
Proceedings of the 1996 Winter Simulation Conference
ed. J. M. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

EFFICIENT DATA CONSISTENCY IN HLAJDIS++

Sudhir Srinivasan

Mystech Associates, Inc.
5205 Leesburg Pike, Suite 1200
Falls Church, VA 22041, U.S.A.

ABSTRACT

Simulation exercises based on the DIS paradigm are faced
with a severe scalability limitation due to the use of time
out updates or "heartbeat" messages for maintaining
consistency despite message loss. Since they carry
information that is redundant and useless in most cases,
these messages represent a waste of network bandwidth
and computational resources. This paper presents an
elegant solution that eliminates heartbeats without
compromising consistency. Rather than using additional
schemes and software components as others have done,
the solution proposed here consists of careful use of
reliable and unreliable communications based on a key
insight into the communication properties of DIS-based
simulations. Not only does our solution eliminate
heartbeats, it also minimizes additional resource
consumption by using reliable communications
minimally. Finally, due to its simplicity, it can be easily
incorporated into HLA-compliant simulations.

1 INTRODUCTION

A distributed simulation consists of a set of simulators
distributed geographically and interconnected via a
system of networks (local and wide-area), simulating a
common application, typically a battle. The Distributed
Interactive Simulation (DIS) paradigm and protocols
define a common way for simulators to exchange
information so as to maintain a consistent view of the
battlefield at each simulator. In this paper, we focus on
one aspect of these protocols, namely, the time-out
update, also known in the literature as the heartbeat. This
data consistency feature of the DIS paradigm requires
each simulator to periodically send an update on the state
of each entity it simulates, even if the state of the entity has
not changed since the last update. The DoD High Level
Architecture (HLA) (McGarry, Weatherly and Wilson,
1995), which is the chosen architecture for the next
generation of DIS, referred to as DIS++, provides a

946

minimum rate communication service to be used by DIS
based simulations to implement heartbeats. Clearly,
heartbeats impose a severe scalability limitation. With the
advent of large exercises such as STOW (Calvin et.a!.,
1995) which are expected to simulate on the order of
hundreds of thousands of entities, the scalability problem
due to the heartbeat has become critical to the point of
making such exercises infeasible. Consequently, there is a
severe need for a scalable solution.

While reliable communication can eliminate the
need for heartbeats, it introduces problems of its own
(excessive bandwidth consumption and potentially higher
communication latency). We describe a new solution to
the problem that combines unreliable and reliable
communications in a simple and elegant way to yield an
effective, scalable solution. The main features of our
solution are:

it eliminates the need for heartbeats;
• it uses reliable communication only when required,

thus minimizing the number of acknowledgment
messages and retransmissions;

• it is simple to implement - specifically, the HLA
provides the required primitives, so that our
solution can be incorporated trivially by HLA
compliant simulations.

Due to the power and simplicity of our solution, we
strongly believe it can solve the scalability problem for
large-scale distributed simulation exercises.

2 THE PROBLEM

DIS (Dahmann and Wood, 1995) refers to two things: a
paradigm for interoperability among distributed real-time
simulators, and an IEEE standard set of protocols and
data structures that implement this paradigm. With the
advent of the HLA as directed by the DoD Modeling and
Simulation Master Plan (DMSO, 1995), it is expected that
the DIS community will adopt the HLA as the architecture
for DIS++, the next generation of DIS.



Efficient Da.ta Consistency in HLA/DIS++

Irrespective of the implementation (protocols vs.
HLA), the basic DIS paradigm is expected to be an
important technology in future distributed simulation
exercises. Essentially, a distributed simulation based on
the DIS paradigm consists of a set of geographically
distributed simulators tightly synchronized to a global
wall-clock time. The simulators maintain a consistent
view of the battlefield by exchanging ground truth such as
state updates (e.g. position and velocity) and interactions
(firing of a weapon) and modifying their local databases
accordingly. To reduce the number of state updates, DIS
uses a mechanism called remote entity approximation (or
dead reckoning, DR) wherein simulated entities use a
common algorithm to estimate the trajectory of other
entities based on the most recently received updates. With
this scheme, state updates are generated only when the
actual trajectory of an entity differs from the trajectory
estimated by the DR algorithm by some threshold amount.
In the rest of this paper, "DIS" refers to the DIS paradigm
rather than the protocols, unless specified otherwise.

