
Proceedings of the 1996 Winter Sirn71lation Conference
ed. J. 1'.11. Charnes, D. J. Morrice, D. T. Brunner, and J. J. Swain

THE DESIGN OF AN EFFICIENT SIMULATOR FOR THE PENTIUM PRO PROCESSOR

David A. Sykes

ObjectKno\vlogy, Inc.
11 Oakview Drive

Greenville, SC 29605-1816, U.S.A.

ABSTRACT

The increasing size and complexity of computer sys
tems has created the need to develop new techniques
to facilitate the design and evaluation of developing
architectures. The most comOl0n technique applied
to the development of new architectures is simulation,
which permits detailed accurate o10deling of the ar
chitecture. However, there are several probleols asso
ciated with using sill1ulation in developing conlputer
systems. First, traditional sinlulation approaches are
not flexible enough to permit easy extension or 1110di
fication of the o10del. While most sinlulators are para
nleterized to provide flexibility, paran1eterization alone
is not adequate to pernli t the ll10dification and exten
sion required for developing architectures. Second,
traditional simulation approaches are cOll1putation in
tensive, slowing development and prohibiting sin1ula
tion of large progralllS. To address the first problenl,
we use an object-oriented design for our sinlulator
to produce a flexible, extensible ll10del. To address
the second problenl, we incorporate the decode step
of processor simulation into the state of each instruc
tion object, saving the tinle to sinlulate the decode
during execution. We have implenlented a prototype
of our design and initial experin1ents \vith the object
oriented prototype, coded in C++, ran twice as fast
as another prototype that we iOlplenlented using the
traditional approach to simulation where the simu
lator was written in C.

1 INTRODUCTION

The increasing size and con1plexity of computer sys
tell1S has created the need to develop new techniques
to facilitate the design and evaluation of developing
architectures. The nl0st COlllmon technique applied
to the development of ne\v architectures is silllulation,
which permits detailed accurate nl0deling of the ar
chitecture (Malloy 1993; Philip 1992). The most conl
lllon sinlulation approaches for conlputer systenls are

840

Brain A. Malloy

Department of Computer Science
Clemson University

Clelnson, SC 296:34-1906, U.S.A.

trace-driven and execution-driven simulation. Both of
these approaches have been used successfully in de
veloping and testing new architectures.

Ho\vever, there are several problems associated
with using sinlulation in developing computer sys
tell1S. First, traditional simulation approaches are not
flexi ble enough to permit easy extension or modific
ation of the model. While most simulators are para
11leterized to provide flexibility (~lalloy 199:3; Philip
1992), parameterization alone is not adequate to per
11li t the modification and extension required for de
veloping architectures. Second, traditional simulation
approaches are typically computation intensive, which
slows development and prohibits silllulation of large
progran1S. Third, to provide accurate results and to
avoid design errors, simulators 11lUSt be validated; val
idation of simulators, especially simulators for devel
oping architectures, is difficult and time consunling.

In this paper, we address the first two problems as
sociated with traditional approaches to simulation of
developing architectures. To address the first prob
lern, we use an object-oriented design for our sinl
ulator to produce a flexible, extensible model. To
address the second problem, we incorporate the de
code step of processor simulation into the state of
each instruction object, saving the time to simulate
the decode during execution. We have implenlen
ted a prototype of our design and initial experiments
with the object-oriented prototype, coded in C++,
ran twice as fast as another prototype that we illlple
mented using the traditional approach to simulation
where the silllulator was written in C. However, al
1110st twice as much memory was required to execute
the object-oriented simulator over the traditional sim
ulator. Our current focus is only on execution-driven
sinlulation. Further work will address the reusability
of our design and the conlponents it produced in the
construction of trace-driven simulators.

The remainder of this paper is organized as fol
lows. In the next section, we provide background
about trace-driven and execution-driven sinlulation

Efficient Simulator for tbe Pentium Pro Processor 841

together with information about the target architec
ture of our simulator: the Pentium Pro Processor. In
section 3, we present the object model for our sinl
ulator together with discussion about the advantages
of our design. In section 4 we describe our prototype
and in section 5 we discuss our experiments and give
concluding remarks.

