of Frequency Distribu
tions, Griffin, London.

Satyanarayanan, M., Kistler, J. J., Kumar, P.,
Okasaki, M. E., Siegel, E. H. & Steere, D. C.
(1990), 'Coda: A highly available file system for
a distributed workstation environment', IEEE
Transactions on Computers 39(4), 447-459.

Swain, J. J., Venkatraman, S. & Wilson, J. R. (1988),
'Least-squares estimation of distribution func
tions in Johnson's translation system', Jour
nal of Statistical Computation and Simulation
29, 271-297.

Terry, D. B., Theimer, M. M., Petersen, K., De
mers, A. J., Spreitzer, M. J. & Hauser, C. H.
(1995), Managing update conflicts in bayou, a
weakly connected replicated storage system, in
'Proceedings of the Fifteenth Symposium on Op
erating Systems Principles'.

PETER P. WARE is a PhD student in the Com
puter and Information Science Department at The
Ohio State University. He is interested in distributed
operating systems and replicated file systems. See
http://www.cis.ohio-state.edu/-ware for more
information about him and this paper.

THOMAS W. PAGE, JR. is an Assistant Pro
fessor in the Computer and Information Science De
partment at The Ohio State University. He received
his Ph.D. in Computer Science and Engineering from
UCLA in 1989. His areas of interest include dis
tributed operating systems, distributed and repli
cated file systems, concurrency control for replicated
data, and distributed shared memory.

BARRY L. NELSON is an associate professor in
the Department of Industrial Engineering and Man
agement Sciences at Northwestern University. He is
interested in the design and analysis of computer sim
ulation experiments, particularly statistical efficiency,
multivariate output analysis and input modeling. He
is the simulation area editor for Operations Research
and will be Program Chair for the 1997 Winter Sim
ulation Conference.