DIS does not assume a reliable communication
medium underlying the simulators. In other words, it is
possible for messages (in particular, state updates) to be
lost. To compensate for lost updates, DIS includes a time
out update mechanism, commonly known as the
heartbeat. Under this mechanism, an entity must generate
an update if a given amount of time has elapsed since the
last one, even though its state or appearance have not
changed. The periodicity of these heartbeats is adjusted
(typically, 5 seconds) so that the error due to lost updates
is within acceptable bounds. Thus, the primary use of the
heartbeat mechanism is to maintain data consistency in
the face of lost messages. Heartbeats have also been used
to detect the removal of an entity from an exercise - an
entity that has not sent a heartbeat for a certain number of
time-outs is considered deleted.

Heartbeats impose a severe scalability limitation on
DIS exercises. This scheme worked well for the original
SIMNET protocols because SIMNET exercises were on a
small scale (few tens of entities). DARPA's STOW
program expects to conduct exercises involving on the
order of 100,000 entities by the year 2000 (Calvin et.a!.,
1995). A large number of these entities are expected to be
in a steady state most of the time (i.e. their state and
appearance change very infrequently). Unfortunately,
DIS requires these entities to generate updates at every
time-out. Clearly, this will place excessive demands on
the network (for transporting messages) and processors
(for generating and consuming the messages). This
(mostly redundant) traffic is projected to constitute a
significant portion of the total traffic in large-scale
exercises. The problem will only worsen as DIS++
incorporates new kinds of entities such as dynamic terrain
and environmental effects (smoke and weather).

Consequently, there is a significant need for a scalable
solution that eliminates or minimizes the use of
heartbeats.

3 RELATED WORK

To date, only two efforts have addressed the problem: the
STOW real-time information transfer and network
(RITN) project (Van Hook, Calvin and Smith, 1995) and
the DIS lite & query protocol (Taylor, 1995).

The STOW approach is based on a key
characterization of the state of DIS entities into active and
quiescent states. A quiescent entity is one that generates
only heartbeats (we defer a formal definition to Section
4.2 since our solution is based on these definitions as
well). The main idea behind STOW's consistency
protocol is to reduce the number of heartbeat messages
generated by combining the updates for all quiescent
entities at a simulator into a single message at each
timestep. The protocol requires simulations to effectively
maintain a shared consistency list that is used to track the
set of quiescent entities and their versions. Using the
information in the consistency lists, entities receiving a
heartbeat update can determine the quiescent entities for
which they do not have current information and request
this information using a negative acknowledgment
(NACK) scheme. All entities that do not have current
information send a NACK message indicating the missing
pieces of information to the emitter of the updates which
responds with the missing information. Since a large
number of NACK's could be generated in a short period
of time (NACK's follow a bursty pattern), the protocol
incorporates a NACK suppression scheme using back-off
in which a sender of a NACK waits a random amount of
time before sending its NACK. If the NACK of another
sender is received during this back-off period, the sending
of the NACK is aborted.

Clearly, the STOW approach is fairly complex (the
consistency list is a shared data structure with a single
writer and multiple readers, the implementation of which
is non-trivial; so also the NACK suppression scheme).
Recognizing scalability limitations of the consistency
protocol, STOW has proposed consistency agents to off
load some of the consistency tasks from the simulations.
A key factor to good performance is quiescence detection.
Simulations must be able to accurately detennine when
entities have become quiescent or active. Quiescence is
usually detected when an entity has been generating
heartbeats for some period of time. This threshold period
must be chosen very carefully since it introduces a
performance trade-off: if quiescence is detected too often,
the overhead of the consistency protocol will degrade
performance; on the other hand, if quiescence is not
detected often enough, the benefits of the protocol are not