2 BACKGROUND

In this section, we provide background about simulat
ors and processors. We begin by discussing two tech
niques applied to processor simulation: trace-driven
and execution-dr-iven simulation. We then overview
recent trends in processor design with special em
phasis on the Pentium Pro processor by Intel, selected
because of its complexity and the challenge it intro
duces to simulator development.

2.1 Processor Simulation

The classic approach to simulating existing or devel
oping architecture is trace-driven simulation where
the simulation is based on a predetermined instruc
tion sequence or trace. Trace-driven simulation re
quires information about branch targets and memory
references made during the execution of the program.
This technique is used extensively to evaluate unipro
cessor cache performance and techniques have been
developed for capturing trace information to include
references from system calls and the operating system.
However, the problem with applying the trace-driven
approach to simulating developing architectures is that
the simulated architecture must be sinlilar to the ar
chitecture on which the trace was obtained; this is a
significant problem when simulating an architecture
that is in the development stage (Koldinger, Eggers,
and Levy 1991). For a new architecture, the order
of events, the latency of communications, and/or the
number of processors might be completely different
from the trace host, rendering the traces useless when
evaluating timing-sensitive applications. Moreover,
using traces obtained from a sequential system may
be completely inappropriate for use in simulating a
parallel system since the order of execution is usu
ally dependent on the order in which different parts
of a parallel program complete execution (Mukherjee
and Bennett 1990). Previous research has shown that
traces obtained on a multiprocessor can produce erro
neous results when used to simulate a different mul
tiprocessor (Dahlgren 1991). Even when the trace
driven approach is applied to uniprocessor simulation,
traces are difficult to obtain and trace files are fre
quently prohibitively large (Ball and Larus 1992).

Because of the dra\vbacks of trace-driven sinlula
tion, recent trends reveal a proliferation of the use
of EXEcutzon-driven szmulation, also referred to as in
struction level sinlulation 1 register- transfer sinlulation
or cycle-by-cycle sinlulation. In the execution-driven
approach, the sinlulator actually executes an input
program. Thus, the main actions of the simulator are
expressed with a large case statement enclosed in a
while loop that runs for the length of the simula
tion; on each iteration of the loop, an instruction is
executed and each case option is an op code for the
processor to decode and execute. Execution-driven
simulation permits development of the software to
gether with the hard\vare because the simulator isn't
bound by the traces.

Although recent research has produced reliable ex
ecution driven sinlulators (Malloy 1993; Philip 1992),
the classic, time-honored approach to processor sim
ulation is trace-driven simulation.

2.2 Trends in Processor Design,
The Pentium Pro

In the earliest stored-prograol computers, hardware
was expensive so that early processor designers pro
duced a machine with a single register for arithmetic
instructions. Since all operations would accumulate
in a single register, it was called an occumulator; the
EDSAC computer was a single accumulator machine.
This early design philosophy was replaced by more
elaborate schemes, since hardware became progress
ively less expensive. Recent processor designs com
bine a lush supply of registers with nlultiple instruc
tions issued on each execution cycle and elaborate
memory hierarchies.

An extremely efficient microarchitecture, the Pen
tiunl Pro Processor by Intel, has recently been presen
ted that combines innovations resulting in processor
speeds that significantly exceed the 100 MHz Pentium
Processor, though it is manufactured with the same
semiconductor process that produced the Pentium Pro
cessor. The Pentium processor is superscalar, using
five stages to extract high throughput. However, the
Pentium Pro processor is capable of speeds in excess
of 200 MHz. To achieve this, several design innova
tions were incorporated into the new processor includ
ing dynamic execution, associative memory, branch
prediction, branch recovery, a branch target buffer and
an instruction pool that permits three independent
processor units to communicate. The instruction pool
is irrlplemented as content addressable m.emory called
the reorder buffer (ROB).

Dynamic Execution technology can be summar
ized as optimally adjusting instruction execution by
predicting program flow, using data flow analysis to

842 S.vkes and l\Iallo.y

choose the best instruction to execute and then ex
ecuting the instructions speculatively'. in a preferred
order. To do this, the processor uses an in-order
fetch/decode unit, an out-of-order dispatch/execute unit,
an in-order retire unit and a bus lnterface unit that
cODlmunicates with the off chip cache supporting as
D1any as four concurrent cache accesses.