948 Srinivasan

observed. To simplify this problem, the STOW program
adopted a weaker definition of quiescence where entities
are considered quiescent only when they are stationary
(trading off some performance in the process). It is
important to note that the consistency protocol requires
heartbeats to be broadcast to all simulations (whereas
state updates would be multicast to only those simulations
that require them). As such, the scalability of the STOW
scheme improves upon that of DIS only in that it is limited
by the number of simulations rather than the number of
entities. While this represents a significant improvement,
we believe it will prove insufficient as exercises that
involve large numbers of simulations are planned.

The DIS-Lite & Query Protocol (DLQP) is based on
an analysis of the contents of the entity state protocol data
unit (ESPDU), the most often used unit of data exchange
in DIS. DLQP proposes alternate "lightweight" POU's
that would be used instead of the ESPOU's, to reduce the
bandwidth consumed. Further, it defines "minimal"
versions of these new POU's that would be used for the
heartbeats, again, to reduce bandwidth consumption.
Finally, it proposes increasing time-out intervals to reduce
the number of heartbeats. A query protocol is used to fill
in gaps of infonnation, much like the NACK scheme of
the consistency protocol. DLQP uses a suppression
scheme for queries similar to that used for NACK's in the
consistency protocol. Since OLQP is based on the
structure and contents of the ESPOU, it is not clear how it
will be extended to DIS++ which will use the HLA
interface specification for data exchange, rather than the
ESPDU. A more detailed comparison of OLQP with the
STOW consistency protocol is given in (Smith and Van
Hook, 1996).

4 TOWARDS A NEW SOLUTION

At first thought, it seems the solution to the heartbeat
problem lies in reliable communications: if all messages
were sent reliably, there would be no need for heartbeats.
Unfortunately, reliable communication has its own costs.
The main drawback of reliable communication is that
reliability is achieved using acknowledgment messages
and retransmission of lost messages which increases the
bandwidth consumed, compared to unreliable
communication. This introduces an interesting trade-off
that is an open problem worthy of investigation: on the
one hand, the reliable communications for all updates
increases the bandwidth consumption; on the other hand,
the use of heartbeats with unreliable communications also
increases bandwidth consumption - which is better?
Ironically, while reliable communication protocols are
designed to alleviate the loss of messages, it is precisely
that situation that causes the most problems for these
protocols. It is easy to reach a state where the loss of a

message causes a sender's retransmission window to fill
up and thus halt further sending of new messages (thereby
increasing the latency of communication for those
messages). This second problem is severe enough due to
the real-time requirements of distributed simulations to
make reliable communication for all messages infeasible
(at least at the time of writing - as we move towards
more reliable communication media, reliable
communications may prove to be the solution).

4.1 Requirements

From the above discussion, some combination of reliable
and unreliable communication appears necessary, to solve
the scalability problem of heartbeats. Ideally, the solution
must utilize unreliable communications most of the time
and use reliable communications only when required. The
goal is to develop a solution that eliminates (or
minimizes) the use of heartbeats while minimizing the use
of acknowledgments and retransmissions.

Ideally, a scheme that eliminates heartbeats would
be preferable. In practice, the DIS community has used
heartbeats for a second purpose: detecting the loss of
entities. An entity from which some specified number of
contiguous heartbeats have not been received is deleted to
prevent other entities from unrealistically engaging or
dead-reckoning it. If heartbeats are eliminated, we must
address this issue of "dropped entities" - i.e. how to
detect entities that are either no longer operational or that
cannot communicate with the rest of the simulation.

In keeping with the philosophy of the STOW RITN
project (Van Hook, Calvin and Smith, 1995), we argue
that the primary focus of efforts in this area should be on
the data consistency aspects, for the following reasons:

• The issues of data consistency and detecting
dropped entities were originally coupled because a
single mechanism (heartbeats) could address both.
There is no other reason to link these two issues.
Since the heartbeat mechanism is proving
inadequate to solve the data consistency issue, we
argue that the two issues should be decoupled and
independent solutions developed for each.