Figure 1 illustrates the important design features
of the PentiuD1 Pro Processor. At the top of Fig
ure 1, is the system bus and the off chip cache or
£2 Cache. The Bus Interface connects the processor
with the system bus and the off chip L2 cache. The
processor has an on-chip cache with an 81\: byte in
struction cache, shown in Figure 1 as L1 I-Cache, and
an 8K data cache, shown in Figure 1 as L1 D- Cache.
The Fetch/Decode unit fetches instructions from the
L1 I-Cache while the Dispatch/Execute unit and the
Retire unit fetches (stores) instructions from (to) the
L1 D-Cache. All three units access the Instruction
Pool. Figure 1 is an extremely simplified description
of the Pentium Pro Processor, which requires detailed
simulation to capture subtle but important nuances to
facilitate processor developnlent. A sinlulator for the
Pentium Pro Processor must permit easy extension
and nl0dification together with efficient execution.

Pool

Figure 1: The Pentium Pro Processor Design

3 DESIGN OF THE SIMULATOR

In our brief description of the Pentium Pro Processor,
provided in the previous section, we have tried to
capture the flexibility and power of the processor.
However, development and testing of such a processor
requires the use of a siDlulator that is also powerful
and flexible. The processor simulator that we present
in this paper was nl0tivated by the following goals:

• efficiency, particularly with respect to execu
tion tinle since traditional simulators are C~PU-

intensive;

• el'fensibility, to pernlit addition of ne\v kinds of
instructions or silnulation of new hardware conl
ponents to study their impact without requiring
large changes to existing hard\\'are or soft\\'are;

• flexibility, to pernlit easy adaptation to new al
gorithms; for exanlple, adaptation of a new cach
ing strategy or pipeline schedule to determine
their effects; and

• reusability, such that we can build simulators
for other computer architectures using existing
software components.

vVe have chosen to use an incremental develop
ment approach. In starting our work, we have fo
cused on siDlulators for simple architectures and are
building on that work to address computers that have
increasing amounts of sophistication. Our plans for
future work include the development of an object
oriented framework for simulators. We are first fo
cusing on building a set of components that can be
reused to sinlulate a wide range of architectures-for
exanlple, an architecture containing multiple levels of
cache Dlenl0ry, register arrays, and instruction pipelines
including those that support out-of-order processing
and in-order retirement of instructions. Our ultimate
goal is a simulator for the Pentium Pro. The design
that V\,e present in this paper comprises the funda
Dlental architecture. From that and its refinement
over a series of increments, we will identify a more
general design that will be captured in a framework
frODl which we can design many simulators. We have
already determined that framework will include both
abstract classes and tenlplates.

To address the goals listed above, we begin with
the object-oriented programming paradigm to exploit
its strengths for supporting extensible, flexible designs
and reusable components. For reasons of efficiency,
we adopted C++ as our implementation language, al
though our design is virtually language-independent.

3.1 Analysis of Computer Architectures

We began our development effort with an analysis
of the domain of computer architecture. The object
model for our initial design is illustrated using "uni
fied method notation" in Figure 2. Although this
Dlodel is in the development stage, we consider it
sufficient for investigating a design for simulating a
variety of conlputer architectures. In the nlodel, we
attempt to capture major object classes within the
domain so that when we consider a specific computer
architecture-for example a Motorola 68040 or the

Efficient SiInulator for the Pentium Pro Processor

Unit

Fetch Unit

Decode Unit

rVlemory
2+ *

Address f\.1icroOp
CPU -

;-

? 6
Storage Unit Data Memory Instruction Instruction

0--.:--<)
Memory

'vi'

f i 9
I I

Data Cache Data Register Instruction Instruction
Memory Register Cache Memory

Arithmetic
Unit

Retire Unit

Figure 2: Analysis Object Model for the C~on1puter .A.rchitecture Don1ain

Pentium Pro Processor-we will refine the classes in
this model and likely introduce new relationships.

The object model is based on an assuI11ption that
data and instruction memories are separate, although
there is no assumption as to whether this separation
is logical or physical. Implicit in this assumption is
that instructions can be executed only fron1 instruc
tion memory.

3.2 Design Overview

Our simulator architecture is based fundamentally on
the separation of instruction memory and data n1eI110ry.
Instruction memory contains only instructions-never
data-that we treat as objects. That is, instead of rep
resenting instruction memory as an array of bytes (or
words) that are fetched and assembled into instruc
tions that are then decoded, we represent instruction
memory as an associative array of instructions (as
sociated with addresses), each of which knows how
to "execute" itself given a current processor environ
ment.

There are at least three in1plications that arIse
from a design based on such assumptions:

1. The "decode" step of simulation is implicitly
represented in the state of each instruction ob
ject, saving the steps in the simulator that inter
prets the bit pattern of a sequence of bytes re
trieved from the memory array. A set of exper-

in1ents \\'e ran on a design prototype shows that
the execution of a simulator using this technique
is approxin1ately twice as fast as another proto
type \\'e built in C using a traditional design, al
though about twice as n1uch memory is required
to run the simulator. We note that the prototype
uses a very simple implementation of instruction
n1en10ry: an array of pointers to instruction ob
jects that yields fast access to instructions, but
at a cost of more space. (the prototype is dis
cussed further in Section 4.)

2. Writing into instruction store introduces ineffi
ciency. In most circumstances, runtime modi
fication of code is not performed by application
programs so this is not a problem. Some pro
cessor architectures separate code and address
spaces physically, making rpntime modification
of instructions impossible. However, some pro
cessors do allow writes to instruction memory
and some algorithms-n10st notably, those that
perform "bit block transfer" (BITBLT) in anin1
ated COll1puter graphics applications-optimize
their efficiency by, in essence, assembling a cus
tOll1ized segment of code that executes its func
tion faster than a data-driven approach would
yield. Since, in our design, we essentially pre
decode instructions in instruction memory, then
any write into a byte of that n1emory must re
decode the instruction stored there. This is pos-

844 Sykes and Alaliay

sible in our design. vVe can treat the associative
nlenlory as a cache, such that any \vri te to a byte
at an address invalidates the instruction associ
ated \vith that address. If it can be assunled
that a sequence of \vrites to instruction nlenl0ry
will result in replacement of one or more \vhole
instructions before they are executed, then con
struction (by decoding bytes) of the nevv in
struction objects can be accomplished straight
forwardly. Algori thnls used by interpreters in
compiling language constructs into a cache to
achieve faster execution-for example,the cach
ing of methods by a Smalltalk interpreter-can
be adapted for use here in a way that is trans
parent to all objects outside those representing
instruction melTIories. If that assumption is not
valid, then a byte image of instruction illemory
must be maintained by the sinlulator and in
struction objects in memory be reconstructed
from that. [This would certainly be expensive
in terms of both time and space.]

3. If a transfer of control is made to an address
that corresponds to a byte that lies \vithin
that is, after the first byte of-an instruction
object, then a situation similar to the previous
one arises and the equivalent of a byte inlage
Blust be maintained and used to reconstruct in
structions in memory.

We believe that these three situations are rare and
have decided not to support thenl until a later version
of our silTIulators, although we are keeping theITI in
mind as we design.

4 DESIGN PROTOTYPE

We developed a prototype as a proof of concept for
our design. Our prototype implenlentation supports
simulation of a sinlple computer architecture that has
byte addressing and single-word (two 8-bit bytes) in
structions. The basic architecture is illustrated in Fig
ure 3. All addresses are real and comprise twelve bits.
Instruction and data nlemory are physically separ
ate. Transfer instructions contain instruction menl0ry
addresses, while all other instructions contain data
nlenl0ry references. There is a single sixteen-bit accu
mulator (AC), a twelve-bit stack pointer register (SP)
used for subroutine calls and returns, and a status re
gister that describes characteristics of the contents of
AC.