• The decoupling of the two issues allows the use of
more efficient schemes (such as query-reply
schemes using unicasts rather than multi-or
broadcasts) to detect dropped entities

• Such outages are temporary in nature and during
such outages, interactions are meaningless by
definition (Smith and Van Hook, 1996). Schemes
developed to detect such situations must focus on
quick detection rather than recovery since no
protocol can compensate for the semantic gap
created by the sudden loss of entities.



4.2 Solution Strategy

Efficient Data Consistenc~yin HLA/DIS++

5 THE SOLUTION

949

Under the DIS paradigm, state updates must be emitted
under three conditions:

• dead-reckoning threshold is exceeded

• appearance has changed
• time-out period has elapsed

An entity that emits updates under the first two conditions
is said to be in an active state while an entity that emits
updates only under the last condition is said to be in a
quiescent state. Note, stationary entities (whose
appearance is not changing) are quiescent by definition,
but quiescent entities are not necessarily stationary - a
moving entity that does not deviate significantly from its
dead-reckoned path is also quiescent. Typically, entities
transition between these states in the course of a
simulation: an active entity could become quiescent; a
quiescent entity could become active; a quiescent entity
could move to another quiescent state (for example, by
changing its appearance only).

To understand the solution we propose, we must
first understand the nature of communications among DIS
simulations. A very important requirement is low latency
of communication. DIS simulations operate in real-time
(typically with humans in the loop). To be realistic, the
communication latency must be low enough (,... 100 ms) so
that the occurrence of an event at one simulator and the
notification of the same at another are effectively
instantaneous. An important consequence of this real-time
requirement is that it limits the benefits of reliable
communications, as follows: the loss of a message implies
the information in the message will not reach its
destination at the time it would have reached if the
message had not been lost. In a sense, we can say the
damage is already done when a message is lost. Any
remedial action (such as a retransmission) can only reduce
the effect of this damage, but cannot eliminate it. Another
factor that limits the benefit of reliable communication is
the property that a new update makes any older update
obsolete immediately. Thus, a retransmission by a
reliability mechanism pays off only if it happens closer in
time to the original lost message than to the next update.
Recalling the definition of active and quiescent states of
entities, this implies that reliable communications will not
provide significant benefit when an entity is in an active
state. Since the goal is to eliminate the heartbeats in the
quiescent states, we have the following insight which is
key to the solution proposed here:

Observation: Reliable communications will have
the most benefit if used while transitioning to a
quiescent state.

Based on this observation, we describe next the solution
we propose to solve the scalability problem due to
heartbeats.

The rationale behind our scheme (developed in Section 4)
is summarized in Figure 1. In an active state, the entity
generates new state updates often enough so that the time
out does not occur. Reliable communication does not
provide significant benefit in this state because new
updates (being generated frequently enough) subsume
older updates. In other words, the time to retransmit the
lost message (including timing out waiting for an
acknowledgment) will typically be close to or greater than
the time to the next new state update, significantly
reducing or eliminating the benefit of the retransmission.
In the quiescent state, we wish to eliminate the s
completely. Since the heartbeats are generated primarily
to ensure data consistency in the event some simulators do
not receive some of these updates, our solution is to use
reliable communication while transitioning to a quiescent
state, thus eliminating the need for heartbeats in the
quiescent state.

£ Reliable communication

New state updates' Heartbeats

Quiescent

Figure 1: Rationale

To implement our solution, a simulation follows the
state diagram of Figure 2. The upper entry in each state
describes the state while the lower entry (in italics)
describes the communication paradigm used in that state.
In an Active state, the entity sends updates using
unreliable communications (as is done in DIS now). The
occurrence of a time-out is taken as an indication that the
entity is transitioning to a quiescent state and the entity
enters the Transition state where it sends an update using
reliable communication. In the Transition state, one of
two things can happen: if the entity generates a new
update, then it is put back into the Active state and the
update is sent using unreliable communication as before;
if a second time-out is generated, the entity enters the
Quiescent state where updates are suppressed. The entity
comes out of the Quiescent state when it generates its next
new state update, at which time it moves to the Active
state. Note, it is possible to reduce the Transition and
Quiescent states into a single state that sends only one
message with reliable communication and suppresses all
subsequent messages. With this optimization, a single
time-out is needed to transition the entity out of the Active
state - thereafter, the timer can be disabled until the
entity re-enters the Active state. It is very important to
note that the two classes of messages (reliable and
unreliable) should follow different logical paths in the



9.50 Srinivasan

communications software of a simulation. This is required
so that hold-ups in the reliable communication channel
(such as a full retransmission buffer) do not interfere with
the unreliable communications.

New update

Figure 2: Implementation

The simple scheme we have proposed above has
several powerful advantages:

• It eliminates heartbeat messages completely - the
only update is in the transition state and this update
is required to preserve the effect of the heartbeats
(data consistency).

• It uses reliable communication only where it is
most likely to be beneficial.

• It uses reliable communication at a minimum,
resulting in a minimum number of projected
acknowledgments and retransmissions (and thus,
extra bandwidth consumed).

• Reliable communications do not interfere with
unreliable communications, so that in an active
state, the entity's updates can be delivered in a
timely manner.

• It does not require quiescence detection; in a sense,
the quiescence detection is built into the scheme
(note also, we are using the stronger definition of
quiescence here, where a quiescent entity need not
be stationary).

• Any retransmissions required due to lost messages
are handled by the communications software rather
than the simulation, which will lead to better
performance since the retransmissions can
presumably be performed more efficiently at the
communications layer.

• Since updates are usually sent to several receivers,
the use of reliable communications has the benefit
that retransmissions are sent only to those receivers
that did not receive the original message. With the
heartbeats of DIS, effectively, the retransmission is
sent to every receiver of the original update.

• It can benefit single-entity simulators as well as
those that simulate a number of entities, such as
synthetic forces.

• It is relatively easy to implement.
The power of the solution may be enhanced by the

following optimization. Recall, the solution utilizes the
property that newer updates subsume older ones. Consider
an entity that has just moved into the Transition state

(Figure 2). Soon after, it generates a new state update,
moving it back into the Active state. In such a case, it
would be beneficial if the simulation had the capability to
abort the reliable transmission of the message it sent in the
Transition state (if such a transmission is in progress).
While this capability may not exist with off-the-shelf
communication software such as TCP, it is one that can be
built in easily. This optimization could be useful in the
case where an entity toggles back and forth between the
Active and Transition states.

Theoretically, the scalability of this solution is
limited only by the number of entities in the Transition
state simultaneously (i.e. the number of entities using
reliable communications at any time). In practice, this
number is expected to be very low. Optimizations such as
controlling time-out intervals and aborting unnecessary
retransmissions (described above) can further improve
scalability .

6 HIGH LEVEL ARCHITECTUREIDIS++

One of the advantages of the solution we have proposed
here is its ease of implementation. This is especially true
for simulations that are HLA-compliant. The HLA is a
part of a common technical framework being developed
by the Architecture Management Group (AMG) of the
Defense Modeling and Simulation Office (DMSO) to
promote interoperability and reuse among simulations. It
consists of a set of compliance rules, an object model
template (OMn to describe the object models of
simulations (and federations of simulations) and an
interface specification describing the interfaces using
which the simulations interact. The services described in
the interface specification are provided by a run-time
infrastructure (RTI). Among other things, the RTI
provides communication services to the simulations.
Currently (Architecture Management Group, 1996), the
RTI is expected to provide both reliable and unreliable
(called best-effort) communication. As such, the RTI
provides the primitives needed to implement our solution.
HLA-compliant simulations can simply choose the
appropriate RTI service depending on the state they are
currently in.