The prototype was built in C++ to prove the
design concept and to collect rough performance char
acteristics. vVe purposely chose a sinlple architecture
for our initial experiments so that we could evalu
ate our object-oriented design, devoid of nonessential

considerations. We also built a corresponding sim
ulator in C based on traditional simulator design so
that \ve could directly compare the designs and their
perfornlance.

The design object nl0del for the prototype is sho\\'n
in Figure 4. It includes some details about the class
specifications. In that nl0del, Environment represents
the conlputer configuration, including the registers in
the CPU. We have not included processing units that
perfornl arithmetic, for example, in the prototype, but
future designs \vill include such components. We are
currently evaluating the design vis-a-vis the benefits
of this change as well as defining a CPU class. We
expect the interface for the environment to contain
operations that gain access to all system components
and handle requests such as fetching instructions from
code store and reading and writing registers.

In ternlS of an algori thm, the ill0st significant change
in the object-oriented version from the procedural
version is the way in which instructions are fetched
from code store, decoded, and executed. The high
level algorithms may be described as:

do {
instPtr =

this->fetchlnstruction(PC.read(»;
PC = PC + instPtr->size();
instPtr->execute(*this);

} while (not done) ;

In a procedural version, all data used in the simu
lation is typically global to the main sinlulation loop
and to all functions called by that loop. In the object
oriented version, PC is the program counter and instPtr
is a pointer to the current instruction [object] to be
executed, and this is the environment that is respons
ible for running a sinlulation (member function go).
All data used in the sinlulation is defined in the envir
onnlent object, but not to other objects it messages,
thus the need to store return values-for example,
into instPtr-and pass parameters to instructions
for example , *this to an instruction being executed.

Experiments with our prototype show that the ob
ject oriented simulator, coded in C++, ran twice as
fast as another prototype that we implemented us
ing the traditional approach to sinlulation where the
sinlulator was written in C. Figure 5 illustrates these
results. The table of Figure 5 lists three progran1s
having complexity O(n), O(n 2), and O(n3). Concep
tually, these correspond to programs that compute
factorial, perform a sort, and perform a fast Fourier
transfornl, respectively. On average, these programs
executed 262,145,16,787,457 and 67,110,14.5 instruc
tions respectively. The O(n) program required 97
clock units to execute using the traditional C sim
ulator and only 56 clock units to execute using the

Efficient Simulator for tbe Pentium Pro Processor 845

CPU

AC[IlJ; I::~~
flags~

SP OJ] : I : :JJJJJ
pcITD:I~

IR ITDJ_:~~...w~J

Instruction formats:

Format 1:

Format 2: [c8I:.J...LG3_:~'J

Data
Store

Instruction
Store

Oxooo
OXOO1
OXOO2
OxOO3

OXFFC
OXFFD
OXFFE
OXFFF

"'""--..............-..11...1...1

Instruction Set
LDA addr load A G with data[addr}
ADD addr add data[addr} to [A G}, set flags
STA addr store [A G} in data[addr}
JSR addr jump to subprogram at address addr and save return address on stack
RTS return from subprogram
HLT stop execution
BRZ addr branch on [AG] zero to addr
BRN addr branch on [AG] negative to addr
BRV addr branch on [AG} zero to addr
JMP addr jump unconditiona(ly to addr
CMP boolean complement [AG]
XOR addr bitwise xor data[addr] with [A G]
AND addr bitwise and data[addr} with [AG]
NEG negate [AG}
LDR addr use the lower twelve bits of A G as a data address and load contents into A G
NOP no operation

Figure 3: Architecture for the Design Prototype

object-oriented C++ simulator. The other two pro
grams experienced similar speedups. The graph in
Figure 5 highlights this result.

From this data we have concluded that the stor
age of instructions as objects, which by their exist
ence makes them "pre-decoded," speeds up execu
tion. However, we can realize a benefit only for pro
grams that involve looping because initialization of the
object-oriented simulator requires more time.

5 CONCLUDING REMARKS

We have presented a desig~ that exploits object tech
nology to produce a flexible, extensible, efficient sim
ulator for developing architectures. We have proven
the concept of ,our design by the development of a
prototype for a simple processor. We have compared
the execution characteristics of that prototype imple
mentation with the implementation of a simulator in

9 to determine the costs and benefits of our approach.
We are currently extending the prototype in two

ways. First, we are modifying the analysis model to
address the Pentium Pro Processor. Second, to fur
ther demonstrate the extensibility of our model, we
are looking at our design to build an object-oriented
framework. As we extend our design over a series of
more and more complex processor architectures, end
ing at a simulator for a Pentium Pro, we will validate
our design in terms of its reusability and extensibility.