The RTI being developed currently by the Defense
Modeling and Simulation Office is a prototype designed
primarily for demonstrating the HLA concept in practice.
As such, some aspects of its design are guided by schedule
rather than by performance. Therefore, while our solution
can be implemented using the RTI prototype,
performance may not be satisfactory. We expect the
performance to improve with future RTI
implementations.



Efficient Data Consistenc.y in HLA/DIS++ 9.51

7 CONCLUSION

The use of time-out updates (or heartbeats) in the DIS
paradigm poses a scalability limitation for distributed
simulation exercises. This problem has become acute with
the advent of large-scale simulation exercises such as
STOW and alternate schemes are needed. We have
proposed an elegant yet powerful solution to this problem.
Our solution consists simply of judicious use of reliable
and unreliable communications based on a key insight
into the communication requirements of DIS simulations
and does not require any additional software/hardware
schemes. It completely eliminates the use of heartbeats.
Further, it uses reliable communications only when

required and in a way such that they need not interfere
with the normal, unreliable communications used for state
udpates. Consequently, it minimizes the use of
acknowledgments and retransmissions. Overall, we
believe it will significantly improve the scalability of
distributed simulations. Finally, our solution is easy to
implement, especially in HLA-compliant simulations.

REFERENCES

Architecture Management Group. 1996. Interface
Specification for the HLA, Version 0.5. Working
document available from URL: http://
www .dmso.miVdocslib/hla/IF_Spec_vO.45.doc,
Defence Modeling and Simulation Office,
Alexandria, Virginia.

Calvin, 1.0., 1. Seeger, G.D. Troxel, and D.J. Van
Hook. 1995. STOW Realtime Information Transfer
and Networking system architecture. In
Proceedings of the 12th Workshop on Standardsfor
the Interoperability ofDistributed Simulations, 343
353, Institute for Simulation & Training, Orlando,
Florida.

Dahmann, 1.S., and D.C. Wood. 1995. Editors, Special
Issue on Distributed Interactive Simulation.
Proceedings of the IEEE, Vol. 83, No.8.

DMSO. 1995. DoD Modeling and Simulation Master
Plan, Defense Modeling and Simulation Office,
Alexandria, Virginia, October 1995.

McGarry, S., R. Weatherly, and A. Wilson. 1995. The
DoD High Level Architecture (HLA) Run-time

Infrastructure (RTn and its relationship to
distributed simulation. In Proceedings of the 13th
Workshop on Standards for the Interoperability of
Distributed Simulations, 595-606, Institute for

Simulation & Training, Orlando, Florida.

Smith, J.E. and OJ. Van Hook. 1996. Comparison of
consistency protocol vs. DIS-Lite. In Proceedings of
the 14th Workshop on Standards for the
Interoperability of Distributed Simulations, 875
884, Institute for Simulation & Training, Orlando,
Florida.

Taylor, D. 1995. DIS-Lite and Query protocol. In
Proceedings of the 13th Workshop on Standardsfor
the Interoperability ofDistributed Simulations, 697
703, Institute for Simulation & Training, Orlando,
Florida.

Van Hook, D.J., J.O. Calvin, and J.E. Smith. 1995. Data
consistency mechanisms to support distributed
simulation. In Proceedings ofthe 13th Workshop on
Standards for the Interoperability of Distributed
Simulations, 797-806, Institute for Simulation &
Training, Orlando, Florida.

AUTHOR BIOGRAPHY

SUDHIR SRINIVASAN is a research scientist at
Mystech Associates, Inc., conducting research in parallel
and distributed modeling and simulation. He received his
Ph.D. in Computer Science from the University of
Virginia in 1995 and Bachelor of Engineering also in
Computer Science from the Bangalore University, India,
in 1990. From August 1995 through February 1996, he
was also a research associate at the University of Virginia,
working on identifying fundamental issues in linking
models at different levels of resolution. His main research
interest is in parallel and distributed simulation, especially
the High Level Architecture. He is supervising the on
going development of a performance analysis tool for the
HLA. His other interests are in parallel and distributed
computing and networking. He has published several
papers in conferences and journals and is a member of the
ACM and the IEEE Computer Society.