846 Sykes and Malloy

Environment Register<Content>

Environment(char *);
II Load program from file with name indicated

inline void loadAC(const Word);
inline Word readACO const;

inline Content readO const;
inline const void write(Content &);

inline Byte readO const;
inline const void write(Byte &);

inline Boolean overflowO;
inline Boolean zaroO;
inline Boolean negativeO;

inline void loadSR(const Address);
inline Address readSRO const;

inline void loadPC(const Address);
inline Address readPCO const;

inline Instruction *fetchlnstruction(const Address) const;
inline void storelnstruction(const Address, Instruction *);

inline Word fetchDataWord(const Address) const;
inline void storeDataWord(const Address, const Word);
inline Byte fetchDataByte(const Address) const;
inline void storeDataByte(const Address, canst Byte);

Boolean QO(); 1/ Run a simulation

<

+
DataStore A._

l---------tV-"

<>-

l-I W-.o;:--rd 1

<>
2

Byte

CodeStore AJ--- *~I Address ~
~------------I'. l-- ...-J

inline Instruction readO canst; A * Instruction
inline canst void write(lnstruction &); V>-----++-------------~

InstructionO;
virtual void execute(Environment &)

throw (Halt) =0;

I

Fmt11nstruction

Fmt1lnstructionO;
virtual void execute(Environment &)

throw (Halt) = 0;

~11---- ...

NOP

InstructionO;
virtual void execute(Environment &)

throw (Halt);

Fmt21nstruction

Fmt2Instruction(Address);
virtual void execute(Environment &)

throw (Halt = 0;

+"'1------
LDA

Instruction(Address);
virtual void execute(Environment &)

throw (Halt);

Figure 4: Design Object Model for Our Prototype

REFERENCES

Efficient Simulator for the Pentium Pro Processor

50.000.000

Number of instructions sirrlulated

Program Instructions Traditional Object-oriented
complexity executed time time

O(n) 262,145 97 56
O(n2

) 16,787,457 6122 3602
O(n3) 67,110,145 24556 14397

Figure 5: Experimental Results

AUTHOR BIOGRAPHIES

847

Ball, T. and Larus, J. R. January 1992. Optimally
profiling and tracing programs. In Proceedings of
Symposium on Principles of Programming Lan
guages, 59-70.

Dahlgren, F. 1991. A prograrn-drivensimulationmodel
of an MIMD multiprocessor. In 24th Simulation
Symposium, 40-49.

Koldinger, E., Eggers, S., and Levy, H. 1991. On
the validity of trace-driven simulation for multi
processors. In Proceedings of 18th Annual Sym
posium on Computer Architecture, 244-253.

Malloy, B. 1993. The validation of a multiprocessor
simulator. In Proceedings of the 1993 Winter Sim
ulation Conference, 625-631.

Mukherjee, R. and Bennett, J. 1990. Simulation of
parallel computer systems on a shared memory
multiprocessor. In Proceedings of 23rd Hawaii In
ternational Conference on System Science, 1:242
251.

Phillip, M. J. 1992. Performance issues for the 88110
RISe microprocessor. In Proceedings of IEEE
CaMPCON, 163-168.

DAVID A. SYKES is a Principal Investigator with
ObjectKnowlogy, Inc. He received a B.S. degree in
computer science from Purdue University in 1972, an
M.A. degree in computer sciences from the University
of Texas at Austin in 1975, and a Ph.D. degree in
computer science from Clemson University in 1995.
His research interests focus on the design and testing
of object-oriented software systems.

BRIAN A. MALLOY is an Associate Professor
in the department of Computer Science at Clemson
University. He received an M.S. and Ph.D. from the
University of Pittsburgh in 1984 and 1991. His re
search interests focus on simulation techniques that
exploit object technology and parallelization.

